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ABSTRACT
Device-to-device (D2D) communication technologies are growing
in availability and popularity and are commonly used to facilitate
applications in Internet of Things (IoT) environments. Such environ-
ments are characterized by heterogeneous devices, often employing
diverse communication technologies with varying energy consump-
tion, discovery ranges, and transmission rates. These complexities
pose a daunting setting for the development of IoT applications
that could leverage direct communication with proximal mobile
and embedded devices. While current approaches focus either on
device discovery in the IoT setting or content transfer assuming
established communication channels, none facilitate the intelligent
discovery of useful devices and the seamless formation of tempo-
rary D2D connections to transfer content directly between devices.
Our Omni middleware provides both of these features critical in
the development of applications that leverage proximal devices in
IoT settings. Using Omni, we demonstrate the feasibility of building
applications that use heterogeneous D2D communication channels
in an efficient and realistic (in terms of energy and time) manner.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Networks → Mobile networks;

KEYWORDS
internet of things, middleware, device to device communication

ACM Reference Format:
Tomasz Kalbarczyk and Christine Julien. 2018. Omni: An Application Frame-
work for Seamless Device-to-Device Interaction in the Wild. In 19th Inter-
national Middleware Conference (Middleware ’18), December 10–14, 2018,
Rennes, France. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3274808.3274821

1 INTRODUCTION
As wireless communication technologies become increasingly com-
monplace, it is possible to support novel opportunistic interactions
among pervasive and mobile computing devices. Such interactions
generally entail one device discovering the availability of services
on another nearby device and then interacting with those services.
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Existing approaches to service discovery and interaction in mobile
environments are semantically rich, but they assume a user’s de-
vice has pre-established network connectivity to devices providing
services or they require the user’s device to spend time and energy
discovering and connecting to such networks. These connections
are most commonly established when a user’s device authenticates
in some way with a gateway, which provides the connectivity that
mediates service discovery and interaction. Further, a given applica-
tion is commonly implemented to use only a single communication
technology; emerging domains such as smart cities or homes may
require a single application to connect to remote resources using
myriad different technologies, depending on the nature of a partic-
ular interaction and the capabilities of nearby devices.

We develop the Omni middleware, which leverages device-to-
device (D2D) capabilities to provide opportunistic use of wirelessly
available local area services provided by embedded Internet of
Things (IoT) devices or made available on other end-user devices in
the surroundings. Omni abstracts away details of underlying com-
munication so that applications that leverage wirelessly connected
services can be implemented in a technology-agnostic manner.
Omni addresses a gap heretofore not addressed by other multi-
network mobile service discovery middleware: the initial discovery
of the neighboring devices that provide services. Omni integrates
diverse neighbor discovery technologies with lightweight service
discovery that can then seamlessly transition to more semantically
expressive high-level service tasking and interaction, potentially
using a different communication technology. That is, instead of as-
suming that the network-level discovery of neighboring devices is
handled by some lower-level implementation, we ask what benefits
can be garneredwhenwe bring D2D neighbor discovery capabilities
“into the fold” of service discovery and interaction.

The term service discovery often implies the use of canonical
service discovery protocols. In Omni, we take a more general ap-
proach, wherein service discovery includes the discovery of any
capabilities on wirelessly connected devices that the discoverer can
leverage via wireless communication. This could include traditional
views of services (e.g., connecting to and using a wireless printer),
interactions more germane to mobile social networks (e.g., shar-
ing profiles with nearby users) or interactions with embedded IoT
devices (e.g., interacting with beacons in a smart city).

While bridging the gap between neighbor discovery and service
interaction in the IoT is conceptually simple, actualizing the imple-
mentation is challenging because of the limitations of technologies
for neighbor discovery. To ensure quick, low-energy discovery of
transient peers, these neighbor discovery mechanisms typically
exchange very small lightweight beacons, e.g., as used in discovery
in Bluetooth Low Energy (BLE). Omni encapsulates a new par-
adigm for D2D interaction that explicitly differentiates between
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lightweight context and heavyweight data and tasks an appropriate
available D2D technology based on the needs of a particular com-
munication task (e.g., service discovery versus service interaction).

This effort leads to the observation that a subset of D2D com-
munication tasks are periodic in nature and tend to entail sharing
small amounts of data in a localized area. Both network-level neigh-
bor discovery and application-level service discovery are examples.
The remainder of D2D communication tasks entail intentional and
directed (whether unicast or multicast) sharing of larger chunks
of data with designated peer devices. Applications’ interactions
with available services are an example. Further, these different
communication tasks have very different requirements in terms of
network throughput, latency, and the need for energy optimization.
Based on these observations, Omni provides an application pro-
gramming interface (API) that explicitly separates periodic content
from heavyweight data. We term the former context based on its
common use by applications to quickly and efficiently ascertain
conditions of the immediate surroundings.

The result is our Omni middleware, which extends the capa-
bilities of existing multi-radio networking middleware [4, 26] to
promote the explicit distinction of context and data and to achieve
the delivery of periodic context by integrating low-level D2D dis-
covery mechanisms. We demonstrate that Omni enables seamless
formation of transient D2D networks using available communi-
cation technologies. As in prior work, multi-radio networking is
invisible to applications; contrary to prior work, the conceptual
separation of context and data enables substantial energy and la-
tency efficiency not possible without considering the unification
of neighbor discovery with service discovery and interaction, but
critical to practicality when deployed on power constrained mobile
devices [5]. The energy savings are achieved primarily because,
unlike prior work, Omni only communicates across power hungry
channels used for data after prompting from context. Omni also
distinguishes itself by not relying on discovering and connecting to
any pre-established networks (which entails expensive operations
in protocols such 802.11) in order to retrieve information regarding
neighboring devices and their services. Instead, Omni leverages
lightweight neighbor discoverymechanisms to efficiently find peers
and their services; forming connections only when data transfer is
required. Omni presents these capabilities to application developers
through an API that is similar to the asynchronous sending and
receiving of requests that developers are already accustomed to, for
instance in web APIs used in infrastructure networks.

Our concrete contributions are the following:

• We leverage innovations in D2D communication by connect-
ing protocol-specific neighbor discovery with application-
level service discovery and data transfer through temporary
network formation that is invisible to applications.

• Omni differentiates lightweight contextual information (e.g.,
service availability or application specific context) fromheavy-
weight data (e.g., service invocations that involve large data
transfer) to optimize interactions.

• Omni supports the selection of an appropriate communi-
cation technology for data transfer without relying on pre-
established network connections.

• Omni improves performance in terms of overall throughput,
energy consumption, and latency. Omni provides application
flexibility by not requiring an application to be statically tied
to particular technologies or established networks.

In the next section, we discuss the myriad of related pieces of
work, from communication technologies for neighbor discovery,
to approaches for semantically-expressive service discovery in mo-
bile networks, to existing middleware for multi-radio networking.
We highlight related industrial efforts, particularly those related to
supporting D2D interactions in the IoT. We use the related work,
in conjunction with a detailed application scenario, to motivate
the specific gaps that Omni addresses. Section 3 present Omni’s
conceptual architecture, built around the novel separation of con-
text and data. In Section 4, we describe the current state of our
implementation, and our evaluation that focuses largely on the
efficiency and practicality gained in Omni. Beyond the multi-radio
networking already achieved by existing middleware, we measure
the benefits in energy usage, bandwidth utilization, and service
discovery latency that come from Omni’s approach.

2 BACKGROUND AND MOTIVATION
We start by reviewing the diverse related work that both supports
and motivates Omni’s contributions. We then present a detailed mo-
tivating application scenario and walk through the implementation
of that scenario given the current state of the practice, the current
state of the art, and what we envision with the Omni middleware.

2.1 Related Work
The challenges surrounding taking advantage of IoT devices in a
D2D fashion can be separated into three parts: neighbor discovery,
service discovery, and data transfer. In this section, we focus on
approaches related to the first two since the main focus of Omni
is on enabling efficient joint neighbor and service discovery in
advance of the heavyweight data transfer.

Connecting devices to one another in a physical space is fun-
damental to emerging IoT applications [3]. Technologies used to
support these capabilities range fromZigBee to BLE toWiFi and also
include proprietary technologies. Off-the-shelf, these technologies
have some limited neighbor discovery mechanisms built in; gener-
ally these approaches rely on devices assuming asymmetric roles,
i.e., the discovered or the discoverer, and send and receive small, pe-
riodic beacon messages containing identity information. Research
on continuous neighbor discovery, largely from the wireless sen-
sor network domain [2, 8, 13–15, 21, 27, 28], promotes symmetric
discovery in which a device can both discover and be discovered.
These approaches build on the low-level technologies’ lightweight
beacon mechanism and jointly optimize discovery latency and en-
ergy consumption. EDiscovery [10] uses the number of discovered
neighbors to guide subsequent discovery intervals. Other protocols
use multiple radios to save energy by scanning for devices using a
secondary low powered radio and waking the primary radio only
upon discovery [23]. For example, ZiFi [31] leverages Zigbee to
identify interference signatures from WiFi beacons.

While neighbor discovery is undoubtedly critical for IoT appli-
cations, it does not directly address the problem posed by a lack of
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continuous connections among devices. Connectivity in opportunis-
tic environments is expensive in time and energy, exacerbated by
the brittle and transient nature of D2D connections. It is therefore
critical for mobile devices to only connect to and transfer data with
neighboring devices and peripherals that have relevant services
and/or data. To support these interactions, proprietary and research
approaches alike layer limited service discovery on these low-level
beaconing mechanisms. For instance, LTE Direct [29] builds such
mechanisms into time slices interspersed in regular LTE operations.
Use cases for LTE Direct include enabling proximal interactions
for social or business services or to connect first responders1. Be-
cause LTE Direct runs on licensed spectrum, users are subject to
the restrictions of their carrier network. Moreoever, carriers are
ultimately in control of the content transfer, and potentially even
the content itself. Google’s physical web uses proximal interactions
over Bluetooth to discover and leverage a nearby device’s capabili-
ties2. iBeacons are used to support tourism3 and smart cities4. Smart
home devices from various manufacturers use a myriad of (often
proprietary) technologies to connect users to deployed devices.

Many systems attempt to supportmulti-platform and technology-
agnostic service discovery [1, 4, 9, 16, 19]. ubiSOAP [4] enables
network-agnostic connectivity wherein applications can discover
available services and communicate seamlessly across an array of
heterogeneous communication technologies, choosing the tech-
nology that best serves an application’s quality of service require-
ments. UbiSOAP relies on the existence of external mechanisms for
network formation (such as previously paired Bluetooth devices
or WiFi devices connected to the same Local Area Network). As
discussed earlier, opportunistic IoT networking environments are
characterized by the lack of such pre-existing connections. Hag-
gle [22, 26] similarly abstracts away details of networking from
the application, using the most suitable channels for data requests.
However, network formation is limited to devices connecting to
the same WiFi-adhoc network and making requests without any
knowledge of the data availability from peers.

Bluetooth provides its own service discovery (Bluetooth SDP5).
WiFi-Direct allows DNS-based service discovery. However, these
approaches suffer in applicability in opportunistic networking envi-
ronments. Bluetooth SDP requires devices to discover one another
prior to exchanging service information, resulting in expensive
(both in terms of time and energy) connections. DNS-based service
discovery uses multicast to beacon service information; however,
frequent sending and receiving of multicast packets in 802.11 is
prohibitively expensive [7]. The lack of connectivity and a priori
knowledge regarding neighboring devices in opportunistic network-
ing environments necessitates frequent device/service discovery.

Bluetooth Low Energy Generic Attributes (BLE GATT) profiles
define a standard for seamless discovery of services provided by
nearby BLE peripherals6. Unfortunately, this standard is only de-
signed for peripherals to communicate with a single device in a
master-slave relationship. Beetle [17] provides a system service to
1https://www.qualcomm.com/invention/technologies/lte/direct
2https://google.github.io/physical-web/
3www.imapp.it/portfolio-item/piacenza/
4blog.beaconstac.com/2016/02/internet-of-things-for-smart-cities-how-beacons-are-
leading-the-way/
5https://www.bluetooth.com/specifications/assigned-numbers/service-discovery
6https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

work around this limitation, but the focus is on providing access
across applications on the same device and not across multiple
devices in the neighborhood. Other approaches enable seamless
communication to multiple devices, assuming the existence of a
mutually accessible WiFi gateway [12], but this requires devices
to establish a connection to the gateway’s WiFi network, which
entails an expensive sequence of interactive operations.

Alljoyn7 and Iotivity8 unify IoT installations across manufactur-
ers, but they rely on WiFi gateways to facilitate to communication
with devices, so direct D2D operations are not supported. Thread9
defines a single standard to which all IoT devices must conform.
However, a heterogeneous set of protocols may be important since
IoT devices are characterized by a wide range of limiting factors
(energy, throughput, processing power, etc.).

In general, existing work has focused on many aspects of neigh-
bor discovery and jointly service discovery and data transfer across
varied communication technologies; however, a gap remains in how
to translate neighbor and service discovery on one communication
channel to data transfer on another. We next delve into how this
gap manifests itself in modern application scenarios.

2.2 Motivating Applications
In the Internet of Things and other pervasive computing domains,
applications on end-users devices expect to be able to directly lever-
age digitally enabled resources available in the immediate surround-
ings. In smart buildings, users entering a building, expect to be able
to control the lights, the thermostats, or access maps and media
about the building. In social pervasive computing applications, end
users’ devices exchange contact information, profiles, or even me-
dia with other users in the immediate surroundings [6, 20, 24]. An
IoT enabled medical records application executing on a patient’s or
provider’s tablet computer may need to incorporate medical data
collected from several medical sensors in an exam room.

All of these applications entail (1) discovering nearby devices
(at the physical network level); (2) discovering the potential capa-
bilities (i.e., services) on those nearby devices; and (c) interacting
with the other devices’ provided services. All of this should be
accomplished in a way that is transparent to the application (so
as to ease the application development task) and can leverage the
available communication facilities in the most resource efficient
manner to provide pervasive services in a situation of potentially
high mobility and dynamics.

Take as a concrete example a smart city tourism application.
A given user enters the city as part of a tour group; his device
should discover and connect to a device carried by the tour group’s
leader; this device will offer services, which may include the guide’s
real-time streaming audio, a map of the planned route, etc. The
tourist’s device might also connect to services provided by the
city, for example smart crossing lights might expose a service that
allows a user’s device to activate the crossing light as he approaches.
The city’s historical buildings might have attached beacons that
offer services that enable access to media about those buildings,
including visualizations of how the buildings or streets looked in

7https://openconnectivity.org/developer/reference-implementation/alljoyn
8https://iotivity.org
9https://www.threadgroup.org/
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(a) The State of the Practice (b) The State of the Art (c) The Vision of Omni

Figure 1: Contrasting implementation options. Different colored arrows indicate different communication technologies.
Dashed lines around arrows indicate the use of lightweight purely broadcast based discovery mechanisms; solid arrows in-
dicate the use of established communication channels (e.g., an established multicast group, paired Bluetooth devices, etc.)

the past. Local businesses may provide services that expose their
business hours, coupons or sales, or advertise a menu.

As a tourist walks through this digitally enabled world, his de-
vices should seamlessly discover and interact with these services,
regardless of the communication technology (e.g., NFC, Bluetooth,
WiFi, etc.) that the service provider uses to expose the service.
Further, the service interactions themselves are extremely hetero-
geneous. Some interactions entail the exchange of very small bits
of data (e.g., business operating hours or wait times). Others, how-
ever, are much heavier weight (e.g., streaming audio or media files).
Further, the tour group may be highly dynamic, connecting and
disconnecting to service providers as the tour moves through the
digitally enhanced city. Appropriately leveraging the best com-
munication technology for each interaction is non-trivial for an
application developer to navigate. Finally, the tourist desires re-
sponsive, low-latency interactions but will not sacrifice energy; the
battery in the tourist’s smart phone must last the entire day.

2.3 State of the Practice and State of the Art
Such applications are implementable using technologies and mid-
dleware available today to varying extents. Figure 1 contrasts the
resulting implementations from a message passing standpoint. Fig-
ure 1(a) shows how such applications are most commonly imple-
mented today. Managing communication capabilities is relegated
entirely to the applications and services directly; as a result instead
of providing general purpose application implementations, devel-
opers create solutions that tie application-service combinations to
specific technologies. This results in limited interaction capabilities
and implementations that are brittle and hard to maintain in the
face of protocol updates. Figure 1(b) shows how existing multi-
network middleware (e.g., ubiSOAP [4]) decouple the application
and service implementations from the communication technologies.

These implementations enable multi-network communication, and
can allow a particular application/service interaction to select the
most appropriate technology given stated quality of service require-
ments. However, because they layer on top of the communication
technologies at the application layer, the result is that the applica-
tions and services advertise and discover using all of the available
communication technologies and rely on pre-established communi-
cation channels (e.g., an established multicast group or WiFi direct
group, paired Bluetooth devices, etc.). In ubiSOAP, for example
these periodic application-level multicast discovery messages serve
to maintain a multinetwork overlay, which is persistently available
to the applications and services. This is a boon when the appli-
cations and services are ready to use the communication, but it
also entails a significant amount of communication overhead. Fur-
ther, multi-network middleware systems often do not even consider
neighbor discovery; instead they start from an assumption that the
application is already aware of (i.e., has discovered) the networks
over which it wants to communicate. Figure 1(c) shows that, from
the simplest perspective, Omni attempts to capture the best of both
of these worlds: leveraging lightweight discovery mechanisms in
an adaptive way, while still enabling highly flexible use of multiple
network technologies. Omni attempts to achieve application func-
tionality similar to the multi-network middleware but in a way that
is more flexible, lightweight, and adaptable to changing networks.

3 ARCHITECTURE
Omni comprises three pieces: (1) the Developer API, through which
application developers interact with Omni; (2) the Communication
Technology API, which manages the modular integration of D2D
communication technologies with Omni; and (3) the Omni Man-
ager, which coordinates requests from the application and manages
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Figure 2: Overall Omni Architecture

content sent and received via each of the underlying D2D communi-
cation technologies. Figure 2 shows an abstract representation of the
entire Omni system. The figure shows the three main components
of Omni in the center, while the applications and implementations
of the communication technologies themselves reside outside of
Omni. In the remainder of this section, we provide details of the
smaller pieces of the three primary Omni components.

Omni’s primary function is to provide a communication abstrac-
tion to the application developer; we chose an abstraction that is
similar to familiar asynchronous APIs used by web applications,
with the added twist of allowing the developer to distinguish be-
tween sharing lightweight context and transferring heavyweight
data. Omni processes requests for each type of communication
task and then selects an appropriate communication technology for
transmitting the content, based on the nature of the content, e.g.,
context or data, and on the connectivity situation in the current
network environment. For context, Omni favors low-energy D2D
communication technologies (e.g., Bluetooth Low Energy (BLE)
Beacons); for data, Omni favors high-throughput communication
technologies (e.g., WiFi-Mesh). In addition to the application-driven
context and data, Omni also distributes address beacons, which sim-
ply serve to allow neighboring Omni devices to discover the pres-
ence of other nearbyOmni devices. Themechanisms for distributing
this discovery information is described in detail in Section 3.3.

On the receiving side, Omni-enabled devices must be prepared to
receive content on any communication technology the device has
available. Omni only distributes context on communication tech-
nologies with built-in energy-efficient neighbor discovery (e.g., as
in BLE, ZigBee, or NFC). Data can be distributed on any communi-
cation technology; the Omni manager will choose the most suitable
for a given interaction. Omni provides applications a mechanism
for receiving content by allowing the applications to specify call-
back functions that are invoked when content is received (similar

to asynchronous web APIs). Similar to other multi-network middle-
ware approaches, Omni maintains an internal mapping of a device
to its available communication technologies; each device is refer-
enced using a single address, the omni_address. The application
is exposed only to this unified address (and not the device’s ad-
dresses for the underlying technologies); therefore the application
can remain agnostic to the technologies used for content transfer.

To elucidate the functions and consequent benefits of Omni, we
use a scenario based on the tourism application in Section 2.2. Imag-
ine a tourist with a smart city tourism application on his device
who joins an organized tour. In addition to receiving streaming
audio from the tour guide, when the user passes landmarks, he
should see interactive visualizations of what the landmarks used to
look like. To realize this scenario, either each landmark needs to
advertise that it provides this service or each tourist device needs
advertise its interest in the service. State of the art applications10
pre-program the landmark devices to transmit the service informa-
tion via a technology such as BLE beacons to a user’s smartphone.
The smartphone uses this beacon to retrieve the corresponding
landmark visualization from the Internet. However, there are a
number of reasons why a D2D solution could be useful. A tourist
device may not have access to the Internet (e.g., visiting a foreign
country) or its user may not desire to use access to the Internet (e.g.,
for privacy or cost reasons). More importantly, the visualization
may be dynamic and interactive itself based on the weather, the
time of day or the users nearby. In such a scenario it makes sense
for the landmark device to stream the visualization data to the user
device over an appropriate and available D2D technology.

Omni allows either or both advertisement mechanisms (e.g.,
advertisements containing a tourist’s interest or advertisements
containing the beacon’s service). These advertisements are sent
as context in Omni, using lightweight, energy-efficient D2D dis-
covery mechanisms, e.g., BLE beacons, if available on both devices.
Subsequent interactions between the beacon device can use a mix-
ture of technologies, and a mixture of context and data content,
depending on the needs of the service. For instance, the bulk of
the visualization data may be streamed as data over a WiFi-Mesh
connection, while small updates to the situation of the visualization
may be packaged as periodic context and shared over BLE. In this
case, service advertisement/discovery and neighbor discovery could
be accomplished using BLE, a technology suitable for continuous,
periodic transmission (even during the periods when the tourist
device is not near any landmarks). Mapping the discovered BLE
address to the same device’s WiFi interface is handled internally to
Omni. No connections need to be formed and no data needs to be
sent or received on the WiFi channel to facilitate this mapping.

Figure 3 shows this scenario in action. The example entails sev-
eral tourist devices (to the left), which are smartphones capable of
BLE, Wifi-Mesh, and NFC, with context sharing enabled on both
BLE and NFC. There are also potentially beacons in the environ-
ment; the tourists’ devices can communicate with these on a com-
bination of BLE (primarily for context) and WiFi-Mesh (for data).
The tourists’ devices also communicate with the tour guide’s device
via a combination of BLE and WiFi-Mesh. The key demonstrated

10www.imapp.it/portfolio-item/piacenza/
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Figure 3: Omni in action in the tourist application. The ra-
dio symbols indicate the communication technologies that
each device is using to distribute (and collect) Omni address
beacons in support of low-level neighbor discovery.

benefits of Omni are (1) the application is agnostic to the commu-
nication technologies; (2) Omni is able to leverage the lightweight
resource-aware neighbor discoveries when they are available; and
(3) Omni selects the technology for data transfer without relying
on a pre-established network connection.

Existing approaches suffer from a number of issues. Since exist-
ing multi-network middleware systems do not directly incorporate
neighbor discovery, they need to know the WiFi-Mesh address of
the landmark device a priori. Even with this knowledge, devices also
need to periodically scan using the WiFi radio to detect the pres-
ence of the desired WiFi-Mesh device. Finally, existing approaches
perform application-level multicast for service advertisement and
discovery along all available networks. In this particular scenario,
every device would transmit the service advertisement over both
multicast WiFi (upon connecting to the WiFi-Mesh) and over BLE.
All of these steps cause substantial energy drain due to the activity
of the WiFi radio and would therefore not be feasible on a power
constrained mobile device. By performing both neighbor discovery
and service discovery using the same appropriate D2D technology,
Omni offers a more efficient and practical solution.

The remainder of this section demonstrates how Omni achieves
the components of this example application by separating content
into data and context. We begin by presenting the Developer API
and showing how it can be used to build this sample application.

3.1 Developer API
Omni provides a basic API through which developers can asyn-
chronously delegate sending and receiving content. The simple API
is designed to mimic familiar asynchronous web APIs. The Omni
middleware will distribute context periodically to all neighboring
devices; in contrast, data is sent directly to specific peers.

Omni runs as a system service; all applications interact with a sin-
gle instance of Omni known as the OmniManager. The OmniManager
participates in low-level neighbor discovery by exchanging address
beacons, independent of application interactions. The remainder of
the API, invoked via the singleton instance, allows application de-
velopers to leverage Omni’s novel paradigm of bifurcating content
into lightweight context and heavyweight data. The API is shown
in Table 1. We next describe each segment of the API in more detail.

Status Callbacks. Omni allows applications to specify status
callback methods to facilitate asynchronous responses to requests
made by the application. A status callback has the following sig-
nature: status_callback(code, response_info). The first ar-
gument, code, indicates the type of response, while the second
argument carries additional details. A subset of these codes and
their details are specified in Table 2. For errors, response_info pro-
vides details regarding the error where as for successes it contains
the argument passed or an identifier associated with the success-
ful request. More details regarding the use of these callbacks is
presented with the discussion of the remainder of the API.

Sending Context. The API provides three methods to facil-
itate context transmission: add_context, update_context and
remove_context. An application uses the add_contextmethod to
begin periodically sharing the specified context. The parameters
argument contains the frequency with which the application wants
to advertise the specified context. The application provides a
status_callback to be notified of responses to the request. Omni
expects the application to handle the ADD_CONTEXT_SUCCESS code
to retrieve the corresponding response_info containing the refer-
ence identifier (ID) of the successfully added context transmission.
The application can subsequently use the reference identifier to up-
date the existing context transmission using the update_context
method. The application can change the frequency, the context
information itself, or specify a new callback. Similarly, to stop shar-
ing a context, the application supplies the reference identifier to
the remove_context method. For the tourism application on the
tourist’s device to transmit a context indicating interest in the
media data from the landmark, the application needs to call the
add_context method with the description of the interest. The for-
mat of the interest description is application-specific; its format is
shared at the application level between the tourist application on
the smartphone and the service implementation on the beacon.

Sending Data. The API provides a single method to send data:
send_data. Omni allows the application to specify multiple desti-
nation peers for a piece of data using the omni_address for each
peer. This address does not a particular communication technology
to use to contact that peer. Under the hood, the Omni Manager del-
egates the data transmission to the most suitable D2D technology
(or technologies). Similarly to context, the application supplies a
status_callback to be informed regarding the status of the trans-
mission. In our example application, when the landmark device
sends the historical visualization data, it simply calls the send_data
method, specifying the tourist device based on the tourist device’s
omni_address. As with the context information sent in the previ-
ous section, the particular format of the data is application-specific.

Receiving via Asynchronous Callbacks. To enable applica-
tions to receive context and data relayed via Omni, the API pro-
vides two simple methods, request_context and request_data,
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Table 1: Omni API
Sending Context

add_context(params, context, status_callback) instructs Omni to share context periodically according to the frequency in
params; the callback sends ID and other status to the application

update_context(id, params, context, status_callback) changes the parameters, context information, or callback associated with a
context pack (identified byid)

remove_context(id, status_callback) instructs Omni to cease sharing the context pack identified by id

Sending Data
send_data(destinations, data, status_callback) instructs Omni to send specified data to the destinations; callback allows the

application to be notified of the status of the send operation
Receiving Context and Data

request_context(receive_context_callback) registers a callback with Omni for the application to receive context packs that
Omni receives

receive_context_callback(source, context) signature of receive_context_callback; called when context is received
request_data(receive_data_callback) registers a callback with Omni for the application to receive data that Omni

receives
receive_data_callback(source, data) signature of receive_data_callback; called when data is received

Table 2: Status Callback Codes
CODE Response_Info

ADD_CONTEXT_SUCCESS Context_ID

ADD_CONTEXT_FAILURE Failure_Description

UPDATE_CONTEXT_SUCCESS Context_ID

UPDATE_CONTEXT_FAILURE (Failure_Desc, Context_ID)

REMOVE_CONTEXT_SUCCESS Context_ID

REMOVE_CONTEXT_FAILURE (Failure_Desc, Context_ID)

SEND_DATA_SUCCESS Destination

SEND_DATA_FAILURE (Failure_Desc, Destination)

used solely to allow the application to register callbacks for when
context and data is received by Omni. The signatures of these call-
backs are provided in Table 1. The source argument indicates the
omni_address of the device that transmitted the content. The same
omni_address can be used by the application to transmit additional
context or data using the methods in the API described earlier.

In the example, the tourist’s device would register the callback,
process_context(source, context), to retrieve the context de-
scribing the landmark’s available service as well as the landmark
device’s address. The landmark device would register the callback,
process_data(source, data) to retrieve the data request from
the tourist’s device, and the tourist’s device would register a similar
callback to ultimately retrieve the visualization data (as shown in
Figure 3). An alternative implementation could swap the adver-
tisement burden, with the landmark registering to receive context
containing the tourist device’s interest, and the tourist device sim-
ply receiving the visualization data. Both implementations have
merit and are possible in Omni; specific application design decisions
are left where they should be: in the application.

At no point must either side manually perform neighbor dis-
covery, manage connections, or select the communication technol-
ogy to use. Instead, neighbor discovery is handled transparently
and continuously via address sharing (described in detail in Sec-
tion 3.3); service advertisement/discovery is done using an appropri-
ate connection-less technology (e.g., BLE); and data transfer is done
via an appropriate high-throughput technology (e.g., WiFi-Mesh).

Handling Failures. When a request from the application fails,
Omni attempts to resolve this failure internally by switching be-
tween D2D technologies to complete the request. However, in cases

where communication across all available (and applicable) D2D
technologies is unsuccessful, Omni employs the status_callback
method provided by the application to notify the application of fail-
ures. Detailed discussion of how Omni handles switching between
D2D technologies when one fails is provided in Section 3.2

Future Considerations. For flexibility, we currently allow the
application to specify the frequency of context sharing. However,
providing the frequency is potentially an unnecessary complication
for a developer who does not understand the latency and energy
implications of adjusting the frequency. In the future, we plan to
allow a developer to omit this parameter in favor of plugging in ex-
isting neighbor discovery protocols that use adaptive transmission
frequencies based on physical network conditions [10]. As shown
in our evaluation, by leveraging modern technologies used for con-
tinuous neighbor discovery, our existing Omni implementation
already offers improvements in energy consumption and service
discovery latency. We make this note to indicate that Omni is de-
signed to integrate sophisticated continuous neighbor discovery
protocols to provide even more pronounced benefits.

3.2 Communication Technology API
Omni is designed to allow modular integration of new underlying
D2D technologies. With this goal in mind, D2D communication
technologies simply abide by a minimal contract. At the heart of
this contract is a queue sharing system between the Omni Manager
and each D2D technology, as shown in Figure 2. At initialization,
each D2D technology is supplied with three queues shared with
the Omni Manager: a receive_queue shared across all D2D technolo-
gies, a response_queue shared across all D2D technologies, and a
send_queue unique to each D2D technology. We describe how each
queue is used from the perspective of the D2D technology; we then
describe the existing implementations for our two categories of
D2D technologies: context and data.

Setup. To integrate with Omni, each D2D technology only needs
to implement two methods. The enable method takes the three
queues as arguments and returns a tuple containing the type of
D2D technology and the low-level address where the technology
is reachable. The disable method, which the Omni Manager uses
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to disable the D2D technology and signal that it should gracefully
shutdown by processing any remaining requests in its send queue
and adding the requisite responses to the response queue.

The Receive Queue. As shown in Figure 2, all D2D communi-
cation technologies share a single receive_queue with the Omni
Manager. Whenever a transmission of an omni_packed_struct is
received by any technology, it is deposited in this queue for pro-
cessing by the Omni Manager. To support a simple and modular
integration of additional D2D technologies, the contents of this
structure remain agnostic to the technology (details are discussed
in Section 3.3). Instead, each D2D technology only includes the
low-level address (for example, the Bluetooth MAC address or WiFi
IP address) along with the type of D2D technology, so that the
Omni Manager can properly process the omni_packed_struct.

The Send Queue. Each D2D communication technology is sup-
plied by Omni with its own send_queue, which it monitors for re-
quests to transmit omni_packed_structs according to parameters
supplied with the send request as a map or dictionary structure.
These requests contain both periodic context packets and one-time
data packets. The parameters vary based on the type of request.
For context, the frequency of transmission, the type of operation
(add, remove, update), and optionally the identifier for the context
(remove, update) are supplied. For data, only the type of operation
(send) and the low-level destination address are supplied. Finally, a
status_callback is supplied to be forwarded at response time.

The Response Queue. All D2D technologies and the Omni
manager share a single response_queue, used to notify Omni of the
status of a particular transmission or a change in the status of a D2D
technology. After a D2D technology completes processing a request
taken from its send_queue, it puts a response message into this
response_queue. The response includes the status_callback
(forwarded from the initial request), the response CODE (indicating
success or failure) and the corresponding response_info (see Ta-
ble 2). On failure, Omni also forwards all of the details from the
send request, including the parameters and payload, since the Omni
Manager needs this information to perform a re-transmission using
an alternative technology. Details of the Omni Manager’s failure
handling are provided in Section 3.3. Finally, a response is also
generated when the status of the D2D technology itself changes,
for example, when the radio is turned off or the address changes.

Technologies for Distributing Context. Each D2D technol-
ogy used by Omni for distributing periodic context packets must
have some mechanism for performing neighbor discovery, ideally
via a built-in resource-efficient neighbor discovery protocol. To sup-
port context transmissions, each of these technologies must support
four operations corresponding one-to-one to those available in the
Developer API: add, update, remove, and receive context.

Our implementation supports context transmission via BLE bea-
cons or multicast UDP over WiFi-Mesh. Multicast over WiFi is
provided as a proof of concept since it is one of the primary tech-
nologies used by state of the art solutions for address sharing and
service discovery. However, as we show in our evaluation, multicast
is not practical for continuous neighbor and/or service discovery on
power constrained mobile devices. With new lightweight technolo-
gies for discovery on the horizon, such as WiFi-Aware (also known
as Neighbor Awareness Networking), we aim to eventually replace
multicast over WiFi as a technology for context transmission.

Technologies for Distributing Data. Each D2D technology
that Omni uses to distribute data must support two operations: send
and receive. Our implementation provides three: unicast TCP over
WiFi-Mesh, multicast UDP over WiFi-Mesh and BLE beacons. In
practice, unicast TCP is superior to multicast UDP (even when
transmitting data to several peers), since existing implementations
of multicast in 802.11 are slow to accommodate transmission to
devices with the weakest signal strength and slowest radios.

Modularity Considerations.Omni’s queues are designed with
modularity in mind so that D2D technologies operate entirely sepa-
rately from the Omni manager and only communicate using queues
that can be accessed concurrently.

3.3 Omni Manager
In this section, we describe the primary structures at the heart of the
Omni Manager, the core component that facilitates interoperability
between the application and the D2D technologies. The primary
functionality of the Omni Manager is to route application requests
to transmit context and data to the appropriate D2D technologies
and to maintain a mapping of available peers to the technologies
on which they are accessible.

Peer Mapping. Upon initialization, the Omni Manager gener-
ates a unique 64-bit id for a device, known as the omni_address,
using a hash of the hardware MAC addresses for the interfaces
available on that device. This address is used by an application to
identify itself to peer devices (and vice versa) since the application
is agnostic to the D2D technologies used to service send and re-
ceive requests. The Omni Manager maintains a dynamic, real-time
mapping of a peers’ omni_address to the D2D technologies avail-
able at that peer. For each D2D technology, the necessary concrete
addressing information is also provided to facilitate a connection
with that peer using that D2D technology.

Context Mapping. The Omni Manager maintains a mapping
of each currently active context transmission to the relevant D2D
technology, allowing Omni to forward requests regarding context
update or removal to the appropriate D2D technologies.

The Omni Address Beacon. To map omni_addresses to D2D
technologies, Omni periodically transmits an address_beacon. For
simplicity we have fixed the interval for this beacon to be every 500
ms. Every Omni-enabled device sends the address_beacon using
its accessible D2D technology with lowest energy cost.

However, to accommodate discovering peers who cannot trans-
mit using the same D2D technology, Omni uses a simple algo-
rithm that engages the other available context D2D technologies
to periodically send address_beacons. At a much lower frequency
(e.g., every five seconds), the Omni Manager listens on each of the
other available context D2D technologies. If the Omni Manager
receives a beacon on a technology A from some unknown peer X,
the Omni Manager begins periodically sharing contexts (including
address_beacons) on technology A as well as listening on technol-
ogy A. As long as beacons continue to arrive from at least one peer
that is not also transmitting on a lower energy technology, Omni
will continue employing technology A.

To actually transmit using a specific technology, Omni packages
the address beacon into an omni_packed_struct (described next)
and places it in each relevant D2D technology’s send_queue.
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The Omni Packed Struct. To minimize overhead, Omni tightly
packs all content for transit into a sequence of bytes we call the
omni_packed_struct. The first byte of every transmission indi-
cates whether it is context, data, or an address beacon. The address
beacons in Omni are completely hidden from the application. The
following eight bytes are the omni_address. The remainder of the
structure is a variable-length payload. Currently, 14 additional bytes
are needed for the address beacon: 8 for the Wifi-Mesh address and
6 for the BLE address. The omni_address does not need to be trans-
mitted with context and data, since the low-level address can be
used to look up the omni_address at the receiver via the receiving
device’s peer mapping. However, by including the omni_address,
we are able to refresh part of the peer mapping with each message.

Receiving Content. Omni receives content by monitoring the
receive_queue shared with D2D technologies described in Sec-
tion 3.2. Omni decodes any received omni_packed_struct to deter-
mine whether the content is context, data, or an address beacon. For
context and data, Omni decodes the next eight bytes to retrieve the
omni_address. Omni uses the address to update the peer mapping
for the relevant D2D technology and calls either the context or data
callback provided by the application (shown in Table 1).

Sending Content. Since Omni splits content semantically into
context and data, it uses two mechanisms for transmitting content.
For context, Omni follows the process described above for address
beacons. Put simply, Omni transmits context using the lowest en-
ergy technologies that allow it to reach all known neighbors.

For data, Omni determines which D2D technologies are available
at a designated peer and selects the technology that minimizes the
expected time to deliver the data. Omni considers the expected
throughput of the radio, the size of the data, and the time needed
to form a connection. The data is packaged, the low-level address is
specified, and the data is added to the relevant queue. In the future,
we may implement more sophisticated selection to navigate a trade-
off between energy consumption and delivery time; since Omni is
already designed to minimize the number of transmissions across
high throughput and high energy D2D technologies (by allowing
applications to intelligently select peers via context transmissions),
this tradeoff is largely already accounted for, allowing applications
to get the best of both worlds: frequent low-bandwidth and low-
energy transmissions combined with infrequent high-bandwidth
and high-energy transmissions.

Handling Failures. D2D technology failure is common, espe-
cially in opportunistic networks where peer accessibility is tran-
sient. If a D2D technology fails to send data or add/update a con-
text, the technology generates a relevant response and places it
in the shared response_queue (Section 3.2). The Omni Manager
processes the response and attempts to use an alternative D2D tech-
nology until all applicable D2D technologies are exhausted. Only
at this point is the status_callback provided by the application
employed to indicate that the request failed.

Omni’s approach to periodic context transmission using D2D
technologies that require no network connectivity offers a substan-
tial benefit in terms of resiliency to failures, since connection-less
technologies by design have no connections to break. Since initial
neighbor and service discovery is no longer tied to brittle connectiv-
ity to a transient network, Omni is able to recover more easily from

environmental changes (such as peers leaving and entering proxim-
ity). When a connection to a network accessible via a connection-
oriented D2D technology (such as WiFi-Mesh) breaks, Omni is still
able to provide the application with dynamic information regarding
the peers that remain available.

3.4 Security Considerations.
Security in terms of authentication of nearby devices and encrypt-
ing D2D traffic is important for applications operating in IoT envi-
ronments. Although extensive discussion of security requirements
is outside the scope of this paper, we briefly discuss some of the
security challenges unique to these environments and how they
can be addressed without disrupting Omni’s functionality.

Omni allows applications to interact with unknown devices,
which presents potential security vulnerabilities that would not be
present if the application were operating in a traditional secured
infrastructure network. To address this issue, beacons for sharing
context can be encrypted using symmetric encryption. The key to
decrypt the beacon could be shared out of band, for example, by
registering the user device with a centralized authority using an
infrastructure network.While this means that the applicationwould
not be strictly D2D, a single provisioning step does not present,
in our view, an unreasonable requirement, especially when many
applications on the market already necessitate user registration.

Wifi-Mesh supports SimultaneousAuthentication of Equals (SAE)
[11] for secure password-based authentication. This password could
be shared securely as context via encrypted beacon.

Additionally, Omni may reveal information across applications
that might not otherwise be available presenting a potential secu-
rity issue. One mitigating factor is that we envision Omni to be
implemented as an operating system service that filters content
by application and invokes the receive callbacks provided by each
application when relevant.

4 EVALUATION
We prototyped Omni for evaluation on a Raspberry Pi testbed.
While in a commercial deployment, Omni would need to run all of
the above applications on consumer devices, for ease of iterative
development and availability of more modern D2D features, we im-
plement the Omni prototype in Python on Raspberry Pi 3s (Model B)
running Ubuntu 16.04. The Raspberry Pis mimic the constraints in
processing power associated with mobile devices, while providing
flexibility in low-level implementations of D2D technologies. All of
the Raspberry Pi hardware features we leverage could be feasibly
made available on any mobile device (e.g., an Android device).

Our Python implementation matches the description of the ar-
chitecture with one limitation: the prototype creates a singleton
instance of Omni for each application, mainly for simplicity in
development. Omni would most appropriately be implemented
as an operating system service shared among applications. Many
optimizations can leverage overlap in requests from applications
(for example, consolidating context into fewer beacons), address
beacons can be aggregated, and the leakage across applications
mentioned in Section 3.4 can be prevented.

Our prototype provides the API in Table 1. We first benchmark
the behavior of Omni against systems providing the State of the
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Art and State of the Practice capabilities, as described in Section 2.
We then show Omni’s behavior “in the wild” in a pair of real-world
examples from the literature. The goal of these application-driven
evaluations is two-fold: we exercise the Omni API, and we demon-
strate how Omni improves the performance of these applications
relative to other approaches. Both of these applications are from
the Delay Tolerant Networking (DTN) literature, where reliance on
D2D connections is already commonplace. DTNs are characterized
by a lack of persistent end-to-end connections between devices and
are therefore highly reliant on transient D2D connections among
devices. As motivated in Section 2.2, we expect interactions very
similar to these to become commonplace in the IoT.

The first example is a D2D file-sharing application in which
co-located users download media (e.g., photos and videos) from an
infrastructure network and share them among themselves [30]. In
particular, we replicated the general behavior of Disseminate, in
which devices exchange meta-data describing their available and
desired data before exchanging the (much larger) data itself [25]. In
the second example, we layer Omni underneath the PRoPHET DTN
router [18], in which information is buffered by intermediate de-
vices and then forwarded when communication links are available.
PRoPHET selects devices as carriers based on a local assessment of
their potential to encounter the final destination. To assess these
conditions, devices continuously share summaries of their historical
encounters with neighboring peers.

We compare Omni to an implementation representative of the
State of the Practice (SP) and one representative of the State of the
Art (SA). For the former, we implement the applications to directly
interact with the underlying communication technologies. For the
latter, existing multi-radio middleware systems are dated and lack
support for modern D2D technologies, especially those supporting
neighbor discovery. Since a direct comparison is therefore not possi-
ble, we implement a generalized multi-radio approach that contains
the relevant features to operate in our setting, including support
for the new D2D technologies, but adopts the paradigms specific to
these approaches. In particular, these approaches do not integrate
with low-level neighbor discovery and instead interact with D2D
communication protocols only at their provided application-level
APIs. The goal of this comparison is to demonstrate the efficiency of
leveraging neighbor discovery and the distinguishing between con-
text and data as part and parcel of providing transparent application
interaction across multiple communication technologies.

4.1 Baseline Measurements
Before jumping into the application-level characterizations of Omni
and comparisons to other approaches, we benchmark our testbed
environment with respect to D2D communication technologies.
Our prototype implementation of Omni relies on the integration of
two underlying D2D technologies: BLE and WiFi-Mesh; we imple-
mented the interfaces of these technologies to Omni through the
Communication Technology API as exemplars. To support WiFi-
Mesh, we custom-fit our Raspberry Pis with 2.4 Ghz USB WiFi
Adapters (Atheros AR9271) operating on 802.11n. For BLE, we use
the onboard Bluetooth radio running a BlueZ 5.48 stack. To measure
the current draw on the Raspberry Pi, we connect an AVHzY CT-2
USB power meter between the power supply and the Raspberry Pi.

Table 3: Baseline current draw for D2D technology opera-
tions in Raspberry Pi testbed

Operation Current (mA)

WiFi-receive 162.4

WiFi-send 183.3

WiFi-scan for networks 129.2

WiFi-connect to network 169.0

BLE-scan 7.0

BLE-advertise 8.2

We used this setup (without Omni or any other middleware)
to characterize the energy consumption for the D2D technologies.
We compute the current of the device at steady state, where both
the Bluetooth and WiFi radios are switched off. Using this value
as a floor, we also compute the current draw during WiFi-standby
(92.1 mA) which remains constant during the operation in our
experiments (unless the WiFi radio is turned off completely). The
BLE-standby current draw is too low to detect with our hardware,
and we assume it to be 0 mA. Recall that Omni shares all accessible
D2D technologies and their addresses using its address_beacon,
hence the WiFi-Mesh technology must be assigned some ip address
to be reachable. This is not unique to Omni; in fact, all other multi-
radio middlewares who need to periodically transmit multicast
address and service information messages along WiFi do the same.
Given this new floor, we report the peak current draw (in mA) for
both BLE and WiFi-Mesh in Table 3. The values in Table 3 are the
peak current draw for the given operation, relative to WiFi-standby.

Although the raw values are not identical to those that would
result from the same tests on a mobile phone, they follow the ex-
pected trend. Specifically, analogous operations using BLE andWiFi
generally require substantially less energy when using BLE. This
supports our thesis that for small payloads such as those involved
in exchanging addressing information or service information, light-
weight technologies such as BLE offer substantial energy savings.
For example, transmitting a single service request (WiFi-send) us-
ing multicast over WiFi-Mesh causes a spike in current draw by
183.3 mA. Meanwhile, transmitting the same request using BLE
(BLE-advertise) draws over an order of magnitude less current.
Said another way, it is not sufficient simply to determine which
among many network technologies is best suited for transmitting
application data; one must also consider what technologies are best
suited for discovery in the first place. In scenarios where neighbor-
ing devices are accessible on a low-energy D2D communication
technology, Omni can select it as a best-suited context technology
for transmitting address and service information, whereas other
approaches need to transmit on all available technologies. While in-
stantaneous current draw is not directly indicative of overall energy
consumption, these baseline measurements help elucidate the dif-
ferences in energy consumption that we observe when computing
current draw over time in the following subsections.

4.2 Controlled Comparisons
We characterize the State of the Practice, the State of the Art, and
Omni. We assume a pair of devices engaged in service discovery fol-
lowed by service interaction. We measured the energy consumption
and interaction latency on the initiating device. In particular, the
“application" on this device remained idle for 60 seconds. Instead of
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Table 4: Performance comparison across approaches
Context Data Total Energy (avg. mA) Service Latency (ms)
Tech. Tech. SP SA Omni SP SA Omni
BLE BLE -92.07 23.47 7.52 82 82 82
BLE WiFi30B N/A 22.25 9.11 N/A 2793 16
BLE WiFi25MB N/A 43.41 36.14 N/A 5982 3112
WiFi BLE N/A N/A N/A N/A N/A N/A
WiFi WiFi30B 21.86 22.60 23.12 3216 3175 3229
WiFi WiFi25MB 39.78 42.03 41.41 6499 6013 6162

active application behavior, during this time, the underlying system
transmitted address and service information every 500ms. In the
State of the Practice implementation, this periodic transmission
was programmed by hand. In the State of the Art, we modeled
behavior like that exhibited in ubiSoap [4]11, where this discovery
information is transmitted via multicast on all of the active D2D
communication technologies.12 In Omni, this discovery relies on
the available technology with the lowest energy consumption, and
uses other technologies only as described in Section 3.3.

After this initial warmup period of 60 seconds, the device per-
forms a send and receive interaction with the discovered remote
service. The interaction with the remote service entailed transfer-
ring either 30 bytes of data (some small sensor reading, for instance)
or 25MB of data (some large media file).

Table 4 shows the overall energy consumption and latency of
service interaction for different pairs of technologies; Figures 4
and 5 show the information pictorially. When BLE is used as the
data technology, the size of the data is 30 bytes; BLE packets can-
not carry the larger data file. We did not use the combination of
WiFi-Mesh for context and BLE for data; if both technologies are
available, no application would choose this combination. In the
State of the Practice, we assume that a natively implemented ap-
plication will use only one technology for both context and data
(as is commonly the case for modern service discovery to service
interactions patterns); for these reasons, we do not have results for
the State of the Practice for the combined BLE/WiFi-Mesh case.

The energy consumption values are relative to baseline operation.
In the case of the State of the Practice, when BLE is used for both
context and data, the WiFi radio can be turned off entirely, resulting
in a negative relative energy consumption. In the State of the Art
and Omni, because both approaches need to be available on all
of the active D2D communication technologies, the WiFi radio
must remain on. In the State of the Art, address packets are sent
on both BLE and WiFi-Mesh, resulting in the increased relative
energy usage. Latency values are measured in milliseconds from
the initiation of the service interaction until its completion. The
dramatically higher latency for the State of the Practice is also
due to the fact that application-level multicast is used for address
discovery. This entails periodic WiFi scans for relevant networks
(WiFi-Mesh or otherwise) and connections to such networks to
send multicast packets. Omni achieves a big win relative to the
State of the Art because it leverages lightweight neighbor discovery
and separates lightweight context to be periodically disseminated
from the heavier weight application-level data.

11Based on the documentation at: https://gforge.inria.fr/frs/?group_id=699
12 One might argue that these approaches only transmit this information upon con-
necting to a network, and that we are mischaracterizing the necessary transmissions.
However, to support IoT applications, discovery must handle constantly changing
environments where the available networks cannot be assumed to be known a priori.
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4.3 Real Application Comparisons
To demonstrate Omni’s behavior in the wild relative to other ap-
proaches, we conducted experiments for the two applications de-
scribed earlier. We show the performance of the State of the Practice
(i.e., how the applicationwould currently be implemented), the State
of the Art (i.e., how the application would be implemented using a
multi-networking middleware like that in Section 2), and Omni.

Our goal in running experiments with an application similar to
Disseminate is to showcase Omni’s performance differences in a
high-throughput application relative to other approaches. In our
experiment, three devices initiate a download of pieces of a single
30 MB file from a mock infrastructure network using two different
data rates (100 KBps and 1000 KBps). Table 5 and Figure 6 show
the times of transfer and energy consumed by an arbitrary device
downloading the entire file (1) directly from the infrastructure and
(2) by collaborating with the other two devices using the three
implementation options: State of the Practice, State of the Art,
and Omni. As above, the State of the Practice approach purely uses
multicast overWiFi-Meshwhich, as described in Section 3.2, is often
slow, particularly in an application scenario where high-throughput
is the goal. As such, it is outperformed by the other collaborative
approaches. While the average energy consumed by the State of
the Practice appears lower (due to the slower transfer rate), the
longer duration of transfer actually means that more energy is
consumed to retrieve the entire file. By multiplying the average
energy consumed by time required, we can retrieve the current

https://gforge.inria.fr/frs/?group_id=699
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Table 5: Energy and latency for Disseminate-like application over different implementations. Device collaborates with two
other devices to download 30 MB file. Time and Energy measured from first transmission until device downloaded entire file.

Measurement Type Direct Download SP (WiFi only) SA (BLE + WiFi) Omni (BLE + WiFi)
Ra

te
(K
bp

s)

10
0 Avg energy consumed (mA) N/A 72.39 67.12 66.91

Time to complete download (s) 300 229.588 102.679 101.292
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00 Avg energy consumed (mA) N/A 80.03 267.79 270.288

Time to complete download (s) 30 30 13.100 11.965
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Figure 6: Energy and transfer time for D2D media down-
loads under different implementation options

dissipated in each case. For the 100 KBps rate, this is 6777 mAs for
Omni and 16619 mAs for the State of the Practice.

The more interesting comparison is between the State of the
Art and Omni. The State of the Art needs to periodically trans-
mit multicast packets, even on WiFi-Mesh; these packets impede
the overall transfer rate. While this effect is marginal when the
channel is not congested (the 100 KBps scenario), at higher data
transmission rates (the 1000 KBps scenario), we see a lower transfer
time for Omni relative to the State of the Art. The State of the Art
takes 13.10 seconds, while Omni only takes 11.97 seconds (Table 5).
While a delta of 1.13 seconds may not seem like much in absolute, it
represents an 8.6% drop, which becomes substantial given multiple
transmissions. Besides the benefits to throughput, the shorter trans-
mission time means that less overall energy is consumed. Figure 6
shows that although in Omni’s case data is transmitted at a faster
rate, the average energy consumed is marginally higher than for
the State of the Art. For the 1000 KBps rate, the cost to transfer the
data is 3508 mAs for the State of the Art, while only 3234 mAs for
Omni. This validates Omni’s paradigm of splitting context and data
and transmitting context in as low-energy fashion as possible.

Having demonstrated the efficacy of using Omni as the backbone
of a high throughput application, we also show how it performs
for a low-throughput application, PRoPHET. This experiment uses
three devices labeled A, B and C. Device A is out of range of C,
but intends to deliver a single 1 KB file to C. Device B encounters
A, who shares the file with B for forwarding to Device C at some
later interval (five seconds in our experiment). As Figure 7 shows,
aside from the flexibility garnered in moving from the State of the
Practice to the State of the Art, there is negligible improvement in
energy and latency. This is because, in the absence of an integrated
neighbor and service discovery approach (only available on Omni),
data transfer over WiFi necessitates network discovery. Meanwhile,
the vast majority of the latency when using Omni is inherent to
the delayed nature of the application scenario (i.e., the five seconds
it takes to encounter Device C). Moreover, the lack of need for
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Figure 7: Energy and Latency for Prophet interactions under
different implementation options

periodic transmission of multicast packets substantially reduces
the energy consumption for Omni. These benefits demonstrate
the importance of marrying neighbor and service discovery and
providing it as a separate mechanism to data transfer.

5 FUTUREWORK AND CONCLUSIONS
Omni substantially extends the capabilities of multi-networking
middleware by recognizing that it is not sufficient simply to deter-
mine which among many technologies is best suited for transmit-
ting a piece of data. One must also consider what technologies are
best suited for discovery in the first place. Further, as our evaluation
shows, recognizing that periodic context is fundamentally different
than one-time data transfers is pivotal in enabling practical and
efficient communication support for D2D applications.

In the future, sharing context (and data) with more than just
one-hop neighbors could extend the range of a device’s knowledge
about the environment. BLE Mesh offers a promising solution for
low-energy context sharing across longer ranges; future work will
integrate BLE Mesh with Omni. In the same vein, the BLE beacons
used in our current implementation are limited in size, but advance-
ments such as Bluetooth 5 promise to support expanded beacon
sizes. Larger beacons have the potential to enhance the richness
of information in both service requests and advertisements, while
still maintaining one of the key benefits of Omni: integration with
technologies dedicated to low-level neighbor discovery.

In conclusion, as neighbor discovery becomesmore sophisticated
and the number of low-energy communication technologies grows,
applications require programming frameworks like Omni. The nov-
elty of Omni, in particular the distinction between lightweight
context, which can be transmitted frequently and inexpensively,
and heavier weight data will be integral in the development of
practical IoT applications in the wild.
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