
XD (Exchange-Deliver): A Middleware for
Developing Device-to-Device Mobile Applications

Tomasz Kalbarczyk and Christine Julien
The University of Texas at Austin

{tkalbar, cjulien}@utexas.edu

ABSTRACT
In this demonstration, we showcase the XD middleware, a
framework for expressive multiplexing of application com-
munication streams onto underlying device-to-device com-
munication links. XD allows applications to remain agnostic
about which low-level networking stack is actually delivering
messages and instead focus on the application-level content
and delivery parameters. The IoT space has been flooded
with new communication technologies (e.g., BLE, ZigBee,
6LoWPAN) to add to those already available on modern
mobile devices (e.g., BLE, WiFi-Direct), substantially in-
creasing the barrier to entry for developing innovative IoT
applications. XD presents application developers with a sim-
ple publish-subscribe API for sending and receiving data
streams, unburdening them from the task of selecting and
coordinating communication channels. Our demonstration
shows two Android applications, Disseminate and Prophet,
running using our XD middleware for communication. We
implemented BLE, WiFi Direct with TCP, and WiFi Direct
with UDP communication stacks underneath XD.

1. INTRODUCTION
New and varied types of IoT (Internet of Things) devices

are popularizing a variety of communication technologies
(e.g., BLE, ZigBee, 6LoWPAN) and introducing proprietary
ones. Modern mobile devices (e.g., tablets and smartphones)
are following a similar trend in supporting device-to-device
(D2D) communication using technologies like BLE and WiFi
Direct. In the IoT, supporting D2D communication mech-
anisms will become critical, as the nature of interactions
among devices take on intuitively local and device-to-device
characteristics. To successfully build sophisticated mobile
IoT applications that use such a wide array of technologies
requires a way to seamlessly communicate across the diverse
communication technologies. Our XD (Exchange and De-
liver) middleware allows just this, while also enabling appli-
cations to be agnostic of the implementation’s use of specific
underlying communication technologies.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’16 May 16-17 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4178-3/16/05.

DOI: http://dx.doi.org/10.1145/2897073.2897706

To show mobile IoT applications’ need for XD, we use
a concrete scenario to highlight some of the challenges in
adding D2D support to existing networked applications. Imag-
ine an application for securely viewing medical health records
that avoids storing health records at some central server
(cloud or otherwise), instead allowing individual patients to
make their own records available only on a need-to-know
basis. When a patient walks into a doctor’s office, the nurse
needs to see a subset of his records while the doctor needs to
see a more comprehensive set. Further, the patient’s policy
for releasing records may require the doctor (or nurse) to be
co-located (e.g., in the same exam room) as the patient.

From an IoT / D2D perspective, we can reduce the sce-
nario to contain four agents: the patient’s device (e.g., smart-
phone), the nurse’s tablet, the doctor’s tablet, and a location
tag within the exam room. For simplicity, assume the pa-
tient has his own medical records on his device. When the
patient walks into the exam room, his medical records be-
come available to the tablet of the doctor or nurse if they
are co-located. In this example, it is reasonable that identi-
fication information would be transmitted over a lightweight
communication technology such as BLE since this informa-
tion may be continuously broadcast to enable discovery of
neighboring doctors, nurses, and patients promptly. Once a
target (e.g., the nurse’s or doctor’s tablet) is identified, the
needed medical records are transferred using a technology
designed for higher throughput such as WiFi Direct. This
represents an ideal situation, where multiple communication
technologies are available among the three devices. How-
ever, imagine that the patient is using a device that only
has WiFi Direct available for D2D interactions. We still
want the patient to be able to use the application, so we
need the tablets to transfer identification information over
WiFi Direct instead of BLE. As another complicating fac-
tor, the location tag in the exam room may broadcast over
ZigBee, requiring a yet different communication capability.

To implement this flexibility, the application developer
has to incorporate the communication stacks for BLE, WifiDi-
rect, and ZigBee directly into the application. Further, the
developer has to create the logic that selects which pieces of
content are exchanged using which communication technol-
ogy, which must also depend on the capabilities of the de-
vices in the surroundings. When two devices have multiple
matching technologies, the developer has to choose which
one is best (e.g., BLE for identification information, and
WiFi Direct for medical records). Mismatches must be iden-
tified (e.g., lack of BLE), and a secondary technology must
be chosen (e.g., use WiFi Direct for both identification in-



formation and medical records). XD takes these burdens
from application developers and provides a middleware that
seamlessly adapts to the available communication capabili-
ties based on the applications’ high level requirements (e.g.,
the specific coordination required and the data being shared)
and the state of the networked environment (e.g., the avail-
able communication technologies, other ongoing communi-
cation that may interfere). In this way, XD prevents the
developer from being mired in the weeds of D2D communi-
cation and instead allows him to focus on what data to send
and how to interpret data that is received.

In employing XD, the content that applications share is
divided into context and data. Context information can vary
in semantics, but it is typically a lightweight summary of a
device’s situation or knowledge. In XD, context is broadcast
periodically to all neighboring devices. Data, on the other
hand, is the actual application-level content being intention-
ally shared among devices. Data is expected to be heavy-
weight, and when and to whom it is sent is determined by the
application logic (potentially based on the context). Based
on the technologies available on the sending device and other
nearby neighbors and the nature of a particular piece of con-
tent, XD automatically chooses one or more communication
mediums over which to transmit. To delegate this behavior
to XD, applications employ a simple publish/subscribe in-
terface. Specifically, the application subscribes to content it
is interested in, allowing XD to then coordinate with other
neighboring devices to retrieve that information. The appli-
cation triggers periodic publication of context information
by setting the context in XD and publishes data on-demand
using XD’s send interface.

To demonstrate XD, we have implemented the middleware
on the Android operating system and used it to support our
own Disseminate application [8], and also the Prophet DTN
Router [5]. In our prototype implementation, we have used
Bluetooth Low Energy (BLE), WiFi Direct + TCP, and
WiFi Direct + UDP as underlying communication technolo-
gies. Conceptually, XD could also incorporate other com-
mon IoT communication techniques (e.g., Zigbee, 6LoW-
PAN) or even proprietary protocols, allowing IoT applica-
tions that integrate devices from multiple vendors under a
single umbrella. This demonstration showcases XD’s abil-
ity to raise the level of abstraction of mobile IoT applica-
tion programming, easing the burden on developers for this
emerging marketplace of applications.

2. RELATED WORK
The XD middleware fits in the space of frameworks and

architectures for opportunistic networks, including work in-
volving data distribution using device-to-device communi-
cation [7, 8, 4]. Most middleware facilitating dD2D com-
munication assume a single underlying communication tech-
nology. MobiClique [6], for instance, uses social information
to exchange D2D information solely using underlying Blue-
tooth connections. Yarta [10] and CAMEO [1] focus on the
social patterns of interaction while shielding the application
from the details of handling low-level communication tech-
nologies. In fact, these middleware presuppose that some-
thing like XD is available to intelligently exploit the available
opportunistic connections that the models rely on.

Specifically, Haggle [9] is designed to separate application
logic from communication bindings, so that, similarly to XD,
applications are agnostic of underlying communication tech-

nologies employed. Our work with XD is orthogonal to Hag-
gle, and could even be integrated into the Haggle framework.
Similary, delay-tolerant networking stacks [2] abstract away
the underlying communication technology and handle chal-
lenges such as opportunistic connections. Other frameworks
for building applications in opportunistic, D2D networks fo-
cus on abstracting the network structure so that it is simpler
to develop applications that can communicate in D2D envi-
ronments. For example, DTP [3], a distruption-tolerant, re-
liable transport layer protocol masks communication issues
present in a typical D2D network, and provides the applica-
tion a more traditional view of the network, providing the
semblance of TCP semantics.

Generally, like XD, these approaches facilitate the ex-
change of content using a heterogeneous set of D2D pro-
tocols. However, they lack the essential logic necessary to
seamlessly share contextual information among neighbors
and to use this context in device discovery and in selecting
the appropriate communication technology for exchange.

3. APPLICATIONS
To demonstrate the use and effects of XD, we developed

two versions of two applications. For each application, one
version uses the XD middleware to facilitate all device-to-
device communication, while in the other, the application
directly implements communication using a single selected
communication technology.

The first application is a rework of our own device-to-
device communication application, Disseminate [8]. Because
we built the original version of this application, reimple-
menting it with XD allows us to show a direct comparison
of the application’s utility (as far as being able to use a wider
range of communication technologies) and performance (in
terms of transmission rates). Disseminate allows Android
applications to share large media files downloaded from the
Internet by breaking the (very) large data items into small
chunks and then opportunistically sharing the chunks among
co-located mobile devices. Interested devices issue subscrip-
tions for the chunks they need and advertisements for the
chunks they can share. In mapping Disseminate onto XD,
deciding what content should be periodic context versus
bulky data is straight-forward. The subscriptions and ad-
vertisements for chunks are packed as context information
that is continually broadcast to neighboring peers. Peers
then use this context information to initiate transfers of the
actual chunks of media data.

Our second application is an implementation of the Prophet
routing protocol for Delay Tolerant Networks (DTNs) [5].
Prophet is a widely used, probablistic routing protocol in
which each device maintains a history of successful content
delivery to known destinations in the network; that is, for
each potential peer, a Prophet node maintains a delivery
predictability. Whenever a device encounters another device,
they exchange and update their known delivery predictabil-
ities. Devices then use this predictability information to de-
termine whether a neighboring peer is a good candidate for
forwarding a piece of application data targeted to another
peer in the network. Simply, if a Prophet node determines
that one of its peer devices has a higher delivery probabil-
ity for the destination of a piece of data, the node forwards
the application data to the peer with the expectation that
it will reach its final destination through that neighbor. De-
veloping Prophet on XD is also straightforward, since it is



again straightforward to split content into context (delivery
predictabilities) and data (forwarded application packets).

This style of split of content into context and data is not
specific to these two applications. In fact, we find that
many device-to-device applications have some small bits of
control data that are exchanged frequently and some larger
pieces of application data that are exchanged much less fre-
quently and often only with specific targeted neighbors. As
described next, XD takes advantage of this split in the appli-
cation content to effectively and efficiently leverage available
underlying communication technologies.

4. ARCHITECTURE / IMPLEMENTATION
XD divides the components of an IoT interaction into the

content, the application, and the communication technology.
Since XD sits between the application and the communica-
tion technology, it provides two sets of APIs. The first is
a public publish-subscribe interface that allows an applica-
tion to receive and send content. The second is an internal
interface that each communication technology is required to
implement in order for it to be selected for content distri-
bution. In the section, we discuss how XD organizes the
content, how it allows applications to operate on this con-
tent, how it transmits the content using multiple commu-
nication technologies, and the logic necessary to bridge the
applications and the communication technologies. Figure 1
provides a visualization of the architecture that shows the
high level modules that make up XD, and depicts how the
middleware interacts with applications above and commu-
nications technologies below.

Disseminate	 Prophet	

Disseminate	

Publish-Subscribe	API	 XD	

Communica8on	API	

Wifi	Direct	(UDP)	 Wifi	Direct	(TCP)	BLE	

Applica*ons	

Middleware	

Communica*on	
Technologies	

Publish-Subscribe	API	
Content	

Context	 Data	

Logic	Technology	
Selec8on	

Neighbor	
Map	

Raw	Content	
Cache	

Figure 1: XD Middleware Architecture

Content. As motivated above, XD separates content
into two categories: context, which is lightweight informa-
tion that is continually exchanged among peers, and data,
which is the actual heavyweight, application content that
is delivered to specific peers (or subsets of peers). Applica-
tions commonly use the context to help select the data to
send. We allow the application to perform three primary ac-
tions on each type of content: specifying optional parameters
(e.g., maximum content size, broadcast frequency, transmis-
sion rate), determining the content to distribute, and im-
plementing a callback to process the content that has been
received. XD stores the received context and also uses it
to update its internal Neighbor Map (see Figure 1). Data
is the application-level information shared between devices.
Our interface allows for the specification of what exact data

will be transmitted and to whom, based on application logic
that may reflect received context information.

Application. The application component consists of high
level IoT or D2D applications that conform to a simple
publish-subscribe interface. The application subscribes for
content of interest and publishes content that it wants to
share. The XD middleware filters incoming content so that
the application only sees content to which it is entitled and
for which it is subscribed. The published content may be
user generated, automatically collected, or retrieved through
other means, e.g., from other device-to-device applicaiton
interactions. The API is broken down into four routines:
receiveContext, receiveData, sendContext(parameters,

context), and sendData(destination, data).
The API is best explained using an existing application

like. In the “application layer”, Prophet implemented on
top of XD provides a receiveContext callback that sub-
scribes the application to receive delivery predictabilities
from other devices also running the Prophet application.
Similarly, the application implements the receiveData call-
back in order to process all payloads received from other
devices (i.e., messages targeted for the node or messages for
which the peer has determined that the node is a better
forwarder). The Prophet XD implementation uses received
context to update its local representation of the known de-
livery predictabilities; it then uses the sendContext function
to update the delivery predictabilities that are broadcast to
neighbors. Finally, the Prophet implementation uses the
sendData function to deliver payloads to specific devices,
based on Prophet’s internal logic. Note that while XD does
not explicitly manage forwarding data through D2D links,
the API provides a simple way for an application to do so1.
In the case of Prophet, all that needs to be done to forward
a payload is to call the sendData function from within the
implementation of the receiveData callback. This makes
XD suitable even for complex IoT applications that might
involve multihop communication.

Communication Technology. XD uses an internal in-
terface to facilitate the addition of an underlying commu-
nication technology that can be used for context informa-
tion sharing, data distribution, or both. Depending on the
type of technology, the stack can include capabilities such
as the maximum payload size, the range of broadcast fre-
quencies, the range of transmission rates, and the ability
to send and/or receive content. For our demonstration, we
have implemented three communication stacks in Android:
Bluetooth Low Energy (BLE), WiFi Direct over TCP, WiFi
Direct over UDP.

Starting with Android 5.0 Lollipop, Android devices have
begun supporting BLE operation in peripheral mode, mean-
ing that they can send broadcast beacons in addition to re-
ceiving beacons. Our BLE implementation has two threads
running simultaneously: one scans for incoming BLE bea-
cons, and the other broadcasts BLE beacons to all neigh-
bors. The scan thread receives beacons and places them
into a synchronous queue (Raw Content Cache in Figure!1),
that is subsequently polled by a receiver thread that wraps
each beacon and presents it to the application as either con-
text or data. The broadcast thread transmits a beacon at

1In this discussion we refer to Prophet as an “application”
even though it is a routing protocol; this is XD’s perspec-
tive; the Prophet implementation interacts with XD like any
other “application” employing XD’s interfaces



the interval indicated by the application parameters if BLE
was chosen as a context distributor by the selection module.

While BLE is often a good choice for exchanging lightweight
context, the beacons are much too small for bulky data de-
livery. We also include WiFi Direct as a communication
technology. WiFi Direct using UDP sockets is also often
a reasonable choice for broadcasting context information,
though it can be inefficient due to the way that WiFi Direct
groups are structured around a group owner that effectively
serves as a router for the group members. Every packet
(even broadcast packets) have to be routed through the
group owner, drastically reducing broadcast data through-
put. WiFi Direct is much better suited towards delivering
bulky data by forming temporary one-to-one connections
through TCP sockets. Similarly to the BLE beacons, all
content that is received over WiFi Direct is placed into XD’s
Raw Content Cache for wrapping and presentation to the ap-
plication. The communication stacks which we implemented
for usage with XD are far from the only ones, and wrapping
other stacks for use by XD is straightforward. The complex-
ity lies in writing the communication stacks themselves.

Middleware Logic. The primary logic within the mid-
dleware is the Technology Selection Module, which is respon-
sible for determining over which communication technology
a particular piece of content (context or data) should be
sent. Two sets of information are used to make this deci-
sion: the optional parameters specified by the application
(the size of the content, frequency of broadcast and desired
transmission rate) and the technologies currently in use by
devices in the neighborhood. To facilitate determining what
these technologies are, each device periodically sends an ad-
dress beacon (initially this is transmitted using the least
expensive communication technology in terms of energy us-
age). The beacon contains a set of tuples (communication
technology, address) whose purpose two fold: to allow the
selection module to choose a communication technology and
to provide the address for transmitting bulky data to specific
neighbor (or set of neighbors) once the technology has been
chosen. Each instance of the XD middleware maintains a
neighbor map that is continuously updated with the tuples
transmitted by such address beacons.

5. DEMONSTRATION
To showcase the XD middleware, we will show partici-

pants two versions of the Disseminate application and the
Prophet application. One version uses XD while the other
uses only WiFi Direct over UDP. Prior to each run of each
application, the participant will be encouraged to toggle ei-
ther Bluetooth or WiFi on or off. Depending on which com-
munication technologies are available, the participant will
observe visible changes in the applications’ communication
rates (media exchange rates in Disseminate; packet forward-
ing successes in Prophet) when using the version of the ap-
plication that uses XD.

This visible download rate only scratches the surface in
terms of showing how XD improves the process of devel-
oping device-to-device applications. We will also provide
a larger display that shows real-time performance statistics
such as energy consumption and transmission rates, giving
participants a more complete picture of the benefits to using
XD. We will also display the application code for both ver-
sions so that participants can see the substantial difference
in code complexity when using XD and when not.

6. FUTURE WORK
Our current implementation of XD has room for extension

and improvement. While we include a technology selection
module, it currently only uses application parameters and
address beacons to select which communication technology
to use. The selection algorithm does not yet incorporate
features such as broadcasting context over multiple tech-
nologies, adjusting beacon frequencies to prevent congestion,
or buffering data so that fewer D2D connections need to
be made. Additionally, more intelligent selection could be
performed by passively sensing contextual information that
might not be explicitly relate to the XD-based application.
This is particularly relevant since the IoT is predicated on
the presence of many sensors providing such context. Fi-
nally, although our prototype of XD is implemented as a
middleware, it could (and likely should) be integrated into
the operating system as an abstract system communication
service, making it even more efficient. For example, cur-
rently on Android, to use Bluetooth or WiFi Direct, XD
is forced to use application layer interfaces that reduce ef-
ficiency since information needs to travel up and down the
stack. Moreover, only out of the box communication tech-
nologies are available meaning that any kinds of lower layer
security features (for example, masking the MAC address of
a beaconing device) are not possible.

Acknowledgments
This work was funded in part by the NSF, Grant #CNS-
0844850 and the DoD, Grant #H98230-12-C-0336.

7. REFERENCES
[1] V. Arnaboldi, M. Conti, and F. Delmastro. Cameo: A

context-aware middleware for opportunistic mobile
social networks. In Proc. of WoWMoM, 2011.

[2] M. Doering et al. Ibr-dtn: An efficient implementation
for embedded systems. In Proc. of CHANTS, 2008.

[3] Y. Go, Y. Moon, G. Nam, and K. Park. A
disruption-tolerant transmission protocol for practical
mobile data offloading. In Proc. of MobiOpp, 2012.

[4] L. Keller et al. MicroCast: Cooperative video
streaming on smartphones. In Proc. of MobiSys, 2012.

[5] A. Lindgren, A. Doria, and O. Schelén. Probabilistic
routing in intermittently connected networks.
SIGMOBILE Mob. Comput. Commun. Rev.,
7(3):19–20, July 2003.

[6] A.-K. Pietiläinen et al. Mobiclique: Middleware for
mobile social networking. In Proc. of WOSN, 2009.

[7] V. Srinivasan and C. Julien. MadApp: A middleware
for opportunistic data in mobile applications. In Proc.
of MDM, 2014.

[8] V. Srinivasan, T. Kalbarczyk, and C. Julien.
Disseminate: A demonstration of device-to-device
media dissemination. In Proc. of PerCom
(Workshops), 2015.

[9] J. Su et al. Haggle: Seamless networking for mobile
applications. In Proc. of Ubicomp, 2007.

[10] A. Toninelli, A. Pathak, and V. Issarny. Yarta: A
middleware for managing mobile social ecosystems. In
Proc. of GPC. 2011.


