
CHITCHAT: Navigating Tradeoffs in
Device-to-Device Context Sharing

Sungmin Cho and Christine Julien
The Center for Advanced Research in Software Engineering

The University of Texas at Austin
Email: {smcho, c.julien}@utexas.edu

Abstract—Acquiring local context information and sharing
it among co-located devices is critical for emerging pervasive
computing applications. The devices belonging to a group of
co-located people may need to detect a shared activity (e.g., a
meeting) to adapt their devices to support the activity. Today’s
devices are almost universally equipped with device-to-device
communication that easily enables direct context sharing. While
existing context sharing models tend not to consider devices’
resource limitations or users’ constraints, enabling devices to
directly share context has significant benefits for efficiency, cost,
and privacy. However, as we demonstrate quantitatively, when
devices share context via device-to-device communication, it
needs to be represented in a size-efficient way that does not
sacrifice its expressiveness or accuracy. We present CHITCHAT, a
suite of context representations that allows application developers
to tune tradeoffs between the size of the representation, the
flexibility of the application to update context information, the
energy required to create and share context, and the quality of
the information shared. We can substantially reduce the size of
context representation (thereby reducing applications’ overheads
when they share their contexts with one another) with only a
minimal reduction in the quality of shared contexts.

I. INTRODUCTION

Emerging pervasive computing applications need expressive
representations of context that they can share directly with one
another even given limited computation, storage, communica-
tion, and energy. In this paper, we enable devices to share
views of their context and subsequently generate an aggregate
view of the space and time in which they are located. The
resulting notions of context enable new application behaviors.
For example, if a set of devices share low-level context
collected in the same area of a building, they may ascertain
that the devices belong to users participating in a meeting.
An application could then adapt the devices to support the
meeting, for example to cooperatively select the largest screen
to be a shared display or a centrally located device to act as
a microphone to capture audio. This paper focuses not on the
new application behavior but on the enabling capabilities of
representing and sharing transient and personal context.

Modern mobile devices are capable of not only infrastruc-
ture connections but also device-to-device (D2D) connectivity,
e.g., via WiFi-Direct or Bluetooth Low Energy (BLE). These
facilities enable co-located devices to directly coordinate.
Commodity devices and embedded sensors can also collect
myriad information about us and our instantaneous situations,
enabling the long vision of context-awareness [1]. We present

CHITCHAT, which combines the increasing communication
and context sensing capabilities of our devices to support
creating and sharing views of local context. In CHITCHAT, we
take a straightforward but expressive view of context to include
any information that characterizes an entity’s situation [11],
where the entity can be a person, location, or any object
relevant to the interaction between a user and application. We
capture a context as a set of attributes, each as a (label, value)
pair in a context summary. We refer to the set of labels as
the context schema. We aim to create context summaries that
are succinct yet able to accurately describe any situation of
interest to a pervasive computing application.

Consider an emergency in which communication infrastruc-
tures are inoperable. Networks of D2D connections can help
rescue workers exchange context characterizing the state of
the structural environment, the presence and conditions of
casualties, etc. A view of this context shared by rescuers
could be used to create a response plan or stage and deploy
resources. In an open-air market, visitors’ devices could share
context about their locations, shopping habits, or other aspects
of their state or mindset. A network created from the visitors’
devices could exchange context among nearby visitors, en-
abling applications to, for example, hint vintage lovers to visit
a certain market. These are highly personalized applications
that require, underneath, some view of a shared local context.
The context is transient, time- and location-sensitive, and
relevant primarily to others that share the same space and time.
Key to enabling these applications is to provide an efficient
mechanism for sharing context over D2D links.

Existing context representations [8], [15] are mostly suited
to the web; they are very flexible (i.e., it is easy to update the
schema and the values), expressive, and have values of high
quality. As a result, the representations are quite large, making
them not well suited to D2D exchange by devices with limited
energy and communication bandwidth [5]. We are therefore
motivated to create much smaller context representations for
lightweight interactive personal sharing [21]. We must also
consider the tradeoffs that come with a size reduction. For
instance, it is possible to establish a schema a priori and
share only values; this can drastically reduce communication
overhead, but it also radically limits the ability for applica-
tions to change the context mechanism. Likewise, a complex
representation that achieves a significant size reduction [14]
may be expensive to compute; applications must consider the



power consumed in computing a smaller context summary
against the power saved from reduced communication. Finally,
any degradation in data quality that results from reducing the
representation’s size must be tolerable by applications.

CHITCHAT is a suite of context representations that allows
applications to tradeoff the representation’s size, quality, flex-
ibility to be updated, and energy required to be created and
shared. CHITCHAT introduces new probabilistic data structures
based on a Bloomier filter [7]. In our previous work, we
showed how to use a Bloomier filter to store the (label, value)
pairs constituting context attributes [14]. When an application
queries the structure with a specific label, if that attribute was
inserted, the structure returns the correct value. Otherwise, it
returns an empty value with high probability. However, it is
possible that an incorrect value is returned for an attribute that
was never inserted, i.e., a false positive occurs. Obviously, a
key goal is to minimize false positives. CHITCHAT introduces
two Bloomier filter based structures to further reduce a context
summary’s size and add the ability to update the structure
on-the-fly. First is the folded Bloomier filter, which takes
advantage of variable data widths to reduce the size of the
structure without impacting the false positive rate. Second is
the complete Bloomier filter, which maintains many of the
size reductions, guarantees a zero false positive rate under
certain conditions, and adds the ability to update context values
in an already constructed summary. These contributions are
coupled with techniques that rely on context semantics to
recover correct context information. Our contributions are:

• We create concrete a set of CHITCHAT context types (Sec-
tion III) that aid in achieving size efficiency.

• We introduce our Bloomier filter extensions (Section IV)
and show how they can be made highly size efficient and
updatable while retaining high quality information.

• We introduce techniques to recover correct values using
semantic content of a context summary. This allows us
to reduce the context summary size even more without
sacrificing quality. We have integrated these techniques
into a context processing engine [9]; here we show how
they can help reduce the size of context representation.

• We show that applications can select among our structures
to tradeoff the structure’s size, power consumed, and
communication overhead (Sections V and VI).

II. RELATED WORK

Context and context-aware computing have been extensively
surveyed [11], as have context representations [23]. In our own
prior work, we expressed context as a combination of local
and shared information [19], provided a basic framework for
sharing succinct context information in a pervasive computing
network [14], and used context to express emergent properties
of groups [18]. In this paper we use the same basic structure
but substantially enhance both the data structure and algo-
rithms to enable significant space gains without degrading the
quality of the context representation. Our notion of quality is
based on the accuracy of values represented and on established

notions of expressiveness, in terms of the ability of competing
representations to effectively express the same thing.

Context information is often represented using an ontol-
ogy [2], [22], a formal description of concepts in a domain
of discourse (classes), with properties of each class, and
restrictions on those properties. Ontologies have been used for
social context representation and automated context reasoning
in a multi-agent system [3]. In CHITCHAT, we avoid using an
ontology so that we can reduce the amount of knowledge that
coordinating parties have to share a priori. However, we do
adopt some properties inspired by ontology-based approaches
to define constraints on relationships between attributes of
contexts. Representing, storing, and sharing context are often
supported in the web using XML and JSON (JavaScript
Object Notation) [24]. These representations are suitable for
applications in situations where resource constraints (in terms
of communication and energy) are not of significant concern.

Pervasive computing devices’ abilities to communicate di-
rectly with one another have increased dramatically. Ini-
tially, such capabilities were used to bootstrap discovery of
nearby resources, before shifting interactions to infrastructure-
supported communication [10]. More recently, D2D links have
been used to carry increasing amounts of content, whether
to augment or extend infrastructure [13], [16] or to enable
direct application interaction [25]. The high-fidelity context
that todays’ devices can collect has the potential to reveal
particularly personal information about the devices’ users, so
constraining sharing to a highly-localized region can better
support users’ privacy [17]; we have shown that D2D sharing
of information can aid in preserving users’ privacy [27]. Given
these observations, we hypothesize that the time is right to
push context sharing into this domain as well.

A significant remaining hurdle relates to resource con-
straints of devices (in energy, storage, and communication)
and links (in latency and bandwidth). Existing context rep-
resentations are large, and sharing them over D2D links is
prohibitively expensive. A simple context description from
a device in an emergency situation required 183 bytes to
represent in JSON, which, using CHITCHAT’s techniques, can
be reduced to 33 bytes without losing expressiveness; further,
we can also reduce by more than 32% the energy required to
share this information using a state-of-the-art D2D link.

These reasons motivate trading the size of a context rep-
resentation for the energy required to create and share it
and the quality of its information. Our hypothesis is that we
can take advantage of flexibility in the quality of a context
representation to dramatically reduce its size. In CHITCHAT,
we use a Bloomier filter as the basic data structure to represent
context. A Bloom filter [4] is a size efficient data structure to
capture set membership. A Bloomier filter [6], [7] associates
a value with each set member. Bloomier filters have been
used for purposes similar to ours to ascertain approximate
group membership [12]. In CHITCHAT, we exploit associations
among context attributes and values in a context summary
to reduce the size of the representation without appreciably
sacrificing the quality of the stored information.



III. CHITCHAT CONTEXT SUMMARIES

A context summary’s attributes describe an entity. We pro-
vide a set of scenarios in which context plays a pivotal role and
define data types common to context values. We then introduce
CHITCHAT’s filters, which allow a context summary’s contents
(and the recipient’s own situation) to determine whether values
in the summary are likely false positives. Our prior work [9]
provided an API for applications to specify these filters. In this
paper, we apply the filters to our new context structures to help
preserve the semantic value of the information they contain.
These filters allow us to use structures that have theoretically
high false positive rates that can be reduced in practice.

A. Scenarios

One category of scenarios for which D2D sharing is partic-
ularly applicable is when communication infrastructures are
unusable. The goal is to collect and share context about
individuals and the environment; the information could be
critical in analyzing conditions to form an evacuation plan.
An earthquake has caused local blackouts and dangerous
situations, trapping people and leaving the communication
infrastructures inoperable. An individual’s context is:

{ "latitude": [30, 25, 38, 2],
"longitude": [-17, 47, 11, 0],
"time": [11, 21],
"date":[2015, 10, 11],
"age": 23,
"name": "Brian Taylor",
"temperature": 41,
"temperature unit": "C",
"message": "Trapped in room 121" }

Similarly, information from structural sensors that survived
the earthquake can share information about the building:

{ "latitude": [30, 25, 38, 5],
"longitude": [-17, 47, 11, 0],
"time": [11, 21],
"date":[2015, 10, 11],
"device id": 11,
"number of sensor": 3,
"sensor 1 name": "temperature",
"sensor 1 value": 28,
"sensor 1 unit": "C",
"sensor 2 name": "humidity",
"sensor 2 value": 43,
"sensor 2 unit": "%",
"sensor 3 name": "light",
"sensor 3 value": 121,
"sensor 3 unit": "lux" }

Alternatively, a device could process the data minimally, e.g.,
the three sensor 1 attributes could be replaced by two:

...
"temperature": 28,
"temperature unit": "C"
...

In our evaluation, we use the first summary because it is
indicative of the summary needed when no processing is done
by the microcontroller collecting the sensor value.

Another motivating scenario is hyper-localized search, with
the goal of sharing information about the environment and
individuals’ interests to help direct the individuals.

A book lover visits an open-air book fair. Her device notes
and shares her interest in modern art books. A dynamic
social network formed from booksellers and other visitors with
similar interests can provide a small network from which to
get hints of the location of the best deals.

{ "latitude": [31, 25, 38, 2],
"longitude": [-17, 42, 11, 0],
"date":[2015, 10, 09],
"time": [10, 21],
"leave time": [12, 21],
"gchat id": "mary.zwky",
"interest category 1": "art books",
"interest item 1": "20 century European painting",
"interest category 2": "paper",
"interest item 2": "Roylco R15286 Antique Paper",
"special interest item": "Hand made notebooks" }

The visitor’s summary could be propagated until it reaches
an art bookseller who could follow up via gchat. Alternatively,
the context could be compared to that of similar visitors, boot-
strapping sharing other context, e.g., sellers’ service quality.

CHITCHAT applies generally to situations that involve con-
texts that exhibit the following characteristics:
• Context information is hyper-localized in space and time.
• Context attributes are related to each other.
• Strings are frequently used to describe context.
• Many context values need not be extremely accurate.
• Context values often have range limits.
We next examine these types more closely, looking at

representations best suited to compact context summaries.

B. CHITCHAT Types

CHITCHAT defines data types tailored to pervasive com-
puting context; specific examples are shown in Table I. We
support multiple integral types and assume only single preci-
sion (32 bit) floating point numbers (a higher precision is not
commonly required for context). We use Pascal-style strings,
with the length as the first element. We also define special
types to aid in efficiently packing data, e.g., a “level” type that
scales from 1 and 10. Dates include a year (7 bits), month (4
bits), and day (5 bits) and times have hours (5 bits) and minutes
(6 bits)1. Both latitude and longitude are expressed in degrees
(±90 for latitude and ±180 for longitude), minutes, seconds,
and subseconds. This gives sufficient precision (∼ ±30cm),
given that the precision of a typical GPS unit is ∼ 1− 10m.

TABLE I: Example data types for contexts
Type Bits Bytes Range Encoding
Boolean 1 1 (0,1)
Unsigned byte 8 1 (0, 255)
Byte 8 1 (-128, 127)
Float 32 4 IEEE 754
String n× 8 n Pascal
Age 7 1 (0, 127)
Level 4 1 (1, 10)
Date 16 2 (7,4,5)
Time 11 2 (5,6)
Latitude 27 4 (8,6,6,7)
Longitude 28 4 (9,6,6,7)

1Applications requiring second granularity can easily add another integer
value; we simply do not support seconds in the default time type.



C. False Positive Filters

A false positive occurs when querying a context summary
returns a “junk” value for an attribute that was not inserted.
To mitigate false positives, CHITCHAT developers use filters
to constrain reasonable values based on application semantics.
For instance, if an application queries the first of our example
summaries for the attribute “building id,” the summary could
(in rare instances) return a junk value. An application could
identify this as a false positive if it is not a real building
number or if it does not make sense given the location.

Applications specify constraints on acceptable values at
a variety of levels of abstraction. An innate filter identifies
instances in which a value is not reasonable for its attribute.
In our book market, a stated “leave time” of [21, 10]
is likely a false positive because it is more than an hour
after closing time. A correlated filter states that two (or
more) attributes must be found together. For example, we
might require that a summary with a longitude also has a
latitude; a recommendation application may require that, if
a bookseller is listed, there must be a valid rating for the
bookseller. Formally, C(a1, . . . ai) =⇒ a′ indicates that, if
a summary has valid values for attributes a1 . . . ai, then it
must have a valid value for a′. Finally, a situational filter, S,
checks a set of attributes {ai, . . . , aj}, considering both the
values in the context summary and the application’s current
situation: {a1, . . . , aj} |= S(f(a1), . . . , f(aj), context). A
shopper should expect a bookseller to be nearby, i.e., that
the location in their context summary is within a specified
distance. Table II shows some example S filters.

TABLE II: Example situational relations
Context Attributes, Situation S(attribute values, situation)

location, my location |my location - location| ≤ 5 km
age of kid, elementary school 5 ≤ age of kid ≤ 12
date and time, today (date/time - today) ≥ 0

When applications specify these filters, we can shrink con-
text summaries, increasing the number of false positives, be-
cause the filters can later remove them. Section V-B describes
how CHITCHAT uses these filters to detect false positives. First,
we introduce our novel structures for capturing and sharing
hyper-localized context in a space-efficient way.

IV. BLOOMIER FILTERS AS CONTEXT SUMMARIES

One of our major contributions is a suite of context sum-
mary structures based on the Bloomier filter. In this section,
we describe the basic Bloomier filter and an optimized version
on which our work is based. We then describe the Folded
Bloomier Filter (FBF) and Complete Bloomier Filter (CBF).

Basic Bloomier Filter. CHITCHAT’s context summaries are
built on the Bloomier filter, which is derived from the Bloom
filter. A Bloom filter [4] succinctly represents set membership
using a bit array m and k hash functions. To add an element,
we use the k hash functions to get k positions in m and set
each to 1. To test whether an element e is in the set, we check
the positions associated with e’s k hash values. If any position
is not 1, e is not in the set. Otherwise, e is in the set with high

probability. False positives occur if inserting other elements
happens to set all k positions associated with e’s hash values.
A Bloomier filter [6], [7] uses a function f(x) to map the set
members to values. If an element e is in the input set S, the
Bloomier filter’s f(e) should be the value associated with e. If
e is not in the Bloomier filter, f(e) =⊥ with high probability.

CHITCHAT provides three structures that tradeoff complex-
ity, size, and false positive rates. The optimized Bloomier
filter (OBF), implements the original Bloomier filter [7].
Our folded Bloomier filter (FBF) targets contexts that hold
values of widely varying widths, while our complete Bloomier
filter (CBF) uses situations in which the context schema is
(partially or fully) known to completely remove false positives
for attributes in the known schema, at the cost of a small
increase in the summary’s size. We use an attribute’s label as
the key (e) and use f(e) to refer to the associated value.

Optimized Bloomier Filter. Conceptually, an OBF is a
table of size m by q. Here, m is the same as in the classical
Bloom filter; m ≥ n, where n is the number of stored
associations (e, f(e)), and q is the maximum width of any
associated value. Practically, we need only use (q × n) +m
bits to store an OBF because we can simply send the n stored
values and indicate, using an additional bit vector of size m,
which table rows are occupied.

We define a storage row of element e, ρ(e), to be the row
where f(e) is stored (∀e, 0 ≤ ρ(e) < m). Each ρ(e) should
be assigned to only one e: ∀ei, ej 6=i ∈ S, ρ(ei) 6= ρ(ej). The
hash function H(e) generates an ordered list of k hash values
for e. These hash values are indices into the table, as depicted
in Fig. 1(a). A singleton for S is a table row that only a
single element e ∈ S hashes to. A particular e ∈ S may have
multiple singletons; for each e we select the singleton with
the smallest index to be ρ(e). The original presentation of the
OBF [7] presents an algorithm for finding the ρ(e) for all
keys in a set S and determining the order of insertion of the
elements in S to ensure the correctness of the OBF.

Fig. 1(a) shows table creation. Attribute e is used to generate
k hash values and a mask M(e). The mask is used to increase
the randomness in data inserted in the table. The function
prep(f(e)) prepends 0s to f(e) to make q bits. This is XORed
with M(e) and the contents of the table at the locations
indicated by the k − 1 hash values that are not e’s ρ(e).

It may seem that we could simply store the associated value
directly in ρ(e). However, the receiver does not know which
keys were inserted. The process of retrieving a value from an
OBF is shown in Fig. 1(b). Because we do not know S, we
cannot compute ρ(e). Instead, we retrieve the values stored
at all k locations from H(e) and XOR them together with
the same mask to retrieve e’s q-bit value. We use trunc(x) to
remove any prepended 0’s and retrieve f(e).

For e′ 6∈ S, if all k rows from H(e′) are empty, we can con-
fidently return f(e′) =⊥. It is more likely that one or more of
the k rows contains some value. Given that e′ was not inserted,
the returned f(e′) is just random data. The use of the mask
upon inserting data increases the innate randomness, which
increases the likelihood that the data will not be well-formed



H(e)
h1

h3

(e, f(e)) �

M(e) �

h2 = ⇢(e)

prep(f(e))

q bits

m rows

(a) Creation

H(e)
h1

h3

(e, f(e)) �

M(e) �
trunc(x)

h2

q bits

m rows

(b) Retrieval

Fig. 1: OBF Table Creation Process

for the type expected. We use the application-specified filters
introduced in Section III-C to catch these misrepresentations;
we describe this process more in Section V-B.

Folded Bloomier Filter. The OBF has two critical limita-
tions. First, it requires a string’s length be less than the table’s
width (q) or the application has to handle segmenting the string
into components that are each smaller than q. Second, the OBF
is not size efficient when the stored types’ sizes are diverse
since the table width must accommodate the largest type.

0x00

7

0x03
miJ3

7

0x00

3

i

0x03

J

M

Fig. 2: An OBF

Our folded Bloomier
Filter (FBF) folds a
large width value into
multiple smaller width
values. Fig. 2 shows an
OBF summary with three
values: {(name, Jim), (age, 7), (time, (12,00))}.
The time is encoded into two bytes (0x03, 0x00), and, as
a Pascal-style string, “Jim” becomes (3, ‘J’, ‘i’, ‘m’). The
grayed bytes show prepended zeroes2.

7

0x00

3

i

0x03

J

m

Fig. 3: An FBF

Fig. 3 shows the same values folded
into an FBF. The FBF is an optimization
driven by properties of context structures.
The FBF uses an OBF table at its core
but pre-processes input associations
(e, f(e)). For example, an eight-byte string
{(name, humidity)} could become
{(name0, humi), (name1, dity)}
before being stored in an OBF with a
width of four bytes. Likewise, the FBF
post-processes retrieved data to get f(e);
multiple values are retrieved from the table and combined.
We augment the labels with a sequence number to enable the
pieces of a value to be reassembled in order.

We assume that the table width is an integer multiple of
bytes, both for simplicity and because not doing so entails
added processing overhead. A table width of one byte is

2The OBF in the figure is simplified, as it shows inserted data that has not
been XORed; the space savings are the same in the unsimplified structure.

theoretically optimal, but this forces m to be large and offsets
the size benefits gained from folding. Folding a table causes
an increase in the false positive rate, but we are able to
take advantage of our application-provided filters to effectively
detect and eliminate these false positives.

Complete Bloomier Filter. The greedy algorithm to find
ρ(e) for each key requires discovering and enforcing an
insertion order [7]. The structure can be made orderless when
every e can be associated with a singleton ρ(e) on the first
search, meaning that each value can be directly stored in (and
retrieved from) the table without masking and XORing. In
these cases, the table has the property that, for all e of the k
rows from H(e), only the row ρ(e) is not empty. The potential
disadvantage is that the number of rows in the table must be
made large enough to ensure a unique position for each key.

Using this property, we can make a false positive free
structure. Imagine that our second application desires to ensure
absolutely zero false positives for a subset of the attributes, S′

= {special interest item, gchat id}. The motivation
may vary; for the special interest item users may sim-
ply not tolerate incorrect values). On the other hand, because
gchat id can be any string, filtering false positives can be
very difficult, so eliminating them entirely may be preferable.
Recall that S is the set of attributes included in the summary.
S′ may or may not be a subset of S, that is, the application
may choose not to insert some elements of S′. For any e′ ∈ S′,
the summary is guaranteed to have no false positives. For any
other element, the same properties hold as for the FBF.

We construct the table to reserve a singleton ρ(e) for all
e ∈ S ∩ S′. For any e′ ∈ S′, any retrieved f(e′) is a
true positive. Achieving this property requires a table with
a larger m, and knowledge about which attributes are in S′

must be shared among the participants. We call this structure
a complete Bloomier Filter (CBF). The CBF carries another
very important quality: the value f(e′) associated with e′ ∈ S′
in a CBF can be updated on-the-fly without having to recreate
the entire CBF. The same is not true for the OBF and the FBF.

V. RECOVERING CONTEXT IN CHITCHAT

In this section we review our context summary structures
then detail how CHITCHAT uses semantic information to
drastically reduce the false positives encountered in recovering
attributes from a summary. Finally, we analyze the tradeoffs
of size efficiency, flexibility, energy efficiency, expressiveness,
and quality (in terms of false positives) of the structures.

A. CHITCHAT Context Summary Structures

CHITCHAT provides seven structures to store and share
context in device-to-device networks. These options make
tradeoffs to allow CHITCHAT to adapt to different network
environments. The seven options are built from five basic
structures: (1) a JSON context summary, which represents
the current state-of-the-art; (2) a labeled context summary,
which is a simple flat dictionary that uses CHITCHAT types;
(3) a complete context summary, which is very efficient but
assumes the context schema is shared in advance (4) our



TABLE III: CHITCHAT Context Summaries
Summary Compressible Description Benefits Size

JSON Yes stores attributes in text-based representation; values are stored as
strings; effectively a flat dictionary that uses e to look up f(e)

high quality; can up-
date schema & values large and variable

Labeled Yes represents attribute labels as strings associated with CHITCHAT
typed values; can be viewed as flat dictionary

high quality; can up-
date schema & values

∑n
i (|ei|+ |f(ei)|)

Complete No uses attribute label e as an index into an array of f(e) values;
requires sharing context scheme a priori high quality; very small dlnne × n+

∑n
i |f(ei)|

FBF No uses Bloomier filter to store context attributes; relies on semantic
filters to remove false positives very small n× r +m

CBF No uses Bloomier filter to store context and semantic filters to remove
false positives; requires larger table (i.e., m) than FBF

small; can update val-
ues n× r +m

Folded Bloomier filter (FBF); and (5) our Complete Bloomier
filter (CBF). CHITCHAT also provides a compressed version of
the JSON and labeled summaries using lossless compression;
compressing the other structures does not reduce their size.

Table III summarizes the properties and benefits of
CHITCHAT’s context summary structures. In the sizes, n is
the number of context attributes stored, m is the size of the
table underlying a Bloomier filter, and |x| is the size of x’s
type. The Bloomier filter based summaries do not inherently
have a high quality; instead they rely on CHITCHAT’s semantic
filters to substantially increase the quality of representation.

B. False Positive Detection Process

The values returned from CHITCHAT’s context summaries
may contain false positives. Our previous work [9] pre-
sented programming interfaces by which developers provide
application-specific definitions of filters to apply to contexts.
In this paper, we define how the algorithms that implement
the filters from Section III-C interact with our new structures.

To motivate the need for our semantic filters, we gauge
our summaries’ true negative rate, or the rate at which our
structures immediately return ⊥ when an attribute has not been
inserted; this occurs when all k table locations indicated by
H(e) are empty, which is dependent on k, m (the number
of table locations), and n (the number of inserted attributes).
Theoretically, it is

∏k−1
i=0

m−n−i
m−i . Empirically, we generated

100,000 summaries, each with 5 to 10 attributes of random
types. We queried each summary for an attribute that was not
inserted and counted the number of times the value was a true
negative. Our empirical results match the theory. Further, in
our experience, our summaries achieve the best size efficiency
when m/n = 1.22; at this setting the true negative rate is
3 − 4%, that is 96 − 97% of true negatives are undetected.
Thus, the ability to remove false positives is critical.

To remove false positives, CHITCHAT applies the fil-
ters from Section III-C in succession. Before applying the
application-level filters, however, we use the fact that the space
available to store a value (2q bits, in a table of width q)
is often larger than the value’s range. The value of f(e′)
from e′ 6∈ S will be between 0 and 2q − 1. When f(e)’s
type uses b bits, the upper (q − b) bits should be zero. If
they are not, we have found the simplest false positive. For
remaining apparently positive results, the innate filter asks
whether a value is valid given the innate range and type
encoding. After applying the innate filter, any seemingly valid

values are passed to the correlated filter, which uses relation-
ships among attributes in the same summary to detect false
positives. This is a powerful filtering technique, considering
that the probability of randomly generating correct values
is very low. Applications can easily provide sophisticated
correlation relations; for example, when the contexts found
together are {location name, latitude, longitude}, and
f(location name) = City Park, the location should indicate
a place within City Park. Finally, we apply situational filters,
which identify values in a context summary that simply do
not make sense in the current situation. For instance, if I am
sharing bookseller recommendations with others nearby, and
a potential collaborator’s context summary contains a location
that indicates he is in Antarctica while I am in the United
States, it can be assumed to be a false positive.

C. Experiments with False Positive Detection Process

Given this process, we measure how well CHITCHAT cor-
rects the potentially large number of false positives that escape
the basic Bloomier filter structure. We use randomly generated
contexts with attributes of varying types; each value is a
randomly generated bit string of the appropriate length. We
query these summaries for attributes that were not inserted, i.e.,
for which CHITCHAT (after applying all of the false positive
filters) should return ⊥. The results are in Table IV.

We used the innate filters in Table I. For correlated filters,
we assumed that times are found with dates and latitudes
with longitudes. We also assume that every instance of age,
level, temperature, or float is correlated with some string
attribute (e.g., that a sensor value (of type float) always
be accompanied by a string attribute sensor unit or that
a bookseller recommendation average always appears
with a string bookseller name). We require values of type
string to be decoded into valid (i.e., printable) strings. The
probability that a series of random bits can be decoded into
a valid string is 1/256 × αn

′ × 1−α(256−n′)

1−α , where n′ is
the minimum allowable string length, and α = 95/256 is
the ratio of ASCII printable characters to non-printable ones.
This results in the 0.085% theoretical false positive rate for
strings when n′ = 2, which, because we require any float
to be correlated with a string, becomes the (theoretical) false
positive rate for float values in the table. The theoretical values
for age, level, and temperature are calculated similarly, though
they are overall lower since the innate filters have first removed
some false positives. For situational filters, we used:



Temperature: |temperature− current temperature| ≤ 25◦C
Latitude: |location−my location| ≤ 10 km
Time: |date/time− today| ≤ 2 months

TABLE IV: False positive (fp) probabilities (FBF)

Type fpinnate (%) fpcorrelate (%) fpsituation (%)

theory exp. theory exp. theory exp.

Boolean 0.39 0.38
Age 50.0 50.3 0.0427 0.0407

Level 4.29 4.28 0.0037 0.0034
Float 100.0 99.9 0.085 0.082
Temp. 43.3 43.3 0.037 0.036 0.017 0.014

Latitude 1.5 1.5 0.045 0.051 2.8× 10−8 0
Time 2.2 1.9 0.12 0.11 0.0042 0.001

Table IV gives the likelihood that a value returned after each
filter is a false positive, e.g., only 1.5% of latitude values that
pass the innate filter are not actual latitude values. On the other
hand, almost 100% of the float values that pass the innate filter
are false positives. In all cases, after applying all filters, the
false positive probabilities are very small.

Next we highlight tradeoffs between the FBF and CBF.
Consider 100,000 randomly generated summaries that do not
contain a valid location attribute, and one summary that does.
After applying innate and correlated filters to the FBF, we
have 43 false positives and the one true positive, plotted in
Fig. 4. When we place either longitude or latitude in the
reserved set (S′), a CBF resolves 100% of the false positives.
Fig. 4 showcases the potential of situational filters; with any
requirement of nearness to a point of interest, the FBF can
remove 100% of the false positives; a looser situational filter
that requires a point to be on land removes 72.1% of them.

(a) True + False Positives (b) True Positive
Fig. 4

VI. EVALUATIONS

We evaluate the size and energy efficiency of CHITCHAT’s
structures under various scenarios. In addition to this bench-
marking, we provide a rudimentary demonstration via simu-
lation of CHITCHAT’s use for communicating context infor-
mation in a pervasive computing network. Our contributions
are not in the space of context distribution protocols, so this
evaluation assumes a very basic epidemic protocol.

Size Efficiency. To identify tradeoffs, we evaluate and
compare CHITCHAT’s seven alternative structures. For com-
pression of JSON and labeled context summaries, we use
ZLIB. We first compare the sizes while varying the table width.
We found these results to be insensitive to the number of hash
functions; we use k = 3. As Fig. 5 shows, the complete context

summary is the most size efficient (but it is the least flexible),
and the (uncompressed) JSON context summary is the least
size efficient (but the most flexible). We consider these to be
upper and lower bounds on context representation sizes.

Among the other options, the FBF achieves the best size
efficiency. At larger table widths, the sizes of the FBF and CBF
converge because q approaches the size of the largest value.
In the two context summaries from the first scenario, most
attributes are small, making the FBF quite efficient at small
widths. For the second scenario, numerous large strings make
the total table size larger for CBFs with small widths. The
benefits of the FBF over the CBF are evident; reserving space
for large strings in narrow tables can reduce size efficiency.

TABLE V: Context Summary Scenarios
Scenario Description Properties

s1 sharing information about nearby soc-
cer players to start a pickup game short strings (less

than 10 characters)
and small types

s2 sharing ride recommendations in an
amusement park

s3 sharing information about nearby
known friends long strings (more

than 50 characters)
or large typess4 restaurant recommendations

s5 firefighter offering supporting services
at a fire scene multiple intermediate

sized strings
s6 bus schedule information

We created six additional summaries (shown in Table V)
driven by real applications. Table VI shows, for each scenario,
the reduction in size versus the (uncompressed) JSON sum-
mary and increase versus the complete summary. In the table,
c1 is a context without any strings, and c2 has only strings
ranging in length from 4 to 38 characters. Our structures
substantially reduce the size, meeting (and in some cases ex-
ceeding) the ability of the complete context summary without
having to share the context schema a priori. The savings
with the CBF are less than with the FBF because the former
reserves attributes for which it guarantees a complete absence
of false positives; in these experiments, we put the entire
context schema in the CBF’s reserved set.

TABLE VI: Size efficiency

Scenario
Reduction (%) vs. JSON Increase (%) vs. complete

FBF CBF FBF CBF

s1 76.42 67.45 6.38 46.81
s2 80.47 74.22 6.38 40.43
s3 65.49 55.75 1.30 29.87
s4 63.59 51.09 3.08 38.46
s5 65.99 52.63 1.20 40.96
s6 62.40 31.82 4.60 89.66
c1 87.42 84.91 -4.76 14.29
c2 46.55 28.16 4.49 40.45

Energy Efficiency. The Trepn [26] profiler allows Android
applications to measure performance and power consumption.
We used Trepn with a MotoG XT 1032 (we find no noticeable
differences for other devices) to measure the power consumed
encoding context into summaries and sharing them over WiFi.



(a) Scenario 1: Earthquake (User context) (b) Scenario 1: Earthquake (Sensor context) (c) Scenario 2: Open Air Market

Fig. 5: Size Comparison
We invoked Trepn at its maximum sampling frequency of
10Hz. We profiled the same function for the same settings
multiple times until the total time reached into minutes; we
averaged the results using the number of contexts created and
sent and used the device’s baseline power consumption to
compute only the overhead of encoding and sending contexts.
Trepn provides stable and accurate power measurements for
profile periods of seconds to minutes. It was more difficult
to obtain accurate measurements at the timescales of WiFi
communication (especially for small context summaries). We
iterated over sending summaries thousands of times took an
average to obtain a value for sending one summary.

We first measured power consumption for encoding contexts
into FBF summaries. As Table VII shows, encoding into a
smaller table requires more energy. When the table width
is small, elements are packed more tightly (hence the large
size reductions). However, the algorithm that finds a satisfying
assignment of elements to storage rows has to search longer,
resulting in more processing; for example, the processing time
for c2 was 5.8s with q = 16 but only 0.2ms with q = 64.
Context c1, with only fixed width elements, does not show a
substantive difference in performance for different table sizes.

TABLE VII: Power Consumption measured in mW
JSON FBF (q = 16) FBF (q = 64)

size Reduction Power Reduction Power
(bytes) in size (%) in size (%)

s1 212 76.42 7.32 57.55 0.35
s2 256 80.47 6.41 58.20 0.98
s3 226 65.49 17.85 53.10 1.05
s4 184 63.59 9.07 51.09 0.33
s5 247 65.99 20.63 50.61 1.33
s6 242 62.40 16.94 49.17 1.69
c1 159 87.42 0.37 63.52 0.36
c2 174 46.55 21.31 39.08 1.25

In our next experiment, we sent c1 with q = 16 over a WiFi
link at 100ms intervals to mimic a situation in which context
information is updated and shared continuously. We measured
the cost of sending a JSON summary as a reference. Compared
to the size reduction of 87.42%, the overall (encoding and
communication) power reduction was at least 21.05%. The
reduction in overall energy is not as substantial as the reduction
in space, but it is still important and meaningful.

Our next experiment targeted just the cost of sending and

not creating contexts. The goal was to determine what savings
are actually due to sending smaller context summaries. This
is important especially for the CBF, which can be updated
without any additional processing, i.e., the energy cost of
creating the context can be amortized over many transmissions.
The energy reduction of sending our summary in comparison
to the JSON summary was about 32% on average, while
receiving our shorter summary saved about 15% on average.

Real World Context Sharing. To assess how CHITCHAT
might perform in real applications, we used the ONE Simula-
tor [20] and a basic epidemic context dissemination protocol
to mock our open air market. We used a city, modeled on
Manhattan, with four open air markets. We also constrained
the space to create a denser environment. We call the former
“Manhattan” and the latter “mini-Manhattan.” Mobile users’
move according to ONE’s random walk model and include 41
people interested in book markets (one is a designated device
d) and 40 people who are uninterested in the markets. The
users interested in markets use the summary in Section III.
Others share a summary selected from s1 through s4 in Ta-
ble V. Markets’ summaries describe inventory, opening hours,
locations, and discounts. Each device periodically transmits
a block of summaries to neighboring devices. This block
includes the device’s own summary and summaries received
from others; as such, context epidemically spreads over a
dynamic multi-hop network. Each block has a size budget; we
used base budgets of 1K, 2K, and 5K bytes, and each device
individually varies the base budget by ±10%. To assemble a
block, a device first inserts its own summary, adds received
summaries with similar interests, and fills remaining space
with other most recently received summaries. A budget of
1K bytes allowed around 10-20 FBF summaries or around
4-5 JSON summaries. Devices had communication ranges of
100m and link speeds of 2Mbps3.

We assess the potential impact of CHITCHAT’s reduction
in the size of context on how fast context information can
spread in a multihop network. We measured the average time
for the d’s summary to reach booksellers or for a bookseller’s
summary to reach d. Table VIII shows the results under
budgets of 2K and 5K bytes; with a 1K byte budget, only the
FBF was successful. When the base budget is 2K bytes, the

3We selected 2Mbps as it is the communication speed of BLE.



TABLE VIII: Dissemination Time and Success in ONE Simulation
1K/2K byte budget 5K byte budget

success (%) time (s) success (%) time (s)

FBF Labeled JSON FBF Labeled JSON FBF Labeled JSON FBF Labeled JSON

Manhattan 100% 67% 67% 1248 1820 2446 100% 100% 100% 675 583 1485
mini-Manhattan 27% 11% 16% 329 315 208 78% 53% 33% 263 364 308

labeled structure is 36.7% slower than the FBF, and the JSON
structure is 97.3% slower. With a 5K byte budget, the labeled
structure actually outperforms the FBF. In mini-Manhattan,
with a small budget (1K), the success rate is low because our
simple dissemination scheme shares similar contexts, making
it difficult to propage something new in a short amout of time.
With the 5K byte budget, the JSON and labeled structures
succeeded less than the FBF, and, when they succeeded, they
reached the bookseller 17.1% and 38.4% slower than the
FBF, respectively. These results demonstrate that the choice of
the context structure to use depends on network capabilities;
when communication is limited or interactions are hyper-
localized, using CHITCHAT’s Bloomier-filter based structures
can substantially increase context sharing opportunities.

Our contributions are not in new context dissemination
protocols. This network evaluation places CHITCHAT’s in a
larger picture that shows the potential for sharing context in
pervasive computing. Coupled with the benchmarks above, we
showed that CHITCHAT can be a practical method for context
sharing because its context summary structures enable appli-
cations to effectively tradeoff size efficiency, energy efficiency,
flexibility, expressiveness, and communication overhead.

ACKNOWLEDGEMENTS

This work was funded, in part, by a Samsung GRO and the
NSF, #CNS-1218232. The views and conclusions are those of
the authors and not of the sponsoring agencies.

VII. CONCLUSION

Representing context information flexibly, expressively, and
size efficiently is critical to pervasive computing applications
that share such context using limited resources. We presented
CHITCHAT: a suite of context representations that provides
various structures that allow application programmers to tune
tradeoffs to meet application requirements. Our novel contribu-
tions include two tailored optimizations of the Bloomier filter
and CHITCHAT types tailored to pervasive computing context.
We showed that drastic size reduction in context summary
without sacrificing expressiveness and flexibility is possible,
and the possible degradation in quality that comes can be
overcome by the use of simple semantic filters. Specifically, we
demonstrated up to a 87.42% reduction in the size of a context
representation with a near zero false positive rate for sharing
context values, and at least 21.05% energy reduction when
encoding and sharing contexts compared to the JSON context
summary widely used in the Internet. We also demonstrated
that in a real world context sharing simulation with limited
budget, using FBF context structure shows a strong potential
to increase context sharing opportunities.

REFERENCES

[1] M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware
systems. Int’l. J. of Ad Hoc and Ubiquitous Comp., 2(4):263–277, 2007.

[2] T. Berners-Lee et al. The semantic web. Scientific American, 284(5):28–
37, 2001.

[3] G. Biamino. Modeling social contexts for pervasive computing environ-
ments. In Proc. of PerCom Workshops, 2011.

[4] B. H. Bloom. Space/time tradeoffs in hash coding with allowable errors.
Comm. of the ACM, 13(7):422–426, 1970.

[5] A. Carroll and G. Heiser. An analysis of power consumption in a
smartphone. In Proc. of the USENIX Annual Technical Conf., 2010.

[6] D. Charles and K. Chellapilla. Bloomier filters: A second look. In Proc.
of ESA, 2008.

[7] B. Chazelle et al. The Bloomier filter: an efficient data structure for
static support lookup tables. In Proc. of SODA, 2004.

[8] H. Chen, T. Finin, and A. Joshi. Semantic web in the context broker
architecture. In Proc. of PerCom, pages 277–286, Mar. 2004.

[9] S. Cho and C. Julien. The grapevine context processor: Application
support for efficient context sharing. In Proc. of MOBILESoft, 2015.

[10] M.S. Corson et al. FlashLinQ: Enabling a mobile proximal internet.
IEEE Wireless Communications, 20(5):110–117, Oct. 2013.

[11] A.K. Dey and G.D. Abowd. Towards a better understanding of context
and context-awareness. In Proc. of CHI Workshop on the What, Who,
Where, When, and How of Context-Awareness, 2000.

[12] M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval
and approximate membership. In Proc. of ICALP, 2008.

[13] K. Doppler et al. Device-to-device communication as an underlay to
LTE-advanced networks. IEEE Comm. Mag., 47(12):42–49, Dec. 2009.

[14] C.-L. Fok, E. Grim, and C. Julien. Grapevine: Efficient situational
awareness in pervasive computing environments. In Proc. of PerCom
Workshops, pages 475–478, Mar. 2012.

[15] T. Gu, H.K. Pung, and D.Q. Zhang. A service-oriented middleware
for building context-aware services. J. of Network and Computer
Applications, 28(1):1–18, Jan. 2005.

[16] B. Han et al. Mobile data offloading through opportunistic communi-
cations and social participation. IEEE Trans. on Mobile Computing,
11(5):821–834, 2011.

[17] Q. Jones et al. Geographic place and community information prefer-
ences. CSCW, 17(2–3):137–167, 2008.

[18] C. Julien. The context of coordinating groups in dynamic mobile
networks. In Proc. of Coordination, 2011.

[19] C. Julien, A. Petz, and E. Grim. Rethinking context for pervasive
computing: Adaptive shared perspectives. In Proc. of ISPAN, 2012.

[20] A. Keränen, Jörg Ott, and T. Kärkkäinen. The ONE simulator for DTN
protocol evaluation. In Proc. of SimuTools, 2009.

[21] J.-S. Lee and U. Chandra. Mobile phone-to-phone personal context
sharing. In Proc. of the 9th Int’l. Symp. on Comm. and Info. Tech.,
pages 1034–1039, Sept. 2009.

[22] N. F. Noy and D. L. McGuinness. Ontology development 101. Technical
report, Stanford Knowledge Systems Laboratory, 2008.

[23] M. Perttunen, J. Riekki, and O. Lassila. Context representation and
reasoning in pervasive computing: a review. Int’l. J. of Multimedia and
Ubiquitous Comp., 4(4):1–9, 2009.

[24] R. Reichle et al. A comprehensive context modeling framework for
pervasive computing systems. In Proc. of DAIS, pages 281–295, 2008.

[25] V. Srinivasan, T. Kalbarczyk, and C. Julien. Disseminate: A demon-
stration of device-to-device media dissemination. In Proc. of PerCom
(Demonstrations), 2015.

[26] Trepn Profiler. https://developer.qualcomm.com/mobile-development/
increase-app-performance/trepn-profiler. Accessed: 2015-04-12.

[27] M. Xing and C. Julien. Trust-based, privacy-preserving context ag-
gregation and sharing in mobile ubiquitous computing. In Proc. of
Mobiquitous, Dec. 2013.


