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Abstract—Advances in sensing and networking along with
ubiquitous Internet connectivity have paved the way for today’s
massive Internet of Thing (IoT) market. Despite the vast potential
of connecting to myriad devices across homes, office buildings,
and public spaces, there is still a large need to unify the scattered
protocols, hubs, and cloud services while personalizing end-
user experiences. Enabling personalized IoT experiences requires
an expressive and flexible middleware that enables simplified
development of applications that address diverse individual
needs and seamlessly cross multiple vendors and administrative
domains. We introduce Warble: a middleware for such personal-
ized IoT applications; Warble encapsulates device and protocol
complexities, represents interaction with IoT devices as flexible
programming abstractions, and enables applications to learn
from their prior interactions in the IoT on behalf of their users. In
this paper, we present Warble’s architectural abstractions, API,
and implementation. We then evaluate the middleware through
a case study application using our Android implementation; this
evaluation showcases the novelty of the Warble architecture and
its programming abstractions.

I. INTRODUCTION

In the Internet of Things (IoT), devices in our spaces interact
with us to respond to our (explicit or implicit) needs. Each day
sees new devices, bringing the long vision of the IoT closer
to reality. Yet, many challenges related to enabling robust,
reliable, and efficient development of IoT applications remain.
This paper presents the abstractions and architecture defining
the WARBLE middleware, which enables the development of
novel applications in the emerging IoT. We ask a simple yet
fundamental question: what does a user expect from an IoT-
enabled environment? In basic terms, the answer is simple: one
expects natural interactions and responsive behavior. Unfor-
tunately, the gap between users’ expectations and developers’
abilities to meet those expectations is significant.

An essential need of middleware for the IoT is to enable
interoperability among device types and manufacturers [34].
In most IoT deployments, rigid barriers prevent a user from
carrying out identical activities in different settings. Even
trivial endeavors like turning on a light or using entertainment
equipment fail to transfer from one setting to another due to
different manufacturers, administrative domains, or software
versions. Our goal is not to remove these barriers, which are
necessary to enable diversity in the IoT space, but rather to
allow application developers to navigate successfully around
the barriers, making functionality seamlessly available.

Existing middleware for the IoT almost exclusively supports
a centralized view [34]; this view, in turn, promotes a macro-
programming view of constructing IoT applications. To make
this more concrete, consider the way existing IoT middleware
approaches the construction of a smart building application.
Existing middleware systems generally consider centralized
applications that control a set of smart devices in concert.
In this fashion, existing systems cannot provide personalized
user experiences and preserve privacy at the same time. In
contrast, we promote a more personalized and decentralized
view of the IoT. Rather than having to create a program that
is mediated by a single authority to leverage a set of available
devices, our goal is to allow user-facing applications to op-
portunistically discover and immediately leverage individual
capabilities in the surroundings. While this might ultimately
lead to applications that dynamically assemble collaborations
of devices, the approach is more naturally egocentric than the
common centralized view taken by existing approaches.

To make personalization and interoperability concrete, con-
sider a simple smart lighting application. Today’s smart light-
ing systems provide slick demonstrations, albeit confined to a
single home or building, with limitations related to high setup
and device discovery costs. Ideally, a smart light switch app
would consist of, literally, a light switch that a user presses to
illuminate the surroundings. The app might initially discover
and switch on the light closest to the user, which may or may
not illuminate the user’s space. If the user somehow rejects
the choice of light, the application may try a different light
(perhaps the next closest) until the application determines how
best to illuminate the user’s space. A more sophisticated app
may implement “follow-me” lighting, continuously illuminat-
ing the user’s position as he moves. This application can also
be taken a step further: if the user crosses multiple enterprises,
e.g., moving from the user’s apartment, into the building’s
hallway, then into a friend’s apartment, the application should
seamlessly interoperate across these spaces, even if each one
uses a different (potentially proprietary) IoT technology.

IoT middleware can be leveraged to ease the development
burden. However, existing approaches force developers into an
enterprise mindset rather than a personal one. Using existing
middleware, developers script the behavior of an entire space.
For instance, a developer might create an application that
detects the presence of a user and adapts the lighting based
on the user’s movement or activity. This program, however,



belongs to the space rather than to the user who interacts
with the space. As a result, interactions are less flexible, less
opportunistic, and potentially leak users’ private preferences
and actions to the owner of the space. However, personalizing
IoT systems requires non-trivial programming from experts
to translate user intents into device actions. In contrast, we
believe that the means for developers (and users) to specify
interactions must be intuitive, leverage users’ cognitive pro-
cesses, and naturally map to user behaviors; therefore we also
emphasize simplicity of programming as a key requirement.

Our WARBLE middleware addresses the challenge of sim-
plicity of programming directly, while being attentive to the
needs of interoperability and personalization. We define the
WARBLE Thing Registry, which allows applications to seam-
lessly discover available devices even across differing vendors
or administrative domains. To ensure personalization, an app
running on a user’s smartphone can seamlessly discover IoT
devices that fulfill that user’s instantaneous needs. With respect
to interoperability, apps using WARBLE need not distinguish
between IoT devices from different vendors or administrative
domains; the WARBLE architecture makes these challenges
transparent to users and their applications. WARBLE also
maintains an Interaction History from which applications can
use the results of prior interactions with IoT devices to influ-
ence future interactions, further personalizing the IoT. Finally,
WARBLE defines Bindings, which raise the level of abstraction
of programming from controlling a particular device with a
particular communication mechanism to specifying the nature
of a (potentially long-lived) user-level interaction with the IoT.

We next examine related work, including middleware for the
IoT. We then frame an evolved view of the structure of the IoT
and state assumptions that underlie WARBLE. Section III and
IV describe WARBLE’s conceptual model and key elements.
Section V describes our initial implementation of WARBLE
on Android for multiple IoT devices and Section VI evaluates
this prototype. Section VII concludes the paper.

II. MOTIVATION AND RELATED WORK

To scaffold our discussion of related work, we note that, in
the IoT, there are effectively two classes of devices: (1) de-
vices embedded in the environment, providing services as
sensors and/or actuators and (2) users’ personal devices (e.g.,
smartphones, tablets) that host personalized applications that
interact with the surroundings. While there is potential overlap
(e.g., a nearby user’s smartphone might provide a camera),
we conceptually distinguish the two; for the remainder of this
paper, we refer to the former as THINGs, and the latter as user’s
devices that host IoT CONTROLLERs. Throughout, we focus
on a single CONTROLLER, though a single device may host
multiple IoT applications, each with their own CONTROLLER.

A. Related Work

With the rise of IoT devices from a variety of manufac-
turers, several middleware systems that target the IoT have
emerged [34]. With a similar goal of simplifying program-
ming, web-based IoT systems use protocols like REST and

UPnP to bridge IoT devices and existing web services [13],
[40], [47]. These approaches, termed the Web of Things [7],
[15], [55] bring resources under a single managing umbrella,
enabling interoperability. As these web-based systems rely on
cloud-based architectures, they naturally inherit privacy issues
related to cloud systems [38], [56]. Some cloud-based solu-
tions like OpenIoT [48] and GSN [1] require high-performance
hardware and thus are too heavyweight for the highly fluid
opportunistic mobile scenario we target.

A primary goal of our work is to simplify development,
making applications easier to program without impacting
flexibility or performance. Existing work on programming
for wireless sensor networks and early efforts for the IoT
have goals similar to ours [41], [45]. We aim for a higher
level of abstraction that allows one to reference relation-
ships of applications to THINGs in the IoT. We use history
of a CONTROLLER’s interactions with THINGs to improve
subsequent interactions. Several existing approaches promote
macroprogramming, the idea of programming a set of things
in concert [5], [18], [27], [33]. Ravel [43] uses the model-
view-controller paradigm to provide programming abstractions
that span embedded devices, mobile devices, and backends. In
contrast, our focus is not control of a networked system but
on allowing applications to act on behalf of individual users
to tailor the immediate surroundings to personal needs.

SmartThings [46] and IFTTT [20] offer reactive APIs to
control IoT devices based on predefined rules. Hydra [10], [19]
and Calvin [39] offer programming tools to help consumers
create their own applications. However, these are enterprise-
level approaches in which the developer scripts the overall
behavior of the space a priori based on knowledge or as-
sumptions about the available devices and their potential inter-
actions with users. Other approaches expose the social aspect
of device interactions [12]. WARBLE tackles complementary
goals, though the social aspect is an area of future work.

An important gap WARBLE addresses is making expressive
discovery of and connection to THINGs easily accessible to
application developers. Recent research addresses mechanics
(i.e., protocols) of discovery. Assuming a description of a
resource, multiple ways to distribute that information [21],
[23], [24], [53] exist, and expressive naming schemes have
emerged [2], [4], [25], [52]. Named Data Networking lever-
ages semantic matching to achieve discovery flexibility [42].
However, exposing naming schemes to users is unintuitive
and distant from natural interaction with an ambient envi-
ronment. Other approaches embed semantics and context in
discovery [14], [16], [29]. Many of these approaches focus
on proximal discovery [8], [9], [32], [53] or on selecting
the appropriate device in a large-scale IoT [26]. WARBLE
layers on these approaches to include (1) using a history of
prior interactions to guide future interactions and (2) further
abstracting interactions into Binding schemes that mediate and
simplify how CONTROLLERs interact with THINGs. This is
similar to work on dynamic service bindings [6], [17], [22];
WARBLE brings these ideas into the IoT.
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Fig. 2. WARBLE-envisioned IoT structure.

B. The Structure of the IoT

THINGs assume two roles: SENSORs and ACTUATORs; the
former collect information about the environment (e.g., a
camera), while the latter change the environment (e.g., a light).
A single THING can assume both of these roles, for example, a
thermostat is a SENSOR, providing temperature data, and also
an ACTUATOR, providing a service to regulate the A/C system.

Fig. 1 shows an IoT structure. Red circles (phone, tablet,
laptop) host CONTROLLERs. Gray circles are bridges. Blue cir-
cles (smoke detector, proximity sensor, camera) are SENSORs.
Green circles (light, lock, garage, fridge) are ACTUATORs. The
thermostat is both SENSOR and ACTUATOR. Users interact
with devices through CONTROLLERs, which connect to bridges
on behalf of the applications; these bridges mediate access to
THINGs in vendor-specific ways.

WARBLE takes a different structural view of the IoT, one
enabled by increasing device-to-device communication capa-
bilities and an open vision of the IoT. Fig. 2 shows this
vision, in which THINGs (i.e., SENSORs and ACTUATORs) are
directly accessible from one another and from CONTROLLER’s
host devices without applications being concerned about con-
nections through proprietary bridges. This shift demands in-
creased interoperability among CONTROLLERs and THINGs
from varying vendors; in this paper, we describe how WARBLE
accomplishes this interoperability. We then show how this

vision impacts WARBLE’s ability to simplify the development
of applications that personalize the IoT for users.

While this vision enables direct interaction between CON-
TROLLERs and THINGs without requiring applications to di-
rectly connect to a bridge, WARBLE maintains the notion
of a more abstract ACCESSOR. Conceptually, WARBLE AC-
CESSORs facilitate indirect connections among CONTROLLERs
and THINGs. More general than a proprietary bridge that is
required to gain access to THINGs, an ACCESSOR can act
as a conduit to other THINGs to extend network reachability,
provide isolation, implement security or authentication, etc.
For instance, the light at the top of Fig. 2 may be accessed
via the network interfaces of the neighboring light, proximity
sensor, etc., rather than through a manufacturer-specific bridge.

WARBLE assumes every THING is discoverable in a device-
to-device fashion. For THINGs connected to a proprietary hub
(e.g., a Wink or Philips Hue hub), WARBLE assumes that the
hub is discoverable in a device-to-device fashion and then
supports access to devices via the hub. This is a realistic
assumption given state-of-the-art IoT devices; while device-
to-device discovery is not commonly consistently enabled
on today’s IoT devices, it is a quite common mechanism
to bootstrap devices into a proprietary app, meaning that
the devices have capabilities necessary for device-to-device
discovery. We assume well-defined protocols for each com-
munication technology used to connect CONTROLLERs and
THINGs. That is, we assume THINGs are open and accessible,
both to user-facing applications and to other THINGs. This
does not mean that every application or user can invoke every
possible function on every IoT device; instead a device’s
accessor may limit access, e.g., through a bridge’s proprietary
authentication mechanism. In our proof of concept, we use a
combination of technologies to connect to THINGs, including
direct BLE connections, a Wink Hub, and a Philips Hue
Bridge. WARBLE realizes the vision of Fig. 2 by making
proprietary bridges transparent to applications, making it
appear that the CONTROLLER accesses THINGs directly, even
though it employs a proprietary bridge under-the-hood.

Some WARBLE constructs benefit from the knowledge of
THINGs’ and CONTROLLERs’ locations. We assume this infor-
mation is provided by an external component. More generally,
WARBLE relies on the ability of CONTROLLER devices to
assess the state of the ambient context, so we assume that
CONTROLLER devices have access to, for instance, on-device
sensors to acquire such context information (most importantly
the device’s location, but also heading or degree of movement);
this context could also be provided by nearby THINGs or other
out-of-band sensing mechanisms [3], [24].

III. WARBLE’S CONCEPTUAL ARCHITECTURE

We next overview WARBLE in the context of our goals of
interoperability, personalization, and simplicity of program-
ming. Fig. 3 shows WARBLE’s conceptual architecture. As we
step through WARBLE’s components, we consider a simple
smart lighting application in which a user can: (1) make a one-
time request to turn on the surrounding lights or (2) make a
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Fig. 3. WARBLE Conceptual Architecture. The application sits atop the
CONTROLLER. The WARBLE API abstracts away WARBLE’s key activities of
discovery, selection, binding, and context acquisition. These activities rely on
the Thing Manager, which encapsulates the Thing Registry and Interaction
History.

persistent request to continuously illuminate his surroundings,
even as he moves to new spaces. We refer to the former as a
one-time binding and the latter as a dynamic binding.

The Thing Manager is the heart of WARBLE. It performs
continuous Discovery of nearby THINGs, populating the Thing
Registry as new THINGs are encountered. This Discovery oc-
curs independently of application requests; the WARBLE Dis-
covery process ensures that a CONTROLLER’s Thing Registry
maintains a current view of nearby available THINGs.

An application request to interact with THINGs starts with a
Binding request. When the binding is ready, the middleware re-
turns Proxies for bound THINGs. The application interacts with
the Proxies, which provide canonical interfaces for SENSORs
and ACTUATORs. A Proxy relies on a THING-specific Adapter,
which explicitly enables interoperability by making all THINGs
of a certain type appear the same (e.g., an application can
be programmed to a LightAdapter instead of directly to,
for example, some Philips Hue light API). WARBLE logs
information about all user interactions with bound THINGs into
WARBLE’s Interaction History. If an application determines
that a bound THING is not appropriate, it can provide feedback
through a reject notice. WARBLE will log the application’s
feedback in the Interaction History and attempt to replace the
Proxy. WARBLE uses this information to inform the process
by which it satisfies subsequent application binding requests.

Applications can request two types of Bindings. In a one-
time binding, selection and Proxy creation are done once
at the time of the request and not reevaluated. The Proxy
encapsulates a Thing Manager Helper, which holds a subgraph
of the IoT network graph (Fig. 2). When an application
interacts with a Proxy, the Thing Manager Helper resolves
the path to the THINGs, which potentially traverses multiple
ACCESSORs. In a dynamic binding, WARBLE continuously
reevaluates the THINGs bound to the Proxies as the context
changes (e.g., because the user moves or because the set
of available THINGs changes). In a dynamic binding, the
Proxy’s Thing Manager Helper coordinates with WARBLE’s
Thing Registry to invoke update binding as needed. This
architecture allows applications to personalize the use of the
underlying THINGs to a user’s requirements, in contrast to
the current state of the practice in which THINGs are bound
only to a proprietary vendor-specific application or API. A
key element of an application’s Binding request are Selectors,
which constrain both the types of THINGs and their non-
functional attributes (e.g., location).

WARBLE relies on two external components: the Context
Builder, which interfaces to system elements such as location
services and sensor data and Communication services such as
Bluetooth and Wi-Fi. WARBLE’s Selectors rely on the Context
Builder to assess the state of the environment to select the
“best” THINGs for a request and to capture the context of
interactions in the Interaction History. WARBLE’s interactions
are limited only by the CONTROLLER’s host’s communication
limits and the set of defined Adapters. This architecture allows
various CONTROLLER implementations; our prototype uses
Android to host the CONTROLLER, and the Android OS to
provide the needed underlying services.

IV. REALIZING WARBLE

We now describe the details of Fig. 3, starting from com-
ponents most closely associated with THINGs, and working up
the levels of abstraction to the WARBLE API.

A. Adapters

Myriad technologies are used to connect to THINGs, from
low-level network interfaces (like BLE and WiFi-Direct) to
high-level programming interfaces (as exposed by the Wink
and Phillips Hue hubs). WARBLE introduces Adapters to en-
able interoperability. WARBLE’s Adapters transform a THING’s
stock interface into a canonical one. As a result, each THING
exposes an interface that (a) describes the THING’s capabilities
and (b) provides the methods to interact with the THING. For
instance, a light Adapter allows access to read and change
the state of a light (e.g., on/off status, brightness, location,
etc.). All light THINGs, regardless of their manufacturer, must
implement the light Adapter for the lights to be used in
WARBLE. All THINGs in WARBLE have a unique identifier
(i.e., a UUID) and a location; THINGs can also have varying
states, support multiple communication protocols, require dif-
ferent authentication mechanisms, etc. We assume each THING
comes with its needed adaptor(s), i.e., that adaptors are written



Listing 1: Thing Registry for the IoT structure in Fig. 2
1 Thing Table
2 UUID Type Class ...
3 0001 Light VendorB-Light
4 0002 SmokeDetector VendorA-SmokeDetector
5 0003 Sensor VendorC-Sensor
6 0004 Thermostat VendorA-Thermostat
7 0005 Fridge VendorB-Fridge
8 0006 Lock VendorB-Lock
9 0007 GarageDoor VendorC-GarageDoor

10 0008 Accessor VendorB-Bridge
11 0009 Lock VendorB-Lock
12 0010 Camera VendorB-CCTV
13 0011 Sensor VendorB-Sensor
14 ...
15 Connection Table
16 ID Source Destination Type ...
17 1 0001 0002 Bluetooth
18 2 0003 0002 BLE
19 3 0004 0002 WiFi
20 4 0005 0002 Bluetooth
21 ...
22 Authentication Table
23 ID Thing Type Details ...
24 1 0001 UserPassword myusername, ******
25 2 0002 Token **********

by manufacturers. In the future, one could envision auto-
generating adaptors based on semantic descriptions or the use
of some existing multi-purposes IoT service language.

B. The Warble Thing Registry

WARBLE employs proactive discovery, continuously (in the
background) probing the surroundings for available THINGs.
WARBLE supports standardized discovery protocols such as
Wi-Fi SDP, Bluetooth SDP, and SSDP, but WARBLE applica-
tions and vendors can extend the middleware with custom dis-
covery protocols. Discovered THINGs are placed in the Thing
Registry using the unifying adapter interfaces to mix THINGs
accessible via different mechanisms (i.e., THINGs accessible
via BLE appear in the registry alongside THINGs accessible
via a Wink hub). A WARBLE instance has a discovery interval
that dictates the frequency at which to rescan the surroundings;
when a scan completes, the registry is considered consistent
with the state of the IoT and remains static until the next
scan. Application requests for available matching THINGs are
immediately resolved using the contents of the Thing Registry.

Abstractly, the Thing Registry specifies a graph, with
THINGs as nodes and THING-to-THING connections as edges.
These edges are important because THINGs may act as ACCES-
SORs that extend the reach of a CONTROLLER or to provide au-
thentication or isolation. Internally, WARBLE’s Thing Manager
stores the full graph in a database of THINGs, connections, and
authentication credentials. This allows WARBLE to compute a
partial graph at runtime that contains only THINGs relevant to
a given request. The Thing Registry is a set of database tables:
one to map the UUIDs of discovered THINGs to their types and
implementing classes, one to specify the physical connections
among THINGs, and one to specify any needed authentication
mechanism(s) for the THINGs in the registry. Listing 1 shows
an example built directly from the IoT network in Fig. 2.

Consider an application that needs to use a “Smoke Detec-
tor”. A “Smoke Detector” THING is in the registry in Listing 1
(with a UUID of 0002 and four connections to other THINGs
as depicted in Fig. 2). The application requests a THING that

provides the smoke detector Adapter; WARBLE returns a Proxy
of type SmokeDetector to the application. At runtime, that
type is provided by the concrete VendorA-SmokeDetector.

Within the Proxy’s Thing Manager Helper, WARBLE returns
the entire path from the CONTROLLER to the THING, retrieved
by recursively traversing the graph stored in the database ta-
bles. The application’s subsequent interactions with the THING
are managed through the Proxy. In the case that the application
uses the THING Proxy for an extended period of time, the
path may change (e.g., because the physical connectivity in
the underlying THING network changes). This is handled
transparently for the application in the Thing Manager Helper.

C. The Selector

An application’s interaction with WARBLE to retrieve
THINGs has two steps. First, the application supplies one
or more Selectors. For instance, an application requests a
“nearby” light or a camera with pan/tilt/zoom capabilities.
Second, WARBLE resolves Selectors using the Thing Registry
and returns a Proxy to the application.

WARBLE has two categories of Selectors: type Selectors
use the Adapter interfaces to specify functional requirements,
while context Selectors provide non-functional requirements.
A type Selector indicates which THING types to include (e.g.,
lock, camera, light). If the application does not provide a type
Selector, all types are returned; if more than one type Selector
is provided, WARBLE treats the request as an OR, i.e., any
of the types are equivalently satisfying. In contrast, a context
Selector could invoke the Context Builder to, for example,
access location, orientation, or movement sensors. This allows
selectors that return, for example, “the closest” THING, “the
closest THING in the direction the user is facing” [28], or even,
“a THING in the direction of the user’s movement.” A context
Selector can also use the Interaction History to rely on the
success or failure of previous similar requests. For instance,
a Selector may stipulate that a selected THING be one for
which the application has not sent a reject notice from the
CONTROLLER’s current location. We describe the use of the
Interaction History in more detail in Section IV-E.

D. The Binding Abstraction

The next step of an application’s interaction with THINGs
is to create and maintain connections to the THINGs, via
a process we call Binding. Conceptually, WARBLE presents
an abstract operation called bind. The application provides
Selectors in a call to a bind method, and such a call returns
Proxies to one or more bound THINGs, assuming a satisfying
THING can be identified. This Binding abstraction shields the
developer from explicitly dealing with the nuts and bolts of
connections to THINGs, thereby simplifying programming IoT
applications. Conceptually, the abstract bind is defined as:

bind(template, options, [k])

where template is a set of zero or more Selectors, and
options dictates the binding logic (e.g., one-time vs. dy-
namic, additional actions to take on binding, etc.). Because a



binding request can select more than one THING, the optional
k determines the maximum number of THINGs to return. In
some cases, there may not exist k THINGs that match, so at
most k items are returned. The default value is one. The result
of a binding is an abstract data structure containing Proxies
to bound THINGs. For simplicity, we treat the data structure
as a list, though future work could layer more complex data
structures (e.g., placing THINGs on a map of physical space).

One-time Binding. Requesting a one-time binding requires
no binding options in bind. We refer to the concrete action
as fetch, since it simply fetches Proxies for THINGs that
match the template. Upon binding, the Thing Manager builds
a subgraph containing the currently available ACCESSOR paths
from the CONTROLLER making the request to each selected
THING. This subgraph is given to the Proxy’s Thing Manager
Helper, which, when the application interacts with the THING
via the Proxy, finds a path to the THING in the graph. The Thing
Manager Helper also manages any necessary authentication via
the ACCESSORs in the graph. If the paths to the THING bound
to a one-time binding are no longer traversable when an ap-
plication attempts to interact with the Proxy, WARBLE returns
an exception. It is entirely in the hands of the application (and
user) to ensure that the THING is placed in a consistent end
state if necessary (e.g., turning a light off when the application
is finished with it) before the THING becomes unreachable.

Some applications may desire to immediately execute a
fixed sequence of operations on a set of selected THINGs. In
WARBLE, batch allows the application to provide such a
sequence of operations, removing the need for the application
programmer to manage THING Proxies. When invoking the
batch one-time binding, the application provides an onBind
parameter, which is effectively a script of the actions to take
upon binding to each selected THING. Instead of returning a
Proxy to the application, a batch operation binds the selected
THINGs then executes the actions directly, internally handling
exceptions (such as disconnections). When the onBind ac-
tions have completed, the bindings effectively go out of scope.

Dynamic Binding. In a dynamic binding, as WARBLE’s
discovery mechanisms update the Thing Registry, the specific
THINGs behind a Proxy may be updated. This is handled in
each dynamic binding’s Thing Manager Helper, which listens
for and responds to updates in the Thing Registry. For instance,
if the application is connected to the two closest light THINGs,
when new lights are discovered, WARBLE notifies the Thing
Manager Helper, which checks whether the new lights are
closer and updates the Proxy bindings as needed. If the con-
nectivity paths to a bound THING change, the graph embedded
in the Proxy’s Thing Manager Helper is similarly updated.

A dynamic binding Proxy is read-only. To change the
state of a dynamic binding Proxy, applications specify a Plan
that defines the desired continuous state of bound ACTUA-
TOR THINGs. When new THINGs are bound to the proxies,
the Thing Manager Helper automatically adjusts their state
using the instructions encoded in the Plan without explicit
application interaction. Conceptually, this Plan is provided
within the binding options of the dynamic binding’s bind

operation; practically, the WARBLE API allows specifying
the Plan separately from the binding, which also allows the
Plan to be updated without tearing down a dynamic binding
and building a new one. When WARBLE updates a dynamic
binding, prior bound THINGs are unbound; upon unbinding the
Thing Manager Helper returns unbound THINGs to their state
before they were bound to the dynamic binding.

E. The Interaction History

WARBLE’s Interaction History stores information about in-
teractions with particular THINGs in particular contexts. Each
user device maintains its own Interaction History. This is an
intentional design decision to personalize the use of prior inter-
actions per user; placing this information in a shared repository
may violate privacy. Further, what constitutes a successful
interaction for two users may be different. Associating the
Interaction History with a user is therefore motivated by our
goal of personalizing the IoT. On the other hand, there are
good reasons for sharing Interaction History among users who
interact with the same THINGs. Sharing may lead to faster
learning, especially in spaces that are new to a user or with
which the user interacts only rarely. Therefore, an alternative
design could push (some of) the Interaction History to THINGs
themselves, leading to the emergence of an IoT infrastructure
that learns about itself and its ability to support applications.

The Interaction History maintains entries for all actions
performed by the application on a binding, including an entry
each the time a dynamic binding’s Plan changes the state of
some bound thing. Each interaction history entry represents a
successful or unsuccessful action taken on a THING that was
bound based on some template. We associate a timestamp
to each piece of Interaction History, and applications can tailor
Selector behavior based on these timestamps.

Entries in the Interaction History are initialized during se-
lection, but because entries require information collected as
the application interacts with a bound THING, they must be
updated over time. The complete process is:
1) An application initiates a bind, including the template.

This creates a pending Interaction History entry (noted with
the p subscript) for each THING that matches the selection:

(id, template, THING)p
id is a unique identifier for the Interaction History entry.

2) The application interacts with the Proxy, either directly, in
the case of a one-time binding or indirectly through the
Plan, in the case of the dynamic binding. The Thing Man-
ager Helper captures each interaction (e.g., each method
called on the Proxy), copies the related pending entry,
marks the copy as complete (noted by the c subscript),
and notes the specific action taken and its timestamp.
The action includes the context of the interaction; in our
current implementation, we simply log the CONTROLLER
device’s location. Multiple interactions create multiple
completed entries in the history. WARBLE assumes that
the interaction is successful until notified otherwise:

(id, time, template, THING, action, true)c



3) An application may give explicit feedback by invoking
reject on a THING for its most recent action, marking
the entry unsuccessful (i.e., changing true to false):

(id, time, template, THING, action, false)c
A reject notice also initiates a rollback, which examines the

rejected action (e.g., camera.turn(45)) and performs the
logical undo-action (e.g., camera.turn(-45)). These undo
actions are specified in the WARBLE THING adapter.

It is now possible to see how WARBLE can use the Interac-
tion History to influence selection. For example, when invoked
given a reference location and time range ([tstart, tend]), a
WARBLE Selector can examine each THING in the registry
that satisfies the applications’ template. For each matching
THING, the selection retrieves relevant Interaction History tu-
ples (i.e., those about the selected THING whose timestamps
are within the range) and examines whether interacting with
the THING is expected to be successful at the given location.

V. IMPLEMENTATION: PROGRAMMING WITH WARBLE

We have implemented WARBLE on Android (in Java); its
API is in Table I.1. We next walk through several use cases
relating to smart lights with the specific aim of demonstrating
how WARBLE achieves the design goals of interoperability
and personalization. These examples also demonstrate how
developers use WARBLE to simplify the programming task; the
next section quantifies these details. We use lighting examples
because they are straightforward and accessible; additional
examples with other types of SENSORs and ACTUATORs are
available. All told, WARBLE currently supports 11 types of
THINGs. We have integrated four concrete THINGs from three
vendors with four different discovery mechanisms.

Personalization in WARBLE. Unlike a centralized view of
the IoT in which one program controlled by the space deter-
mines THINGs’ behavior, WARBLE provides abstractions to al-
low individual applications to use THINGs directly. A WARBLE
application interacts with the Thing Registry to determine at
runtime, what the best THINGs are for a given need. In contrast,
existing IoT middleware create program scripts at compile
time that choreograph the behavior of the space’s THINGs.
This is a subtle shift; WARBLE is appropriate for application
interactions that are highly adaptive and context dependent.
In contrast, existing approaches like Node-RED [35] and
Calvin [39] are more suitable for these predictable and script-
able interactions. WARBLE is more similar to middleware that
take a service-oriented approach [48]. These approaches pro-
vide web-programming based interfaces to THINGs in which
applications construct and invoke web requests. In contrast,
WARBLE’s Binding and feedback concepts provide a higher-
level of programming abstraction more tailored to interacting
with THINGs in an object-oriented way. Further, the service-
oriented IoT middleware are designed to run on heavyweight
cloud infrastructure and are not compatible with an approach
that executes entirely on lightweight edge devices [34].

1WARBLE and examples available at https://github.com/UT-MPC/Warble3

Listing 2: Application-defined selector based on line of sight
1 public class LOSSelector extends AbstractSelector {
2 public LOSSelector(Location location, double heading,
3 double angle, double range) {
4 // ... save instance variables
5 }
6 @Override
7 public List<Thing> select() {
8 CircleSector sector = // ... compute sector
9 List<Thing> reg = Warble.getInstance().getThings();

10 List<Thing> selectedThings = new ArrayList<>();
11 for(Thing thing : reg)
12 if (sector.contains(thing.getLocation())
13 selectedThings.add(thing);
14 return selectedThings;
15 }
16 }

Interoperability in WARBLE. Once THINGs are available
within the WARBLE Thing Registry, all WARBLE applications
interact with all things using the same set of interfaces (as
shown in Listing 1). This approach is very similar to the
many other existing efforts at semantic mapping of THINGs
to software interfaces [10], [49], [51], [54]. Our current
implementation of the Service Interface at the bottom of Fig. 3
is, therefore, a straightforward mapping of vendor classes to
WARBLE types. However, it is a straightforward extension
of the Service Interface to also enable mapping from other
semantic descriptions (e.g., SensorML [44] or OWL [37]).

Concrete Things and Selectors. Listing 1 shows sev-
eral examples of adapters, which are provided to WAR-
BLE’s TypeSelector when creating a template. WAR-
BLE also currently has three context selectors. The
NearestThingSelector takes a location and selects the
THINGs closest to the location. The RangeSelector re-
quires returned THINGs to be within the specified range of the
provided location. The InteractionHistorySelector

returns THINGs for which the Interaction History has not logged
a negative interaction at the given location. Below, we
also develop a line of sight selector as an example of how
applications can add new Selectors to WARBLE.

Adding New Things to Warble. The Thing base class
assumes every THING has a UUID, location, a set of discovery
mechanisms, and a set of (direct) connections to other THINGs.
WARBLE employs the Command design pattern [11], so every
THING must also implement a callCommand method that
handles requests to change the state of the THING (for ACTUA-
TORs) or to retrieve the state of the THING (for SENSORs). Inte-
grating a new THING simply requires selecting the appropriate
Adapter (e.g., Light or SmokeDetector) and overriding the
callCommand method. This override is simplified by State

definitions for each of Adapter type (e.g., LightState, etc.)
and a setState method in the Thing base class.

Adding new Selectors. WARBLE’s Selectors can be ex-
tended to implement application-specific selection. An exam-
ple is a line of sight Selector, whose code is in Listing 2.
The author of the LOSSelector (1) extends WARBLE’s
AbstractSelector; (2) defines a constructor, which takes
parameters required to scope the selector; and (3) overrides
the AbstractSelector’s select method, which encodes
the selector logic, in this case selecting THINGs within the



TABLE I: Warble API methods summary
Method Description
Instantiation

Warble() creates a WARBLE instance to access its API; initiates continuous discovery in the background
Discovery

warble.discover() performs a full discovery process manually
One-Time Binding

warble.fetch(template, [k]) fetches k THINGs matching requirements in template; provides the abstract bind for a one-time binding
warble.batch(template, onbind, [k]) selects k THINGs matching requirements in template and executes the actions listed in onBind immediately
warble.reject(THINGs) indicates a mismatch in binding for each of the provided THINGs

Dynamic Binding
warble.dynamicBind(template) creates a dynamic binding instance for THINGs matching the requirement in template
dBind.fetch([k]) fetches k THINGs matching requirement in template for dynamic binding
dBind.bind(plan) starts the dynamic binding to serve the configuration in plan
dBind.unbind() stops the dynamic binding
dBind.reject([THINGs]) indicates a mismatch in dynamic binding and triggers another binding process

Plan
Plan() creates a Plan instance
plan.set(preferenceKey, value) sets value of key idenfitied by preferenceKey (e.g. Plan.Key.LIGHTING_ON)
plan.unset(preferenceKey) unsets a preferenceKey
plan.unsetAll() clears all preferenceKey settings

Listing 3: Application code for a WARBLE one-time binding
1 Warble warble = new Warble(); //initiates discovery

2 List<Selector> template = new ArrayList<Selector>();
3 template.add(new TypeSelector(THING_CONCRETE_TYPE.LIGHT,
4 THING_CONCRETE_TYPE.THERMOSTAT));
5 template.add(new NearestThingSelector(myLoc));
6 template.add(new InteractionHistorySelector(myLoc));

7 List<Thing> things = warble.fetch(template, 3);
//things contains the Proxies

8 for (Thing thing : things) {
9 if (thing instance of Light)

10 ((Light) thing).on(); //simplified, Command Pattern
11 else if (thing instance of Thermostat)
12 ((Thermostat) thing).setTemperature(298); //in Kelvin
13 }

sector of a circle centered at location, with a radius of
range, given the heading and angle. An application can use
this Selector when creating a template; the selection process
combines it with the rest of the Selectors in the template to
determine which THINGs to engage in the binding.

Programming with Warble. Binding is driven by
application-supplied templates that state the requirements
of selection. Listing 3 shows an application initiating a one-
time binding to select the three closest Light or Thermostat
THINGs for which the Interaction History has no record of
reject actions at the location myLoc. After constructing the
template, the application invokes fetch, which returns a
List of Proxies. The application interacts with these Proxies
using the Light and Thermostat Adapter interfaces. List-
ing 4 shows a (partially elided) native implementation of the
same functionality, albeit without the Interaction History. The
application itself must directly call discovery and directly im-
plement the detailed selector logic. This approach is unwieldy
for the developer, error-prone, not future-proof, and does not
provide generic forms for interacting with THINGs.

Listing 5 shows a WARBLE dynamic binding using the same
template. The application’s plan sets a Light to on. This
plan is executed any time the Proxy is bound to a Light.
The plan also sets the ambient temperature; this is executed
any time the Proxy is bound to a Thermostat. The use of

Listing 4: (Partial) Native implementation of one-time binding
1 public void useThings() {
2 int[] types = {THING_CONCRETE_TYPE.LIGHT,
3 THING_CONCRETE_TYPE.THERMOSTAT};
4 // ... other variables, e.g., location, threshold, etc.

5 // rely on underlying discovery mechanism
6 List<Thing> discoveredThings = Thing.discover();
7 List<Thing> selectedThings =

selectType(discoveredThings, types);
8 selectedThings = selectLocation(selectedThings);

9 for (Thing thing : selectedThings)
10 // ... same as lines 9-13 in Listing 3

15 }

16 List<Thing> selectType(List<Thing> things, int[] types){
17 List<Thing> selectedThings = new ArrayList<>();
18 for (Thing thing : things)
19 if (types.contains(thing.getThingConcreteType()))
20 selectedThings.add(thing);
21 return selectedThings;
22 }

23 // return things within a threshold distance
24 List<Thing> selectLocation(List<Thing> things){/*...*/}

the plan for specific THING types is implicit; a Thermostat

simply does not understand the command LIGHTING_ON, so
it is ignored. Listing 5 also shows the application updating the
plan, which updates the state of bound THINGs and changes
the binding behavior for future bound THINGs.

WARBLE’s programming simplification is even starker for
the dynamic binding. Listing 6 shows natively implemented
code that is similar in functionality to the WARBLE dynamic
binding in Listing 5. As shown the native application must
implement a form of runnable thread that periodically invokes
discovery of THINGs and manually enacts the application’s
desired behavior (i.e, the WARBLE Plan) on the discovered
THINGs. Omitted from this listing is all the necessary excep-
tion handling code and how the application handles THINGs it
was using that have gone out of scope. All of these behaviors
are handled automatically in WARBLE; none of the dynamic
binding code for the WARBLE interaction is elided in Listing 5.

Interaction History. Conceptually, we view the Interaction
History as a single unit as shown in Fig. 3. The implementation,



Listing 5: Application code for a WARBLE dynamic binding
1 Warble warble = new Warble(); //initiates discovery

2 List<Selector> template = new ArrayList<>();
3 template.add(new ThingConcreteTypeSelector(

THING_CONCRETE_TYPE.LIGHT,
THING_CONCRETE_TYPE.THERMOSTAT));

4 template.add(new NearestThingSelector(myLoc));
5 template.add(new InteractionHistorySelector(myLoc));

6 Plan plan = new Plan();
7 plan.set(Plan.Key.LIGHTING_ON, true);
8 plan.set(Plan.Key.AMBIENT_TEMPERATURE, 298);

9 DBinding dBind = warble.dynamicBind(template, 3);
10 dBind.bind(plan); // start binding based on plan
11 // ...
12 plan.set(Plan.LIGHTING_COLOR, "RGB#EEEEEE");
13 dBind.bind(plan); // bind again with changed light color

Listing 6: (Partial) native implementation of dynamic binding
1 public class ContinuousThread implements Runnable {
2 public ContinuousThread(/* ... */){/*initialization*/}
3 public void run() {
4 List<Thing> discoveredThings = Thing.discover();
5 List<Thing> selectedThings = //...Listing 4 Lines 8-9

7 // manually enact the plan
8 for (Thing thing : selectedThings)
9 // .. same as lines 9-13 in Listing 3

14 // continuously recheck the surrounding things
15 while (!stopFlag) {
16 discoveredThings = Thing.discover();
17 newSelectedThings = // select again by type/location
18 if (!newSelectedThings.equals(selectedThings)){
19 // manually enact the plan on any new things
20 // put old things in their original states
21 }
22 selectedThings = newSelectedThings;
23 // exception handling omitted
24 Thread.sleep(rediscoveryPeriod);
25 }
26 }
27 }

however, contains two distinct components: the local and
global histories. Each CONTROLLER maintains its own local
history in main memory. The local history functions like a
cache and 1) provides fast access to entries that will be
duplicated (e.g., pending entries copied when an application
interacts with a THING) or updated (e.g., completed entries
updated upon a reject) and 2) maintains action objects that
contain code for rolling back an action in case of a reject .

In contrast, the global history resides on-disk and is accessi-
ble to and maintains histories for all WARBLE CONTROLLERs
on the user device. Entries that are unlikely to be updated
or duplicated are flushed from the local history to the global
history. Code (such as a rollback operation) is not stored
in the global history; rollback should not be required on
entries in the global history. When to flush entries is an open
research question; for now, WARBLE flushes entries prior to
new selection operations because selection may rely on the
availability of the information in the global Interaction History.

VI. EVALUATION: BENCHMARKING WARBLE

The previous section gave exemplars of programming with
WARBLE to demonstrate how WARBLE provides both inter-
operability and personalization. Through these examples, we
can also start to see how WARBLE simplifies the programming

task. In this section, we move from these qualitative judgments
toward quantitative ones. We also benchmark the trade-offs
associated with these programming simplifications.

A. Measuring Ease of Programming

To measure ease of programming, we created an appli-
cation and implemented diverse Bindings. We use Metric-
sReloaded [31] to benchmark the implementation. Our exper-
iments use a combination of devices, including a Philips Hue
Bridge, Philips Hue Lights, a Wink hub, and GE lights. To
control the experiment, we hardcoded locations. All imple-
mentations use the same Android communication services.

To characterize the overhead of employing WARBLE’s ab-
stractions, we also benchmark the latency and energy costs
of interacting with THINGs. We use Android logging to mea-
sure latency and the Trepn Profiler [50] to measure energy
consumption using a sampling rate of 10Hz. All of our
measurements are done using a Moto X (2nd Gen.) with
Android 5.1 Lollipop, which covers 85% of Android devices.

We first compare a native implementation of a one-time
binding with WARBLE’s implementation. In the native imple-
mentation, the application finds the closest light by manually
querying the Philips Hue Bridge for the available lights,
computing their distances to the user’s CONTROLLER location,
selecting the closest ones, and performing an HTTP request
to the Philips Hue Bridge. In the case of the thermostat, we
assume each thermostat exposes its own interface that the
CONTROLLER can interact with. This interface is not limited to
HTTP requests but extensible to any communication protocol
supported by both systems. Each implementation executes a
query to the thermostats and selects the one discovered that
is closest to the CONTROLLER’s location. Subsequently, the
application sends commands to the lights and thermostats ac-
cording to the desired ambient conditions using the appropriate
interface given the particular type of each THING. In contrast,
the application implemented with WARBLE one-time Binding
uses exactly the code in Listing 3 to achieve the same goal.

Table II gives the quantitative comparisons between the
two versions. We use three programmability metrics: (1) the
maximum number of indentations, since a high level of nesting
reduces code readability [36]; (2) cyclomatic complexity [30],
which counts paths through the code; (3) and lines of code,
which is a crude measure of programmer effort. The WARBLE
implementation of the one-time binding is substantially better
on these metrics than the native implementation. For instance,
the native approach requires more than 2x the number of lines
of code than that by WARBLE; this difference is even greater
if we include THING discovery, especially in the common
case that multiple Adapters are used. Additionally, WARBLE’s
abstractions are future-proof towards new types of THINGs,
context, and selection strategies, whereas the native imple-
mentation only considers hard-coded lights and thermostats.

WARBLE’s Dynamic Binding. We use a similar scenario to
evaluate the degree to which the dynamic binding simplifies
the implementation of continuous interactions with THINGs. In
supporting this continuous behavior, the application must make



TABLE II: WARBLE’s code metrics; WARBLE’s improvements
are dramatic for all three metrics

One-time Dynamic
Metric Native WARBLE Native WARBLE

Cyclomatic Complexity 3 1 25 1
Max # Indentations 4 2 5 0
Line of Codes 34 13 101 7

Native

Warble

0 22.5 45 67.5 90

Database Retrieval Thing Selection Graph Construction

Native

Warble

0 125 250 375 500

ms

uWh

Latency components

Energy components

Fig. 4. Latency and energy performance components of WARBLE vs. a native
implementation for retrieving THINGs.

ongoing adjustments in response to a changing set of available
THINGs. For instance, as the user’s location changes, the
user may continuously require a different set of closest lights
and thermostats to maintain the desired ambient conditions.
The native application must manually adjust bound THINGs
and control different sets of THINGs based on the changing
context. In contrast, WARBLE’s dynamic binding handles this
seamlessly on behalf of the application. The application im-
plemented with WARBLE uses the code in Listing 5; Listing 6
shows the analogous native implementation.

Table II includes programming metrics for continuous in-
teraction. WARBLE’s dynamic binding significantly reduces
the programming effort. The level of complexity decreases
dramatically because WARBLE’s abstractions allow developers
to easily and directly capture the user’s intent in the binding’s
template and Plan. WARBLE then evaluates and adjusts its
fulfillment of the user’s needs in the background. This is a
typical use case of personalized IoT applications.

B. The Overhead of WARBLE

Simplifying programming using a middleware like WARBLE
comes at a cost in terms of energy and latency. Fig. 4 shows
the components of the latency and energy usage for both
approaches. Each reported energy and latency measurement is
an average of 30 repetitions.2 The magnitudes of the energy
costs are dependent on the particular device settings; what is
relevant, however, is the relative difference between the two
implementations. There are three major contributors to each
measurement: retrieving the available THINGs from a database
(i.e., registry), constructing the IoT graph (only in the WAR-
BLE case), and THING selection. WARBLE’s added latency is
entirely in constructing the IoT graph. This graph is used
by the Thing Manager Helper to carry out the applications’
interactions, so the cost is amortized over the Proxy’s lifetime.

2The errors for the total energy are ±4.5µWh for the native case and
±19µWh for the Warble case, both of which are within ±5%.

In the native case, in contrast, an application would incur more
exceptions in interacting with THINGs behind Proxies, having
to handle exceptions manually in the application code. The
energy difference is also sizable; in addition to the cost of
graph construction, WARBLE also maintains more detail in
the Thing Registry that must be navigated to resolve requests.
However, the magnitudes of these latency and energy values
are well with reason for today’s mobile devices.

VII. CONCLUSIONS AND FUTURE WORK

WARBLE provides a middleware architecture to unify the
plethora of IoT technologies and to allow application devel-
opers to create personalized instantiations of user’s interactions
with the IoT. In this paper, we have demonstrated WARBLE’s
success in addressing three fundamental challenges in the
long vision of the IoT: interoperability, personalization, and
simplicity of programming. Several open challenges remain.

Clearly, security and privacy are essential. In the cur-
rent form, WARBLE tackles security and privacy issues only
through the ACCESSOR concept, which allows an IoT device
or vendor to achieve isolation, authentication, or authorization.
The vision of WARBLE, however, raises new privacy issues,
in particular, the fact that a user’s inherent interactions with
things has the potential to leave a digital footprint. WARBLE
prevents this, for now, by maintaining all Interaction History
locally; the reach of WARBLE could be extended if novel IoT
privacy protections can be developed. As introduced in the
paper, there exist very good reasons for users to share their
histories of interaction, most notably to provide more robust
interactions with novel THINGs. With proper privacy controls
in place, we can expect that CONTROLLERs and THINGs can
work together with their own knowledge and voice to create
a highly-functional collective expression of the environment.

This paper’s presentation of WARBLE assumes a single
application’s interactions with the THINGs in an IoT space.
Many spaces are often occupied by multiple users and those
users may have conflicting views of interacting with the avail-
able THINGs. While enterprise-based solutions mediate these
conflicts at the enterprise level; a personalized solution like
WARBLE requires a distributed mediation of these conflicts.
This is an important area of future work.

At a finer scale, enhancements to WARBLE could make it
more energy and latency efficient. More streamlined models
of Interaction History and more sophisticated models for rep-
resenting and navigating the Thing Registry are just two such
opportunities. These enhancements could even affect the user
experience, for instance resulting in a Proxy representation that
displays bound THINGs on a map of the user’s physical space.

The creation of these opportunities speaks to the utility of
the existing WARBLE middleware. WARBLE is a first in the
IoT space: a middleware that truly embraces and enables the
vision of open, interoperable, and personal IoT experiences.
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H. Hasemann, A. Kröller, M. Pagel, M. Hauswirth, et al. Spitfire: toward
a semantic web of things. IEEE Communications Magazine, 49(11):40–
48, 2011.

[41] J.-F. Qiu, D. Li, H.-L. Shi, C.-D. Hou, and L. Cui. EasiSMP: A resource-
oriented programming framework supporting runtime propagation of
RESTful resources. Journal of Computer Science and Technology,
29(2):194–204, March 2014.

[42] J. Quevedo, M. Antunes, D. Corujo, D. Gomes, and R. Aguiar. On the
application of contextual iot service discovery in information centric
networks. Computer Communications, 2016.

[43] L. Riliskis, J. Hong, and P. Levis. Ravel: Programming iot applications
as distributed models, views, and controllers. In Proc. of the Int’l.
Workshop on Internet of Things towards Applications, pages 1–6, 2015.

[44] sensor model language (sensorml).
[45] A. Sivieri, L. Mottola, and G. Cugola. Drop the phone and talk to the

physical world: Programming the internet of things with erlang. In Proc.
of the 3rd Int’l. Workshop on Software Engineering for Sensor Network
Applications, pages 8–14, June 2012.

[46] http://developer.smartthings.com.
[47] J. Soldatos, N. Kefalakis, M. Hauswirth, M. Serrano, J.-P. Calbimonte,

M. Riahi, K. Aberer, P. P. Jayaraman, A. Zaslavsky, I. P. Žarko, et al.
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