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ABSTRACT
Rapid increases in cellular data traffic demand creative al-
ternative delivery vectors for data. Despite the concep-
tual attractiveness of mobile data offloading, no concrete
web server architectures integrate intelligent offloading in a
production-ready and easily deployable manner without re-
lying on vast infrastructural changes to carriers’ networks.
Delay-tolerant networking technology offers the means to
do just this. We introduce MADServer, a novel DTN-based
architecture for mobile data offloading that splits web con-
tent among multiple independent delivery vectors based on
user and data context. It enables intelligent data offload-
ing, caching, and querying solutions which can be incorpo-
rated in a manner that still satisfies user expectations for
timely delivery. At the same time, it allows for users who
have poor or expensive connections to the cellular network
to leverage multi-hop opportunistic routing to send and re-
ceive data. We also present a preliminary implementation
of MADServer and provide real-world performance evalua-
tions.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication, network
communications, store and forward networks

General Terms
Design

Keywords
Cellular data offloading, Mobile advanced delivery, Delay
tolerant cache

1. INTRODUCTION
The recent explosion in cellular data traffic (due largely to

the popularity of smartphones and flat-rate data subscrip-
tions) is generating capacity problems for operators, both
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in the wireless spectrum and in cellular access networks.
We develop a novel DTN-based web server architecture that
alleviates these problems and provides a better end-user ex-
perience. Our architecture will: (i) offload “heavy” content
transfers from the cellular network; (ii) make use of client
mobility patterns and predictions to find suitable network
resources and enable advanced delivery of content; (iii) pro-
vide a novel framework for using user context and data prop-
erties in making offloading decisions; and (iv) provide a sim-
ple way for developers to prioritize content to show which
can be easily offloaded and which is time-critical. In this
way, we extend DTN-concepts to cellular networks in which
nodes are generally considered well-connected, but in which
mobile nodes can benefit greatly from opportunistic content
sharing based on DTN principles.

Recent work has explored the potential of data offloading
from cellular networks to, for example WiFi hotspots, and
offloading techniques can address capacity problems plagu-
ing cellular networks [16, 3]. If the data is not time-critical,
further savings can be had through deferred transmissions
and the use of delay tolerant networking techniques [17]. Ad-
vances in content-centric networking [2] allow for the caching
of popular content at base stations and in mobile nodes.
This can reduce the load on shared access networks, which
can often be the bottleneck [10]. However, while data of-
floading has been viewed from theoretical and conceptual
perspectives, there is little existing work on supporting these
techniques in real networks. Existing network architectures
are not sufficiently aware of network and data context to
make intelligent offloading decisions, or demand infrastruc-
ture changes in the carriers’ networks which can be expen-
sive and time-consuming to accomplish. MADSever builds
upon existing work and enables intelligent content offoading
without relying on infrastructure changes.

MADServer is aware of the mobility of content consumers
and the context of the network and data content. Specif-
ically, our architecture makes it possible to send different
pieces of web content over different network technologies,
enabling offloading of “heavy” content from the cellular net-
works, in particular if such content is not time critical. Mo-
bile devices can recombine the pieces before providing them
to the user. This decoupling of web content from user re-
quests allows for advanced delivery of content to places where
a user will be instead of where a user currently is. In to-
day’s highly mobile environment, this pre-caching takes full
advantage of offloading opportunities. By integrating this
with a DTN query mechanis, the needs of multiple users
can potentially be served by a single transfer over the access



network and users can also collaboratively share content lo-
cally to satisfy requests. The following are some motivating
example situations.

Mobile Video-on-Demand. Services such as YouTube
and those offered by local TV channels have become im-
mensely popular. With the advent of smartphones, users
also want to use these services on their mobile devices,
straining cellular networks. Potential local similarities in
requests for this content (commuters on the same train all
wanting to catch up on last night’s episode of a popular TV
series or watch the latest viral video) generate great poten-
tial gains for caching and data offloading.

Events with large crowds. Some events entail crowds
in areas where networks are dimensioned for fewer people.
Such events include big outdoor sporting events (such as
marathons, which are spread over a large area, making it
hard to deploy extra capacity at a particular location), or
the recent royal weddings in Sweden and the UK, where
large crowds gathered to see the newlyweds but still wanted
to be able to watch the wedding on their mobile devices.
Many in the crowd will have similar interests and request
the same data; local caching and opportunistic exchange of
data has great potential benefits.

2. MADSERVER ARCHITECTURE
MADServer (Mobile Advanced Delivery Server) enables

context-based data offloading without requiring new soft-
ware at cell towers and with minimal changes at clients and
servers; this allows for quick adoption of data offloading and
eases the burden on network programmers. We split web
content into two conceptual pieces: large content (pictures,
streaming video, music, etc.), and the rest of the HTML
frame, which itself can contain smaller content items (news
tickers, feeds, etc.). We also distinguish two delivery vectors,
3G (which can really be any cellular communication technol-
ogy) and the content offloading vector, which can take many
forms, although it will require some local content-cache and
will generally rely on WiFi for its “last-hop” delivery.

We transfer small content over 3G and offload large con-
tent when beneficial and within delay constraints. Active
sessions need not be terminated and restarted when switch-
ing technologies, which disrupts user experience and leads
to re-transferring partially received pages. Instead, when an
alternate delivery vector is available, the web server can of-
fload the bulk of communication but still provide a seamless
session with minimal 3G usage.

Modern web architectures typically consist of a combina-
tion of a) a high-performance web server written in C/C++
with b) web applications often written in object-oriented
languages such as Python. Our architecture places a light-
weight “middleware” layer between these components to al-
low for expressive content offloading based on user and data
context; no additional software is needed at the cell towers,
and web developers need not contend with an unfamiliar
and complex new system. Figure 1 shows the high-level ar-
chitecture. Client requests are sent over 3G, although large
requests like file uploads could be offloaded. The server re-
sponse is split into two, Response ′ and Response ′′ to be sent
over 3G and the offloading vector, respectively. Response ′

contains HTML frames to be served in the traditional way
with the content tags re-written to point to future offloaded
locations; Response ′′ contains the content with its meta-
data. The decision of when to offload content and which

Figure 1: High-Level MADServer Architecture

delivery vector to use depends on the context of the user
and the context of the data.

2.1 Context and its Uses
With respect to acquiring and using context for intelligent

data offloading, there are two key issues: (i) what context
to acquire and (ii) how to distribute and respond to con-
text. There are many mechanisms for sensing, storing, and
aggregating context; we do not develop new mechanisms but
instead rely on existing work. The key question asks what
types of context information are particularly useful for this
scenario. For example, when a network cache relies on op-
portunistic node contacts, context may include knowledge
about contact patterns (e.g., duration of contacts or num-
ber of unique contacts). Alternatively, when applications
attempt to use offloading to benefit from multiple users re-
questing the same content, context may include aggregate
activities of local groups of nodes. We give additional con-
crete examples in Table 1. To enable a node to acquire its
context, we rely on existing services and techniques [21, 23,
26, 25] that can acquire information about a device, its local
environment, and its network links; to enable nodes to ac-
quire aggregate context information, we rely on recent work
in assessing the context of a dynamic group [14] that can
reason about similarities among users, the network neigh-
borhood, and social graphs.

In addition to these types of context that give information
about users’ situations, we can also use data context, which is
independent of the requester and the network. This includes
the data’s creation time, it’s time-to-live (e.g., stock quotes
need to be delivered quickly before they become irrelevant),
the size of the data, priority labels, etc. Data context must
be provided by the web application developer (or inferred
by the middleware). Generally speaking, it is associated
directly with the chunks of data as meta-data.

It is up to the client to determine which context to acquire
and share with the server. This will largely depend on the
client’s context acquisition capabilities, the requirements of
a request. The client has compelete control over what con-
text it shares with a given web service, and what it does
not. This is a significant benefit since it ensures that the
system does not violate a user’s privacy requirements. The



Type of Context Examples Usage

System Context battery level, charging status, selectively enable/disable a client’s participation
CPU load, free memory in mobile caching and ad-hoc content sharing

Network Context network type, roaming status, can influence sharing patterns; enables content
calling status, WiFi state prediction, which is required for advanced delivery

Location Context GPS location, speed, heading can provide common mobility patterns for
prediction; correlated with cache availability

Aggregate Context common activities, social servers can learn popular locations for caches
connections and popular data to cache

Data Context creation time, time-to-live, influence which data can be off-loaded
data size, priority labels depending on the network cache capabilities

Table 1: Potentially Useful Concrete Context Metrics

use of context is not entirely new in web services; existing
web services that provide tailored services such as stream-
ing bitrate adaptation have a similar reliance on context [5].
As in all similar uses of context, the client and server must
agree a priori on the language used to describe context.

The context that a user acquires about her situation must
be sent to the web server to enable intelligent data offload-
ing. A client’s context can be piggybacked on the client’s
(HTML) request. Our architecture leverages existing ap-
proaches for succinctly summarizing context [14] to prevent
the transmission of context from overburdening 3G connec-
tions. Aggregated context information about a group of
nodes can be similarly shared. Alternatively, context can
be shared through the network cache and back to the server
(through the reverse of the process of delivering Response ′′).
Again, we do not construct new context acquisition and
distribution mechanisms but instead integrate existing ap-
proaches with our novel architecture for jointly delivering
content directly and through offloading.

2.2 Content Offloading Vector
In our architecture, time-critical content is delivered in

the traditional manner across the cellular network so the
user experience in not degraded, but less critical content can
selectively be pushed across an alternative delivery mecha-
nism, especially when the associated delivery delay is within
tolerable bounds [3]. Our vision combines delay-tolerant net-
working principles with content-based networking, and relies
on asynchronous, opportunistic communication.

Content-Based Networking. In content-based net-
working, messages are addressed by application-specified con-
tent instead of unique addresses [15, 29, 2], increasing ex-
pressiveness and flexibility, decreasing the time to discover
desired content, and leveraging locality of content consumers.
These approaches have been explored in traditional Internet
scenarios [7, 11] and in mobile computing [1, 12, 15]. Our
architecture can rely on content-based networking to locate
and share“heavy”web content through a network cache that
spans a local delivery network containing WiFi access points
and mobile nodes.

Publish/Subscribe with BPQ. In publish-subscribe
systems, senders publish messages with topic labels, and
these are distributed through the network according to sub-
scriptions. In general, subscriptions are distributed to the
entire network to form a routing structure; however, main-
taining this routing structure in the face of topological

changes [6, 13, 20, 28] is not always advisable in a mobile
network.

The Bundle Protocol [27] is the de facto standard ses-
sion protocol for DTNs, and the Bundle Protocol Query
(BPQ) extension block [8] allows for intelligent in-network
content caching, in essence providing a publish/subscribe
system over DTNs. BPQ queries are sent towards the orig-
inal content publisher, who responds to it. BPQ-enabled
nodes on the path back to the requestor will, depending on
space availability and local policies, cache the content. If
another node makes a query that can be satisfied by the
same content, the request can be served by these intermedi-
ate caching sites directly instead of forwarding the request
all the way to the publisher.

Global Virtual Data Structures. A useful abstrac-
tion for mobile users represents dynamic distributed data
as though it is accessible through a locally available data
structure; such global virtual data structures fill in communi-
cation as needed below the data structure abstraction [24].
A canonical example is the distributed tuple space [9, 4],
which has enjoyed significant use in parallel, distributed, and
mobile computing. Similar database abstractions have been
extended to a variety of domains, including MANETs [18]
and sensor networks [19].

Although the MADServer architecture is itself indepen-
dent of the particular content offloading vector, our imple-
mentation uses the DTN2 with the BPQ extension.

Figure 2: Server-Side Architecture



2.3 Server-Side Architecture
Our server-side architecture, shown in Figure 2, has three

main components, a Request Processor, a Context Manager,
and a Response Processor, all of which live in a middleware
layer directly below the web application. Many production-
capable web application frameworks such as Django1 already
implement middleware layers well-suited for this architec-
ture. The client inserts its context into its HTML requests.
The Request Processor looks for specific context tags, strips
them from the request, and sends the context information
to the Context Manager, which tracks each user by his 3G
IP address. Otherwise, requests proceed as normal, with
no changes required to the web application itself. Once
the HTML response is generated, the Response Processor
rewrites the response according to the pre-defined rules and
the user context provided by the Context Manager, possibly
removing some of the content and content links and sending
that data over the offloading delivery vector. Consider the
following two content items:

1. <a href=“http://server-location.url/media/
largeVideoFile.flv” id=embedStreamPlayer>

2. <a href=“http://server-location.url/images/
largeImageFile.jpg”>

Normally, both content items would be served by the web
server over the 3G network. The Response Processor could
rewrite the above response to:

1. <a href=“http://localhost/tmp-cache/
largeVideoFile.flv” id= embedLocalStreamPlayer>

2. <a href=“http://localhost/tmp-cache/
largeImageFile.jpg”>

3. < LOOKUP CONTENT “dtn://*/largeImageFile.jpg”,
“dtn://*/largeVideoFile.flv” USING DTN BPQ>

The largeVideoFile and largeImageFile urls now point to the
local client cache, and the embedded video player changed
to the local streaming service. The client looks for both
content items in the local DTN network cache using the
BPQ extension, and, once the content arrives, the client can
stream the video from its own local cache.

2.4 Client-Side Architecture
In MADServer, clients must provide context to the server.

This requires two elements on clients, a context aggregator,
and a MADServer browser plugin. The context aggrega-
tor enumerates available resources and services, tracks of-
floading delivery vector availability, and calculates future
offloading possibilities. The resulting context is then sent
to the servers via a browser plugin that automatically de-
tects servers that have data offloading capabilities and in-
serts context information from the context aggregator into
HTTP requests. In our implementation we simply offload
data using the bundle protocol when a WiFi connection is
available; this is näıve and could lead to performance degra-
dation [3], but it is sufficient for a proof of concept. More
centralized context aggregation and processing might be de-
sired, for example provided by the cellular carriers. The
MADServer architecture is still valid since such context can
easily be sent to the clients, which can then send it on to
the servers. Data privacy is a natural advantage of client-
controlled context—the user retains full control over what
context she shares and with whom.

1https://www.djangoproject.com/

3. PROTOTYPE AND EVALUATION
This section describes our MADServer proof-of-concept

implementation and the evaluations performed using it.
Web Server and Interface. We use Apache2 (since it

is the open-source standard for deployment web servers) in-
terfaced with our web application using Python Web Server
Gateway Interface (WSGI).3

Middleware. We implemented the middleware layer and
context manager in the Django Web Framework.4 In our
preliminary implementation of the Context Manager, the
client encodes three pieces of context in each HTTP request:

{Offload?,DestIPAddr,DTNEndpointID}.

When the context manager on the client determines that
mobile advanced delivery of content is beneficial, it asks the
server to start offloading the content and provides a destina-
tion IP address where the content should be sent. Note that
this need only be a destination running a bundle protocol
router that can accept and forward bundles, and can thus
act as an in-network content cache. The client also provides
its globally unique bundle protocol endpoint identifier. The
server encapsulates the requested content items in their own
bundle, which is addressed to the client’s DTNEndpointID
and forwarded over the Internet to the provided IPAddr.
Once the bundle is transferred to the destination, hop-to-hop
opportunistic routing will deliver the content. We do not im-
plement a predictive location context service on the client;
instead for the evaluation we loaded this context a priori.
However, recent work in energy efficient cellular phone-based
predictive location awareness could provide this information
easily [22].

Web Application. For the application, we used a fully-
functional social networking website built in the Pinax rapid
web application development framework5 with a MySQL
database back-end and static file system for the content (pic-
tures, video, etc.).

Content Offloading Service. We used the DTN2 Ref-
erence Implementation6 of the Bundle Protocol to imple-
ment the data offloading delivery vector. This allows us to
address content independent of a user’s current IP address
(instead using its globally unique endpoint ID) and to pre-
cache content in places where a node might visit as long as
there is at least one host there who implements the bundle
protocol and can accept and forward bundles. If there is a
network of such nodes, then content is disseminated to all
nodes according to the the DTN2 forwarding rules. When
the user eventually comes into contact with a node caching
its content, the content is delivered.

3.1 3G-Only vs. Offloading
Content offloading not only frees expensive cellular band-

width, it can deliver content faster even without pre-caching.
In this first experiment, we issued 50 requests for three dif-
ferent web pages with minimal HTML frames containing
images of sizes {512 KB, 1 MB, and 5 MB}. The client is a
linux-based laptop with a USB 3G Modem and WiFi card
located in Europe, and the server is located in the central

2http://apache.org/
3http://wsgi.org/wsgi/
4https://www.djangoproject.com/
5http://pinaxproject.com/
6http://www.dtnrg.org



United States. We measured average delivery latency using
only 3G connectivity and with content offloading using our
bundle protocol based offloading vector—the last hop link
of which was over 802.11b via a WiFi access point. Figure 3
shows the latency results with their standard deviation for
two different WiFi access points, one with a relatively poor
signal strength and many users and one with good signal
strength and very few users. WiFi is not necessarily faster
than 3G [3], although this strengthens the argument for user
context-based data offloading: if the cellular connection is
currently expensive (e.g., the user is roaming), the extra la-
tency may well be worth money saved (of course, not all
WiFi access might be free of charge either, but it is likely
that it will be cheaper than 3G access, and any cost associ-
ated with WiFi usage is another context parameter to take
into consideration). Conversely, if the data is of high prior-
ity, using 3G (depending on the available WiFi bandwidth)
may be better.

Figure 3: Impact of offloading on response time

3.2 3G Bandwidth Savings
Figure 4 shows the 3G bandwidth usage during regular

operation and with data offloading. The client makes three
requests for a page containing a 16MB video file. In the 3G-
only case, the video is streamed over the 3G connection. In
the data-offloading case, the video is bundled and sent to the
client using our DTN2 content delivery vector; the final hop
is over 802.11g from a WiFi access point. The client receives
the bundle, inserts it into its local cache, and the video is
“streamed” locally. As the results show, the 3G savings are
significant (three orders of magnitude). Furthermore, the
latency of the WiFi connection setup and bundle protocol
client registration handshake is only a few seconds and is
not detrimental to the user experience. The local video file
stream can be started as soon as the video file starts arriving
on the client; there is no need to wait for the whole file to
arrive in order to start streaming from the file descriptor.
The combined request-to-video-start latency is thus only a
few seconds more than when using only 3G.

3.3 Advanced Delivery
Our implementation also enables mobile advanced deliv-

ery of content. If the client’s context manager determines
that a node is about to connect to a content cache, it can

Figure 4: Bandwidth (3G-only vs. 3G + Offloading)

request that current and future content requests be serviced
by the cache instead of downloaded over 3G. Figure 5 shows
the results of an experiment in which a user makes 20 inde-
pendent requests for web pages each including a 5MB con-
tent item. The left-hand graph plots the 3G usage over time
if the content is requested and delivered via 3G only. The
right hand plot shows a scenario where after the first five
requests, the user determines that it will soon connect to
a mobile advanced delivery cache (implemented by DTN2),
at which point all content should be forwarded to the cache.
The server responds to two of the requests over 3G regardless
because the data is high priority according to its meta-data
tags. The rest is forwarded to the content-cache and served
to the client when it connects over 802.11b. When the client
disconnects from the content cache, it sends a context up-
date, and the remaining five requests are serviced over 3G.
In this experiment, the user context was predetermined and
provided ahead of the experiment. Not only does the MAD-
Server architecture save 3G bandwidth, in this case reducing
the 3G load from 108 MB to 60.7 MB given only a 51 sec-
ond connection to a content-cache, but it is able to deliver
all twenty content items in almost half the time.

Figure 5: 3G-Only vs. Mobile Advanced Delivery

4. CONCLUSION
MADServer, a web server architecture for mobile advanced

delivery, performs adaptive content offloading by splitting



web responses into pieces based on user and data context,
and delivering them to the client using different delivery vec-
tors. Content offloading addresses critical capacity prob-
lems in cellular data networks but must be done in context
sensitive ways so as not to deteriorate the user experience.
Although there are many challenges in aggregating, inter-
preting and responding to context, our architecture is a first
step in integrating context metrics with data offloading de-
cisions, and our implementation provides tangible results of
the benefits.

Prior work in data offloading has been mostly theoretical
or conceptual, and this work paves the way for integrating
adaptive offloading with production web services without
the need for drastic systems changes.

MADServer is general enough to be independent of the
particular content offloading vector to be used, but we have
demonstrated one possibility based on delay-tolerant session
and routing protocols. It is also flexible enough to incorpo-
rate research in network context and content delivery net-
works without the need for web developers to change their
applications to utilize them. MADServer is a novel web
architecture approach that brings together fundamental re-
cent advances in content-based communication and context-
awareness to provide revolutionary capabilities for web con-
tent delivered to mobile clients. The initial work in this
paper lays the groundwork for MADServer and exposes key
research questions in applying context in this domain and
appropriately selecting expressive content delivery vectors.
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