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a b s t r a c t

This paper explores the fidelity of queries issued in pervasive computing networks. A
query’s fidelity, or how well its results reflect the state of the environment, can be
significantly impacted by dynamics that occur during its distributed execution. We focus
on continuous queries that can be built out of sequences of consecutive snapshot queries and
show how the fidelity of snapshots can be used to determine the fidelity of continuous
queries. This simple notion of continuous query fidelity can be used to adapt query
processing to impact quality and cost tradeoffs given the current state of the environment.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Pervasive computing networks enable an emerging class of applications that integrate devices embedded within the
physical environment with mobile devices carried by people to consume, create, and share digital information. In these
highly dynamic information spaces, applications must often be context-aware, adapting their behavior to support users or
automate tasks given the instantaneously perceived state of the world. The programming tasks associated with collecting
information that defines an application’s context can be challenging and are often simplified through the use of a software
infrastructure that provides an abstraction for accessing the distributed state of the pervasive computing system. Alongside
these mechanisms that facilitate access to the digital representation of the physical world, it is important to provide an
understanding of the quality of the data used to drive decisions that impact actions to be taken by automated processes or
a human user.

A query is an enabling abstraction that has been widely embraced for information collection in pervasive computing
environments. However, the fidelity of a query, a measure of information quality that describes how well a query’s results
reflect the actual state of the environment, is significantly impacted by the unpredictability of the opportunistically formed
wireless networks common in pervasive computing deployments. As a query is distributed and executed over the dynamic
network substrate, changes that occur due to network and environmental dynamics can cause the query to miss potential
results or to report information that is inconsistent with the actual state of the world. Understanding the fidelity of a
query that is used to collect information about the surroundings is essential in pervasive computing environments; such
knowledge can enhance decision processes and lead to the development of more robust and reliable systems.

Our ultimate goal is to develop a theory of the fidelity of queries issued over pervasive computing networks.We consider
two forms of queries: snapshot queries and continuous queries. A snapshot query executes through the network and returns
values that satisfy the query criteria at a particular instant in time. For example, in supporting a decision process on an
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automobile that is low on fuel, an application may query for nearby gas stations. A continuous query provides a result that is
updated over time to reflect changes in the network of nearby embedded devices. For example, an automobile’s application
may continuously collect the locations and velocities of nearby vehicles to monitor safety conditions. Information about the
fidelity of the query can be used to assess tradeoffs between the quality and cost of execution and, for continuous queries,
to adapt the query’s execution over time in order to meet an application’s needs in the dynamic operational environment.

From an application’s perspective, a continuous query’s result should be continuously updated to reflect changes in the
network. Froma practical standpoint, continuouslymonitoring changes requiresmaintenance of a distributed data structure
within a highly dynamic setting, which, in many network situations, can be prohibitively expensive in terms of resource
consumption. In previous work, we have shown that defining a continuous query as a sequence of snapshot queries can
provide a reasonable approximation of the continuous query and substantially reduces the cost of monitoring in dynamic
environments [1]. We embrace this perspective here, which allows us to leverage our theory of snapshot query fidelity [2,3]
as a foundation for expressing the fidelity of continuous queries. Specifically, this paper explores how the fidelity of
component snapshot queries can be used to reason about an encompassing continuous query’s fidelity and how we can
use this relationship to adapt the execution of the continuous query in a way that considers an application’s requirements
with respect to the tradeoffs between query fidelity and the cost of query execution.

Consider again a continuous query issued by a moving vehicle to monitor safety conditions. Intuitively, it is important
to adapt this continuous query to the changing pervasive computing environment. Choosing how to use the underlying
network to answer this question in a way that finds the best balance between the quality of the query result and the cost of
query processing depends on many factors, including the speed of the vehicle and surrounding vehicles, the density of the
network connecting them, and the capabilities of the networking technologies. All of these facets also impact the quality of
the component snapshot queries [3]. We posit in this work that by assessing the fidelity of the component snapshot queries,
we can glean important information about the fidelity of the continuous query that is reflective of the changing state of the
environment. This informationwill allowus to adapt the continuous query’s behavior to balance query quality and execution
cost.

In a preliminary version of thiswork [4],we showedhow snapshot query fidelity could be used as an introspectionmethod
for assessing the quality of a continuous query.We constructed an introspectionmetric to evaluate a continuous query using
snapshot query fidelity, and we demonstrated the potential of its use to adapt continuous queries through the use of an
application scenario. In this paper, we extend this preliminary work with the following contributions:

• We explicitly relate the frequency with which snapshot queries are issued to the fidelity of the continuous query that
integrates them over time.

• We assemble our original results and additional measurements to provide concrete guidance to pervasive computing
application developers with respect to choosing the optimal query frequency given the tradeoff between fidelity and
cost through a new bang for your buckmetric that codifies the balance of quality and cost.

• We compare the overhead of our adaptive approach to a state-of-the-art non-adaptive approach to continuous query
processing.

The remainder of this paper is organized as follows. We review our model of the pervasive computing environment,
snapshot queries, and continuous queries in Section 2, and present an overview of our existing definitions of snapshot
query fidelity in Section 3. The contribution of this paper, reported in Section 4, explores how we can use reasoning about
the fidelity of the component snapshot queries of a continuous query to adapt a continuous query’s processing to best reflect
both the environment and the application’s requirements and expectations.

2. Modeling the environment and queries

Understanding the execution environment is fundamental to modeling query fidelity. Therefore, we begin with a formal
model of the environment, the data it contains, and the queries that interact with that data. We model a dynamic pervasive
computing environment as a closed system of hosts in which each host has a location and data value (though a single data
value may represent a collection of values) [2,3]. A host is represented as a tuple (ι, ζ , ν), where ι is a unique identifier, ζ is
the context (e.g., host location or network information), and ν is the host’s data value.

The global abstract state of such a network, a configuration (C), is simply a set of host tuples. To capture network
connectivity, we define a binary logical connectivity relation, K , to express the ability of one host to communicate with
another. Using the values of a host triple, we can derive physical and logical connectivity relations. For example, if the
host’s context, ζ , includes the host’s location, we can define a connectivity relation based on communication range.K is not
necessarily a symmetric relation; if it is symmetric, K specifies bi-directional communication links.

We model network evolution as a state transition system where the state space contains possible configurations, and
transitions are configuration changes. A configuration change consists of: (1) a neighbor change; (2) a value change; or (3) a
message exchange. To refer to the connectivity of a given configuration, we give configurations subscripts (e.g., C0, C1, etc.);
Ki is the connectivity for configuration i.

Consider the configurations shown in Fig. 1. A single snapshot query may span such a sequence starting with the
configuration in which the query is issued (the query initiation bound, C0) and ending when the result is delivered (the
query termination bound, Cn). Since there is processing delay associated with issuing a query to and returning results from
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Fig. 1. Query bounds and active configurations.

the network, a snapshot query’s active configurations are those within ⟨C0, C1, . . . , Cn⟩ during which the query actually
interacted with the network. Every component of a query’s result must be a part of some active configuration.

A snapshot query can be viewed as a function from a sequence of active configurations to a set of host tuples that
comprise the result. Since a configuration is simply a set of host tuples, this model lends itself directly to a straightforward
representation of a query’s result (ρ). In fact, the result is itself a configuration and directly correlates the result with the
environment in which the query was executed, simplifying the expression of the fidelity of query results.

The ground truth of a continuous query is equivalent to a complete picture of the configurations (C0, . . . , Cj) over which
the query is active. Since accurate evaluation of such a query is feasible only in relatively static networks, we approximate
the results of a continuous query bymodeling it as a sequence of non-overlapping snapshot queries, the results of which are
ρ0, . . . , ρi. There is not necessarily a one-to-one correspondence between C0, . . . , Cj and ρ0, . . . , ρi since a single snapshot
querymay itself execute overmultiple configurations (see Fig. 1). A continuous query’s inquiry strategy includes the protocol
used to implement the snapshot queries and the pattern of snapshot query invocations (e.g., frequency). Individual snapshot
queries can be processed in many different ways, including flooding, gossiping, and location-based protocols, and these
different styles of communication can result in radically different qualities of query results. The result of a continuous query
usually requires integration over the sequence of snapshot query results. The result of a continuous query at stage i (i.e.,
including the results of the ith component snapshot query) is πi = f (ρ0, . . . , ρi), where f is an integration function.

A continuous query’s integration strategy defines how a sequence of results together provide a result for the continuous
query. An application may be concerned about the quality with which the results reflect the sensed phenomenon; given
feedback on this quality, the application can adapt to network and environmental dynamics by changing its inquiry strategy
to provide better results. In addition, inquiry strategies that achieve a high fidelity often do so at a high cost; applications
may desire toweaken the inquiry strategy to reduce the overhead of query processing.We define an introspection strategy as
a function over the sequence of snapshot query results that form the continuous query; the introspection strategy monitors
some aspect of the quality of the continuous query. In this paper, we investigate how a concrete measure of the fidelity of
the component snapshot queries can be used as an introspection strategy for a continuous query. We show that continuous
query inquiry strategies that achieve a high degree of fidelity often do so at a high cost; applications may desire to weaken
the inquiry strategy to reduce the cost of continuous query processing in terms of overhead. In our model of continuous
query processing, an introspection strategy can trigger an adaptation strategy that governs changing the continuous query’s
inquiry strategy; in this paper, we explore how a fidelity-based introspection strategy can be used to adapt the inquiry
strategy to consider an application’s quality and cost requirements within the current operational environment.

3. Fidelity of snapshot queries: a review

In our previous work, we have formally defined metrics of the fidelity of snapshot queries [2,3]. This section reviews this
semantic model, which lays the foundation for our use of this fidelity as an introspection metric for continuous queries.

The goal of a snapshot query is to capture the state of the world at the time that the query is issued. The choice of query
protocol used to execute the snapshot query (i.e., the inquiry strategy) and the changes that occur within the environment
during the snapshot query’s execution can impact the query’s ability to provide an accurate reflection of the ground truth in
the pervasive computing environment. The fidelity of a snapshot query is a measure of information quality; the fidelity
describes the degree to which a snapshot query’s results reflect the actual state of the operational environment at the
time the query is issued. To express the fidelity of a snapshot query, we formalize the relationship between the state of
the network and the query’s result. We assign qualitative metrics (i.e., labels) to results. Two of these fidelities match
the extremes currently available in mobile computing protocols, with distributed locking protocols that guarantee that a
snapshot query will execute with atomic fidelity and best-effort protocols that can only guarantee weak fidelity. The other
types of fidelity lie in between these extremes and illustrate how a query’s fidelity can be partially, but not completely,
weakened to express the quality of a query given the dynamics of the execution environment.

Using existing query processing protocols, applications can insist on very strong semantic guarantees; if a strong semantic
is not possible, the protocol aborts. In our model, a query with a strong fidelity should return only results that are collected
in the same configuration. The atomic fidelity requires that the query was performed on a single configuration (Ai(h)) and
returned a snapshot of exactly that configuration:

atomic ≡ ∃i : 0 ≤ i ≤ m ∧ ρ = Ai(h).
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Setting ρ equal to the configuration signifies not that the application uses all of the results but that they are all available,
which is this fidelity’s strength.

Network dynamics make it not possible to capture a perfect snapshot. The atomic subset fidelity captures cases when all
of a query’s results come from the same configuration, but the query cannot guarantee that the query returned the entire
configuration:

atomic subset ≡ ∃i : 0 ≤ i ≤ m ∧ ρ ⊂ Ai(h).

Here, ρ is a proper subset of some active configuration.
A slightlymore complex semantic provides the query issuerwith a sense ofwhat fraction of the results the query possibly

missed. If the returned result represents a large sample of the possible results, the query issuer may have more confidence
in subsequent usage of the result.We refer to this as the qualified subset semantic because the result is qualifiedwith respect
to the potential result. The formalization of the qualified subset fidelity specializes atomic subset and requires that at least α
percent of the results that were available in all of the active configurations are returned.

qualified subset ≡ ∃i : 0 ≤ i ≤ m ∧ ρ ⊂ Ai ∧ |ρ| > α|Ai|

where |ρ| is the cardinality of the set of results returned and |Ai| is the total number of results that were present in the
configuration of which the query is a snapshot.

Some existing protocols provide weak semantics with no guarantees. For this weak fidelity, the only assurance is that
each result existed in at least one active configuration.

weak ≡ ρ ⊆

m
0

Ai(h).

A slightly stronger version of weak fidelity is weak qualified. The results collected may come from across all active
configurations (i.e., they may not have existed at the same time), but the query issuer is guaranteed to receive at least
some specified fraction of the possible results:

weak qualified ≡ ρ ⊆

m
i=0

Ai ∧ |hosts_in(ρ)| > α

hosts_in


m
i=0

Ai


where hosts_in is a function that counts the number of unique hosts in a set that may contain multiple results from each
host.

These definitions of snapshot query fidelity essentially fit into two classes: atomic (or comparable) and non-atomic (or
non-comparable). In the first class, the stronger semantics, all of the elements returned as part of the snapshot query are
guaranteed to have existed at the same time, i.e., within the same configuration. In the weaker class, all of the results of the
snapshot query are guaranteed to have existed at some time during the query execution, but nothing can be said about the
temporal relationships between individual items in the result.

4. Snapshot query fidelity as introspection

Query introspection is the process of determining if a continuous query’s inquiry mode is suitable, given the current
network and environmental conditions. This decision is often related to the tradeoff between the desired properties of the
result and the cost of query execution. To support introspection,we apply adequacymetrics to query results [5]. An adequacy
metric, d, measures the logical distance between a desired property of a continuous query and properties of the query result.
For each adequacymetric, the application can define an associated threshold (δ). This simple construction supports arbitrary
adequacymetrics that can enrich decision-making processes. In this section, we create an adequacymetric for introspection
that describes the fidelity of the continuous query.

4.1. Defining fidelity-based introspection

Wecreate an adequacymetric for query introspection that describes the fidelity of the continuous query using the fidelity
of the component snapshot queries in an intuitive and straightforward manner. As a simple example, an application can
define the fidelity of a continuous query to be the minimum fidelity over a recent window of snapshot queries. This is a
conservative definition; any non-atomic snapshot query within the window makes the continuous query non-atomic. This
conservative definition is based on the nature of integration; if one non-atomic snapshot will be integrated with atomic
ones, the resulting continuous query is effectively non-atomic.

Consider again a continuous query on a highway that monitors a safety condition using the relative positions and
speeds of a set of nearby vehicles. In our previous work, we defined an introspection metric based on the rate of change
of information (e.g., if the identities and positions of the monitored vehicles have changed substantially from one snapshot
to the next, the component snapshot queries should be issuedmore frequently) [5]. This metric could be combinedwith one
that also assesses the fidelity of those component snapshot queries. For example, if all of the snapshot queries have atomic
(or comparable) fidelity, then the relative positions of the vehicles in the result are meaningful. If they are not comparable,
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then they do not represent the positions of the vehicles at the same time, and therefore may misrepresent the potential for
collisions. Therefore, the quality of the result of the continuous query that measures the potential for a collision over time
is only as good as the quality of the snapshot query that measures the vehicles’ positions at a given time.

We generalize the above definition of fidelity-based introspection slightly to define our query introspection metric to
be the percentage of the snapshot queries in some recent history that had an atomic, or comparable, fidelity. Formally, we
define the adequacy metric dfidelity(w) based on the fidelity of the past w snapshots:

dfidelity(w) =
⟨sum p : (k − w) < p ≤ k ∧ Sp ∈ A : : 1⟩1

w
,

where Si is the fidelity of the continuous query’s ith snapshot, A is the set of atomic (comparable) fidelities (e.g., A =

{atomic, atomic subset, qualified subset}) described in Section 3, and k is the current snapshot. The value of dfidelity(w) is the
percentage of the w previous snapshot query results that had an atomic fidelity semantic. If the value of dfidelity(w) is one,
then the integrated continuous query over the previous w windows has an atomic semantic.

4.2. Demonstrating the utility of fidelity-based introspection

Intuitively and empirically, continuous query inquiry strategies that can achieve the atomic (comparable) fidelity
semantics incur greater overhead. The snapshot query protocols that guarantee atomic snapshot fidelity often require
increased interaction among the participants (e.g., to perform two- or three-phase locking procedures); exchanging more
messages requires more resources. From empirical analysis, we also find that increasing the frequency with which the
snapshot queries are issued increases the fidelity of the continuous query; such a strategy also increases the overhead of
continuous query processing.

To evaluate our introspection metric and its ability to tradeoff quality and cost (in terms of overhead), we used
OMNeT++ [6], its mobility framework [7], and an implementation of a two phase protocol for snapshot queries that assesses
its own achieved fidelity [3] to execute a continuous query at a given frequency. The protocol uses a controlled flooding
approach to distribute and evaluate the snapshot query and maintains state about the participating hosts (and their values)
during these phases of query processing to assess the fidelity of a query’s execution. The first phase establishes a set of query
participants, which provides a reference that is used by the protocol to observe changes that impact the query’s fidelity. The
second phase evaluates the query. Each node that receives the query will disseminate the query to its children and wait
for their responses before responding with its own local data value and relevant state information. We use our fidelity-
based adequacy metric defined above to drive adaptation of the frequency of the continuous query’s component snapshot
queries.

The results in this section are generated by executing snapshot queries over a simulated network consisting of varying
numbers of nodes at varying speeds within a 1000× 900 m2 area. A single node is designated as the query issuer; this node
issues consecutive snapshot queries using the aforementioned two-phase protocol at a given frequency over a duration
of 200 s. Flooding is controlled by setting the time to live (TTL) parameter for the query message; our simulations use a
TTL value of 3. In each result, we specify a maximum speed; node speeds are chosen uniformly and randomly between
0 m/s and the specified maximum. The nodes move according to random waypoint mobility [8] with a zero pause time, in
which each node is initially placed randomly, chooses a random destination, and moves in the direction of the destination
at its assigned speed. When it reaches that destination, it immediately chooses a new destination and repeats the process.
We used the 802.11 MAC protocol implemented in the mobility framework; when possible we show 95% confidence
intervals.

Fig. 2 provides a pair of measurements that together characterize how a continuous query’s inquiry strategy is related to
fidelity-based introspection. Fig. 2(a) shows the percentage of atomic windows for varying query frequencies, i.e., the y-axis
plots dfidelity(w) forw = {2, 4, 6, 8, 10}. It is immediately obvious that, regardless of the window size used for introspection,
issuing the component snapshot queries more frequently (the left hand side of the figure) achieves a much higher fidelity.
This is a result of the fact that both the network topology and the state of the data stored in the network are very dynamic,
and as queries are issued less frequently, the more likely it is that this state (and the network’s ability to execute a snapshot
query with atomic fidelity) has changed from one snapshot query to the next. A more subtle fact in this figure is that even
when queries are issued at a very high frequency, our very strong two-phase commit-based protocol cannot achieve perfect
atomicity given the dynamics of the environment (e.g., even for a window size of 2 and queries issued 10 times per second,
the percentage of the windows observed that were atomic topped out around 95%).

Fig. 2(b) shows the average overhead of query processing as a function of frequency. Clearly (andmatching our intuition),
decreasing the frequency of issuing snapshot queries decreases the cost associatedwith processing that query. The two plots
in Fig. 2 taken together give us important insights on the relationship between the query frequency and the resulting fidelity
of the continuous query, which can help both application developers and adaptive applications to make decisions about the
continuous query’s execution in order to meet quality and cost requirements in a given environment.

1 In the three-part notation: ⟨opquantified_variables : range : : expression⟩, the variables from quantified_variables take on all possible values permitted
by range. Each instantiation of the variables is substituted in expression, producing a multiset of values to which op is applied. If no instantiation of the
variables satisfies range, the value of the three-part expression is the identity element for op, e.g., true if op is ∀.
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(a) Percentage of atomic windows for varying query frequencies. (b) Overhead of protocol execution (in bytes).

Fig. 2. Impact of query frequency on fidelity (max speed = 15 m/s, ttl = 3 hops, hosts = 50).

To further understand these tradeoffs in different styles of networks, we next quantify the relationships between
fidelity, overhead, and network characteristics. In situations where the developer knows something about these essential
characteristics of the network environment a priori and does not expect drastic changes that impact this characterization
of the network, this insight can be used to help choose a frequency that achieves the best tradeoff between fidelity and
cost in the target environment. Fig. 3 illustrates the link between fidelity, cost, and query frequency for various network
characteristics. The charts in Fig. 3 show the results of executing continuous queries over dynamic networks with varying
degrees of node density (from sparse networks with an average of three neighbors per node, through decently connected
networks with an average of 10 neighbors per node, to dense networks, with an average of 26 neighbors per node). As the
evaluation shows, when the density of the network is known to be low (Fig. 3(a) and (b)), the tradeoff between quality and
cost is slight; the developer can choose a low frequency, which still has a very high quality, to get the lowest possible cost.
The same is not true as the density of the network increases; as Fig. 3(e) and (f) show, in dense networks, the developer has
to think very critically about the tradeoff between cost and quality. High quality queries are possible, but they incur a very
significant cost; on the other hand, decreasing the query frequency even slightly rapidly degrades the quality, indicating
that the middle values for query frequency in dense networks are not all that useful. Networks with average density,
however, offermuchmore complex tradeoffs for the developer, and the information in Fig. 3(c) and (d) show this complexity;
there is clearly middle ground where the queries can achieve decent quality at a reduced cost; the best choice of protocol
settings in these cases will depend on the developer’s knowledge of the application requirements. These results hold for our
specific definition of query quality as given by our fidelity-based adequacymetrics; other adequacymetrics would engender
different relationships that would require similar elicitation to enable guidance for application developers and deployers.

We further elicit the relationships between quality and cost as given by our fidelity-based adequacy metric through a
new ‘‘bang for your buck’’ metric, defined by measuring the amount of atomicity a sampling approach achieves per unit of
overhead.We compute thismetric relative to the best possible quality our sampling approach can achieve; i.e., that achieved
with a query frequency of 0.1. In Fig. 4, which plots this metric for different network densities, data points above the value
of 1 ‘‘beat’’ the best possible quality (a sample frequency of 0.1) with respect to this bang for your buckmetric. Fig. 4 shows a
very interesting result that demonstrates a significant utility to developers who can quantify the nature of their deployment
environments. In our example situations, when the density of the network is very low, the best bang for your buck turns out
to be to sample as infrequently as possible. This is because, as shown in Fig. 3(a), the query fidelity is very high, regardless
of the query frequency. This observation remains true when the average number of neighbors is 10 and 14, though the
improvement in the bang for your buck as the query frequency decreases also decreases (as demonstrated by the flattening
out of the lines in Fig. 4 for densities of 10 and 14. Most interestingly, though, for an average density of 26 neighbors, the
most bang for your buck in this example is actually at a frequency of 0.2 (which is slightly better than the baseline of 0.1).
This means that the quality of the query in these dense networks is so poor at the lower frequencies that the extra overhead
of frequent snapshots is worth it (assuming the value is measured in terms of our simple bang for your buck metric).

This may be an oversimplification of the inherent tradeoffs of fidelity and cost. There may be fidelity thresholds below
which an application cannot operate, regardless of how inexpensive they are (in terms of overhead of query processing).
However, this bang for your buck metric clearly quantifies that tradeoff, which is valuable information for a developer or
deployer.

When network characteristics (e.g., density) are expected to remain in a steady state over the course of an application’s
lifetime, the results shown in Fig. 3 can be used to select the most appropriate query frequency to meet an application’s
needs in terms of fidelity and cost. However, it is frequently the case that these network characteristics change over time.
Fig. 5 gives insight into the impact of environmental characteristics that change during the course of an application’s lifetime
on the fidelity of a continuous query. Specifically, Fig. 5 explores a single aspect of the dynamic environment: node speed.
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(a) Percentage of atomic windows for varying query frequencies for sparse
networks (10 hosts; average num neighbors = 3).

(b) Overhead of protocol execution (in bytes) in sparse networks (10
hosts; average num neighbors = 3).

(c) Percentage of atomic windows for varying query frequencies for
medium density networks (35 hosts; average num neighbors = 10).

(d) Overhead of protocol execution (in bytes) in medium density networks
(35 hosts; average num neighbors = 10).

(e) Percentage of atomic windows for varying query frequencies for dense
networks (100 hosts; average num neighbors = 26).

(f) Overhead of protocol execution (in bytes) in dense networks (100
hosts; average num neighbors = 26).

Fig. 3. Impact of query frequency on fidelity (max node speed = 10 m/s, query ttl = 3 hops).

As expected, fidelity-based introspectiondoes provide a reflection of the degree of dynamics in the environment. Specifically,
it is more difficult for our continuous query to provide an atomic measure of the environment as that environment grows
more dynamic.

In situations where the essential nature of the environment rapidly changes, the execution of the continuous query
should adapt in response tomeet an application’s needs with respect to fidelity and cost. When a continuous query includes
a snapshotwith non-atomic results, either the inquiry strategy should be ‘‘strengthened’’ to generatemore atomic snapshots
that are integratable or ‘‘weakened’’ to reduce overhead. These decisions depend on application requirements; applications
may need to specify tolerance for non-atomic results and for acceptable inquiry strategies (e.g., the frequency with which
the continuous query must be updated, regardless of fidelity). In the following sections, we apply these insights to show
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Fig. 4. Bang for your buck (max node speed = 10 m/s, query ttl = 3 hops, window size = 5).

Fig. 5. Impact of node speed on fidelity-based introspection (query freq = 100 ms, query ttl = 3 hops, num hosts = 50).

how one can create an adaptation strategy that uses our fidelity-based introspection metric to adapt a continuous query’s
behavior to meet quality and cost requirements within a dynamic environment.

5. Fidelity-based adaptation

The previous section provides and demonstrates the capabilities of a newmetric formeasuring the quality of a continuous
query. In our system model, this provides an introspection strategy by which an application can monitor the query. If the
result’s quality does not meet the application’s requirements, the application can specify adaptation strategies that can
change the query.

5.1. Defining adaptation strategies

Using our fidelity-based introspection metric defined above, the application can dynamically adapt its inquiry strategy
to meet quality and cost requirements. The following is a generic and simple structure for defining adaptation strategies:

⟨ ⟨I, freq⟩, d, δ+/−, ⟨I∗, freq∗
⟩ ⟩,

where ⟨I, freq⟩ is the continuous query’s current inquiry strategy, d is the introspection strategy, δ is the introspection
threshold, and ⟨I∗, freq∗

⟩ is the new inquiry strategy that should be applied if the value of the introspection metric violates
δ. I is the protocol used to process the snapshot query, while freq is the frequency of the snapshot queries. If the superscript
of δ is +, adaptation is triggered if the value of d exceeds δ; if the superscript is −, adaptation is triggered if the value of d
falls below δ.

For fidelity-based adaptation, the threshold δ associated with dfidelity(w) indicates that if the percentage of atomic
snapshot queries in a window of size w falls below the threshold, the continuous query’s inquiry strategy should be
adapted, either to increase the quality of the continuous query or to reduce its overhead. Adaptation strategies are highly
application dependent. With respect to the fidelity of a continuous query, some applications may only be able to function
if the continuous query is atomic. Best effort applications may desire to focus exclusively on saving overhead. We define
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a sample set of adaptation strategies that straddles these tradeoffs. For simplicity, we look only at adapting the snapshot
query frequency (i.e., I will not change), though one could also adapt the query protocol itself. Consider an application that
desires to achieve atomic fidelity if possible but is not willing to incur more overhead than is associated with issuing the
snapshot queries every 100 ms. If the application cannot achieve atomic fidelity, even with a sampling rate of 100 ms, it
desires to reduce the sampling rate to 1 s to reduce overhead. The following two adaptation rules achieve this tradeoff (I
designates the single available query processing protocol and w is an application-provided window size):

⟨ ⟨I, > 100 ms⟩, dfidelity(w), 1−, ⟨I, freq − 100 ms⟩ ⟩

⟨ ⟨I, ≤ 100 ms⟩, dfidelity(w), 1−, ⟨I, 1 s⟩ ⟩.

These rules emphasize fidelity-based introspection; different applications will need different functions, and applications’
actual adaptations are likely to be complex. There are two limitations of the above rules. First, using a threshold of 1
communicates that the window must be entirely atomic or adaptation will be triggered. Given the pervasive computing
environment dynamics, there will likely be intermittent non-atomic queries, even when the environment is largely
amenable to atomicity. Therefore, applications that can tolerate a small degradation in fidelity can set δ to be less than
one, e.g., for a window size of 10, setting δ to 0.8 allows two snapshot queries in a window to be non-atomic, but three non-
atomic snapshots triggers adaptation. The second limitation is that it will constantly attempt to achieve atomic snapshots,
even in environments that are never amenable to them. If the adaptation process reaches a query frequency of 100 ms
without satisfying the threshold for atomicity, the query frequency adapts back to 1 s, which will begin triggering the first
adaptation strategy again. Automatically detecting these cyclical dependencies in reactive rules like our adaptation strategy
is a research challenge in itself [9]. A straightforward fix would be to add some hysteresis, effectively disabling the first
adaptation rule until some number of snapshots after the second rule has been executed (e.g., based on a multiplier of w);
in fact, in general, it is useful to place an intentional delay between adaptation steps to minimize oscillations in competing
adaptation rules.

5.2. Continuous query fidelity-based adaptation scenario

Wenext show how fidelity-based introspection can be used to adapt a continuous query to provide higher quality results
or reduce the overhead using an application scenario in which we apply fidelity-based adaptation of continuous query
processing. We also show how our adaptive approach compares to an existing non-adaptive query processing protocol in
terms of overhead.

Consider an application on a car executing a continuous query tomonitor other nearby cars tomaintain safety conditions.
Initially, the car is stationary. As the trip progresses (e.g., the car navigates the parking lot, then a side street, then a busy
street), the car gradually picks up speed, triggering query adaptation.We execute a continuous query that simply collects the
locations of nearby cars for 115 s (we chose the short time scale simply to demonstrate adaptation). The maximum speed of
the nodes increases to 5m/s after 20 s; to 10m/s after 60 s, and to 15m/s after 100 s.Weuse our definition of dfidelity(w)with
w = 5 and our two adaptation rules from Section 5, with the threshold δ set to 0.8. Fig. 6(a) shows the expected (theoretical)
values for the atomicity of the continuous query and its processing overhead over time for this scenario. These are values
the developer can estimate for his adaptation strategy in advance of deployment to determine (at least, theoretically), what
the potential merits and demerits of his strategy are. Fig. 6(b) shows what happens for a live adaptive query that adapts its
query frequency over time; the figure shows both the percentage of windows that are atomic over time and the overhead
of querying. As Fig. 6 shows, the continuous query rapidly adapts its query frequency to the changing conditions, which
enables the continuous query to maintain a high level of fidelity. In this simple scenario, the actual behavior matches the
expected behavior fairly well; there are a few exceptions that result from unexpected conditions in the mobile network;
this is to be expected of our highly dynamic and unpredictable environments.

Within the context of this simple scenario, we now compare our approach for fidelity-based adaptive continuous query
processing to an existing non-adaptive approach to continuous query execution. Fig. 7 compares the cost of execution (in
terms of message overhead) for a non-adaptive query, issued as a sequence of best-effort snapshot queries, to the cost of
our adaptive continuous query, issued as a sequence of two-phase snapshot queries that self-assess and report their fidelity.
Each best effort query is implemented as a controlled flood of the network, with a single phase to request and return values.
As expected, a non-adaptive continuous query that is constructed from infrequently issued best-effort queries (e.g., every
1 s) will have a lower average cost over the lifetime of the application than the adaptive approach, which attempts to find
an application-specified balance between overhead and quality. By looking at the query frequency reported for the adaptive
query in Fig. 6(b) in conjunction with the overhead results reported in Fig. 7, however, we see that when snapshots that
comprise the adaptive query are issued at the same frequency as the non-adaptive query in a similar environment (here,
characterized by the speed of nodes at a given time), these two approaches have approximately the same cost in terms of
overhead. For approximately the same cost, our approach provides the advantage of capturing ameasure of the quality of the
continuous query’s execution, whereas a non-adaptive continuous query that issues best-effort queries makes no guarantee
or report about the quality of its execution.

The initial set of adaptation rules for the scenario described above adjust the query frequency to compensate for decreased
atomicity. A more sophisticated set could weaken the continuous query to test whether the network conditions have
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(a) Theoretical adaptation.

(b) Actual adaptation.

Fig. 6. Simple continuous query adaptation (query ttl = 3 hops, number of hosts = 50, max speed starts at 0 m/s, goes to 5 m/s at 20 s, to 10 m/s at 60 s,
to 15 m/s at 100 s).

Fig. 7. Comparison of overhead for adaptive and non-adaptive continuous queries (query ttl = 3 hops, number of hosts = 50, max speed starts at 0 m/s,
goes to 5 m/s at 20 s, to 10 m/s at 60 s, to 15 m/s at 100 s).

changed such that an inquiry strategywith lower overheadmay still achieve the query’s atomicity goals. Our second scenario
begins like the first, but after 140 s, the maximum speed decreases to 10 m/s, after 180 s it decreases to 5 m/s, and after
220 s, it decreases back to 0 m/s. We augmented our adaptation rules to also periodically test a lower query frequency to
see if the atomicity threshold would be violated. Specifically, after adequately maintaining the atomicity requirement for
at least 10 s at a given frequency, we decrease the query frequency by 100 ms. This provides a third adaptation rule to the
set listed in Section 5. The results for this scenario are shown in Fig. 8, which provides the adapted query frequency and
the resulting fidelities and overheads. Fig. 8(a) gives the theoretical results. As shown, given this dynamic scenario, we can
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(a) Theoretical adaptation.

(b) Actual adaptation.

Fig. 8. A smarter continuous query adaptation (query ttl = 3 hops, number of hosts = 50, max speed starts at 0 m/s, goes to 5 m/s at 20 s, to 10 m/s at
60 s, to 15 m/s at 100 s, followed by a 5 m/s decrease in speed every 40 s).

expect this adaptation strategy to keep the atomicity level around 80% (where the threshold for adaptation is set), trading
off overhead for atomicity. The valleys in the theoretical results come from the adaptation strategy periodically testing
lower query frequencies to determine if they will satisfy the atomicity requirement; when they do not, the adaptation
strategy returns the inquiry strategy to the higher frequency. Fig. 8(b) shows what actually happens for a trace using this
adaptation scenario in the real environment. As the figure shows, this strategy still does a good job of maintaining the
atomicity requirement, though the results do not follow the expected ones directly. Notice in particular that, especially as
the average speed of the automobiles is increasing (in the first part of the experiment), the adaptation strategy’s ability to
model the expected atomicity level is lower. This is a result of the unpredictabilities and inconsistencies that arise in mobile
environments that have significant potential impact on continuous queries. More importantly, however, Fig. 8 shows that,
using an adaptive strategy, our continuous query maintains low overhead when possible, and incurs high overhead only
when necessary to maintain the application’s desired atomicity.

6. Related work

This paper presents an approach to capturing the fidelity of a continuous query, which expresses a measure of the quality
of information retrieved by the query. Quality of Information (QoI) has been widely studied for traditional distributed
systems (e.g., [10–15,13]). Emerging work on QoI for sensor networks focuses on the quality of data provided by sensors to
an application; proposed measures include the accuracy of a sample [16,17], the freshness of data [18], and spatiotemporal
relevance [19]. While many of the QoI metrics for sensor networks focus on the quality of the individual data items that are
collected, our approach focuses on the fidelity of a query, which describes the quality of a query’s execution process. Fidelity
describes how well the results collected by a query reflect the ground truth of the environment and indicates whether or
not the data values collected actually existed at the same point in time, which is an important consideration when applying
a function over the raw collected data.

Researchers have identified the need to create a framework to promote quality-aware data collection in sensor
networks [20,21]; these frameworks embrace a multi-dimensional approach to defining QoI in such settings. The query
fidelity metric presented here represents one facet of the quality of information associated with query processing, which
can fit into such a framework. The use of an expressivemodel for query processing (presented in Section 2) as the foundation
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for our definition of continuous query fidelity makes it possible to express and apply fidelity and other QoI metrics in a
complementary way. For example, since the host tuples in the foundational model capture context information about the
host or individual data items, it is possible to use the model to capture QoI metrics that describe spatial and temporal
properties of the individual data items or a collection of data items returned by a query.

The concept of query fidelity is closely related to the notion of consistency in distributed databases [22]. Work in this
area has explored maintaining consistency with dynamic cache allocation [23] or optimistic replication [24], while other
approaches relax the constraints imposed by the ACID properties (atomicity, consistency, isolation, and durability) and
execute queries using transactions that adhere to a weaker set of properties [25–30]. These models are generally limited
to use in settings where periodic access to the wired infrastructure is available, and solutions tend to rely on the use of a
resource-rich fixed node to manage transactions. Because of this, such weakened transactional models cannot be applied to
themore extreme form of mobility found in themobile ad hoc networks our work targets. Our approach differs significantly
in that we avoid caching data locally, instead acquiring it on-demand by executing a distributed query processing protocol
over a dynamic environment. We also postpone the decision of howweak an operation to perform until run time, providing
applicationswith the strongest semantic achievable in a givenoperational context. Rather than select a single snapshot query
protocol that offers a particular guarantee, we instead use a flexible, self-assessing snapshot query protocol that provides the
strongest semantic achievable in a given operational context and reports the achieved semantic [2,3].We build a continuous
query out of these snapshot queries, and we use a fidelity-based introspection metric to adapt execution of the continuous
query to meet an application’s needs in terms of fidelity and cost of query execution.

Similar to query fidelity, data fidelity has been expressed in terms of precise metrics defining numerical error and order
error, for example, exploring the design space between strong consistency and no consistency for data access in replicated
file systems [31]. We focus on non-replicated data items and aim to provide a combination of qualitative and quantitative
measures for query fidelity of the collection of that distributed data. Similarly, completeness describes the probability that
a particular datum has been included in a result [32]. While similar to our goal, this approach has been applied only to a
distributed shared memory systemwithout consideration of the challenges of mobility. Closely related to our definitions of
snapshot query fidelity is a new class of semantics based on ‘‘single site validity’’, in which a snapshot query result appears
to be equivalent to an atomic execution from the query issuer’s perspective [33]. That work defines a particular class of
semantics, while we provide a model that can define and compare multiple classes of semantics across both snapshot
and continuous queries. Others have since expressed inconsistency in query results through network imprecision [34],
monitoring the network for numerical imprecision and reporting it with the query result. Our approach to assessing query
fidelity is similar, but we extend the concept of network monitoring to a dynamic, unreliable, and unpredictable network.
In addition, we allow applications to use a low-cost query and discover that it achieves high fidelity when the network
is able. Other times, the applications may need to increase the cost of continuous query processing to achieve the same
fidelity due to instability. By reflecting on the fidelity of previous snapshot query results, applications can use fidelity-based
introspection and adaptation to dynamically adjust the continuous query’s execution.

Others have recognized the need to adapt a query’s processing in response to the application’s changing
environment [35]. In adapting query processing, the focus is typically to change the order of query operations to optimize
for dynamics. For example, Continuous Queries (CACQ) [36] rely on eddies [37] to determine the order in which partial
query results are processed. StreaMon [38] adapts a query plan to accommodate arbitrary changes in the data stream. These
approaches use system-defined (instead of application-defined) adaptation. In model-driven approaches [39], a local model
of the environment is used to answer queries. Themodel obtains data from the network onlywhen it cannot answer a query.
Adaptive filters [40] use amodel of the network to adjust the rate of updates that stream from each node in the network to a
collector as part of a continuous query; the adjustment is based on acceptable tradeoffs between an application’s tolerance
of numerical imprecision and the current cost of sending updates. Such model-based approaches are not well-suited for
dynamic environments because unpredictability counteracts the temporal correlations that form the basis for the models.

None of these approaches to adaptive query processing provide general support for dynamically adapting a continuous
query based on application-specified strategies, which is important because the application is explicitly trading fidelity
for cost [1]. Such reflection is common in mobile computing and middleware models [41,42]; our work recognizes the
importance of reflection to the adaptivity of mobile applications and provides a formal foundation for exposing information
about query results to applications through a set of principled adaptationmechanisms. Other related approaches have looked
at query quality for web-based queries, which has largely focused on how to filter query results into those that are likely to
be of high quality to the user [43] or to allow users to specify control parameters with web-based queries that dictate their
resolution [44].

7. Conclusions

In this paper, we have demonstrated an approach to defining the fidelity of continuous queries, which are approximated
as a sequence of snapshot queries, issued over dynamic pervasive computing environments. In previous work, we
demonstrated how to associate a semantic tag with a snapshot query’s results that describes the snapshot query’s fidelity.
Here, we start with this notion of snapshot query fidelity as a foundation and demonstrate how functions defined over these
semantic tags can be used to define the fidelity of a continuous query. Our empirical analysis highlights the relationship
between this new notion of continuous fidelity and the frequency with which component snapshot queries are issued and
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provides guidance to application developers on selecting the query frequency that achieves quality and cost tradeoffs. We
also have shownhow this definition of continuous query fidelity can be used to adapt the continuous query’s execution.With
respect to our goals, this adaptation allows a continuous query to use information about its history of execution and change
its operation to, for example, increase the fidelity (usually at a higher cost) or reduce the cost (usually at a loss of fidelity).
We have applied this approach to a simple application example; our evaluation shows that this approach can provide a
desirable degree of fidelity, where a non-adaptive best-effort protocol fails to do so, and will do so with less overhead than
a non-adaptive protocol that guarantees atomic fidelity.

The ‘‘percentage of windows atomic’’ (POWA) measure of continuous query fidelity presented here represents a single
dimension of the quality of information associated with query processing in pervasive computing networks and provides a
starting point for further exploration of continuous query fidelity. It is not the only (and possibly not even the best) metric
for continuous query fidelity; it can certainly be used incorrectly or incompletely by applications to assess the fidelity of
their continuous queries. For example, if applications issue component snapshot queries only very infrequently, they may
all achieve atomic snapshot query fidelity, making them appear integratable into an atomic continuous query; however, the
integrationmay not, in fact, be a good representation of the targeted trends in the underlying pervasive computing network.
Additional metrics for capturing continuous query fidelity may be needed to express other properties of importance when
using the integration of snapshot query results within a continuous query to guide decision-making processes. For example,
such a metric may express the likelihood that an important change in value or network topology was not captured between
two successively issued snapshot queries. We will continue to explore the development of new kinds of continuous query
fidelity definitions, and the application of such metrics to adapt continuous query processing.

Finally, the adaptation approach explored here is admittedly simple; this paper illustrates the use of adaptation rules that
simply adjust the frequency with which a continuous query’s component snapshot queries are issued in order to satisfy an
application’s requirements in terms of query fidelity and associated communication costs. More sophisticated approaches to
adapting the continuous query in away that considers an application’s requirementswith respect to information quality and
the associated costs of data collection are certainly possible. One key insight is that the choice of the query protocol used
to execute component snapshot queries over the network can have a significant impact on these concerns. For example,
an application may employ a snapshot query protocol that floods the entire network if communication overhead is not a
concern, while an application that seeks to maximize the lifetime of the network may employ a snapshot query protocol
that randomly samples a subset of network nodes. The suitability of the selected snapshot query protocol may change as
the dynamics of the network change. In this paper, we have used a two-phase flooding snapshot query protocol [3] that is
capable of dynamically assessing its achieved fidelity to construct an adaptive continuous query. To apply the fidelity-based
adaptation approach introduced in this paper to other kinds of snapshot query protocols will require the creation of new
methods to dynamically assess the fidelity achieved by the execution of those protocols and an analysis of how the dynamics
of the environment impact the query fidelity achieved by those protocols.
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