
The Grapevine Context Processor:
Application Support for Efficient Context Sharing

Sungmin Cho and Christine Julien
The Center for Advanced Research in Software Engineering

The University of Texas at Austin
Email: {smcho, c.julien}@utexas.edu

Abstract—Today’s ubiquitous wireless networks enable easy
access to information on the web. However, when applications
need access to highly transient and hyper-localized information,
web access is not as efficient as sharing directly with co-
located devices. This context information can be easily collected
by commodity mobile devices and shared via device-to-device
interactions. Open challenges remain in making this exchange
as efficient and effective as possible. In this paper, we propose
the Grapevine Context Processor (GCP), which provides a frame-
work and a set of APIs for representing and sharing context
information. GCP is built on the Grapevine context sharing
framework, which is underpinned by a suite of novel space-
efficient context representing data structures. GCP, as a context
processing framework, enables application developers to easily
specify context types of interest and provide relevant semantic
filters for those types; we design a set of application programming
interfaces (APIs) that allow easy access to and control over the
data structures.

I. INTRODUCTION

On our persistently connected mobile devices, the Internet
is our primary tool for sharing and accessing information.
However, our devices can collect myriad information about our
hyper-localized and highly transient situations, which vastly
extends the information we can share. Storing and accessing
these excessive volumes of information via the Internet may
not be practical, nor may it satisfy user’s actual needs. On a
day with particularly bad traffic, the regular bus schedule may
not answer a question about when the next bus will arrive. The
fact that today’s sale item is nearly sold out may be critical for
those who intend to visit a store for the special offer. In such
instances, accessing information via the Internet may not be as
efficient as sharing hyper-localized information directly with
co-located peer devices. Our premise is that this situational
context [4] can be easily collected by our mobile devices and
shared via device-to-device interactions; applications demand
that this context be shared in near-real time to ensure that it
is still relevant when the applications act on it.

In resource constrained mobile environments, reducing com-
munication overhead is of extreme importance, given its
impact on costs of data access and energy consumption.
Simplifying development of mobile applications is often a
confounding factor, as the time to deployment is a signif-
icant influence on technology development. We present the
Grapevine Context Processor (GCP), which enables developers
to build applications that share context in a very size efficient
way. GCP includes facilities to generate user-defined context

types and APIs for interacting with and efficiently sharing
these contexts. GCP encompasses novel data structures for
probabilistic and space-efficient context representation, de-
scribed in our previous work on the Grapevine middleware [6].

Grapevine provides a lightweight data structure for context
that may sacrifice the correctness with which it stores context
values in exchange for reducing the size of the represen-
tation. These context structures are simple but expressive
optimizations of the Bloomier filter [3], an augmentation of
a Bloom filter that not only captures set membership but
also associates a value with each set member. A context
captured in this structure can be shared among devices without
incurring a large communication overhead. The nature of this
structure results in potential misrepresentations of the stored
context information. In this paper, we build the Grapevine
Context Processor (GCP), which leverages application-stated
constraints on context values to control the misrepresentation
probability and to reconcile inconsistent values by correlating
diverse bits of context across shared context structures.

When we create a context structure, we insert a set of
(attribute, value) pairs. When an application later queries the
structure with a specific attribute, if the attribute was inserted,
Grapevine returns the correct value. If the attribute was not
inserted, the structure returns an empty value with high proba-
bility. However, it is possible that an incorrect value is returned
for an attribute that was never inserted, i.e., the query re-
turns a false positive. GCP provides application programming
interfaces to make it easy for developers to specify how to
handle these inevitable false positives. Application developers
provide a set of filters on “true” responses for a context
structure query. Innate filters ensure that returned values are
within a reasonable range for a particular type, correlation
filters check that relationships between the values for related
attributes are consistent, and contextual filters check the values
for attributes against the context. We achieve a large reduction
in the size of the context representation for real pervasive
computing application scenarios while achieving a near zero
false positive rate. GCP streamlines the development effort
required to efficiently share context in mobile applications,
especially via device-to-device communication channels.

II. BLOOMIER FILTERS FOR CONTEXT REPRESENTATION

Context and context aware computing have been extensively
surveyed [4], as have requirements and techniques for context



representation [11]. In our own prior work, we have expressed
context as a combination of local and shared information [9],
and our Grapevine model provides a framework for sharing
context information in a pervasive computing network [6]. In
this previous work, we have focused on the use of context
to express emergent properties of groups [8] using a basic
representation of the context based on a Bloomier filter. The
work in this paper extends our prior work by providing
techniques that allow content- and context-based filtering of
context information, largely based on its social properties.

We use context to describe human users, their attributes, and
their relationships with the environment. A context summary
(or just summary) is a structure that lists the context elements
that describe the situation of some entity (e.g., a user). The
schema (of a summary) is the list of attributes for which values
are stored in the summary. As a simple example, consider one
category of scenarios for which our context sharing approach
is particularly applicable: connecting groups of users. The
goal is generally to share context of individuals to create a
collaborating group based on the shared context state.
As people arrive in a city park to spend the day, they share
information about their leisure interests and skills. By sharing
information about their enthusiasm for football and their
associated skill levels, an organically defined group emerges
that defines two well-matched teams ready for a pick-up game.

sport -> football
position -> goalkeeper
skill level -> 5
gchat id -> john1988
latitude -> (30, 25, 38, 2)
longitude -> (-17, 47, 11, 0)
available date -> (2014, 9, 12)
available start time -> (12, 15)
available end time -> (15, 30)

The above summary describes a person in the park inter-
ested in playing football. The summary includes the user’s
instant message id, his current location, and his available
times. Clearly, different applications may include different
information; further, a single user’s context summary may
contain information that is ultimately consumed by many
different applications. When this summary is shared with
opportunistically connected mobile devices, an application can
automatically generate a group of people who are near each
other, interested in playing football, with sufficient overlap in
available times. The application could then define two “teams”
based on the group’s coverage of necessary positions.

There are many possible representations for a context
summary. A labeled context summary stores both the keys
and values and is the most expressive context representation.
A complete context summary, on the contrary, stores all of
the values but associates each one with an index into some
globally known dictionary of attributes. This results in better
size efficiency, but limits the expressiveness. The Grapevine
approach to context summaries splits the difference to achieve
the expressiveness and flexibility of a labeled summary and
the size efficiency of a complete summary.

Grapevine’s context summaries are built on the Bloomier
filter, which has been used for purposes similar to ours in
dictionary retrieval problems to ascertain approximate group
membership and theoretical bounds on the reduced size of
a summary representation [5]. While a Bloom filter [1] suc-
cinctly represents set membership using a bit array m and k
hash functions, a Bloomier filter [2], [3] is uses an association
function f(x) to capture the mapping of set members to values.
If an element e is in the input set S, the Bloomier filter’s
f(e) should be the value associated with e. If e is not in
the Bloomier filter, f(e) =⊥ with high probability. We have
derived a variety of Bloomier filter based context summary
structures, but we omit the details for brevity.

III. FALSE POSITIVES DETECTION

Queries over our Bloomier filter based context summaries
can result in false positives, which occur when a context
structure responds that a value for an attribute was stored when
it was not. In these situations, the structure returns a “junk”
value. To mitigate these challenges, GCP allows application
developers to specify filters that constrain reasonable values
based on application-level semantics. In Section IV we define
the APIs that developers use to specify filters. In this section,
we show how the algorithms function behind the scenes to
apply application-provided filters to detect false positives.

(e, f(e)) 2 BF?

?

correlated filtering

?r

?i v?i

innate filtering

?c v?c

contextual filtering

More 
filtering?Yes No

No
Yes

More 
filtering?

v?

fp?

fp?i
v?r

fp?r

f(e)

fp?c

Fig. 1: False positives detection

Fig. 1 shows
our false positive
detection process. A
query immediately
returns ⊥ (i.e., a
true negative) for e
when the underlying
Bloomier filter returns
a true negative. A
false positive results
when the filter fails
to return ⊥ for a
non-member, instead
returning a value v⊥
pulled from the bits in
the underlying table.

Our first method for
detecting false positives
uses the property that
the space available to store a value (2q bits, given a table
of width q) is often larger than the value’s range. When f(e′)
from e′ 6∈ S is retrieved, the possible value is between 0 and
2q− 1. When f(e)’s type uses b bits, the upper (q− b) bits of
the value should be zero; otherwise, our context summary can
return ⊥. However, a returned, apparently valid, value (v⊥)
may still be a false positive with a relatively high probability.
This basic filtering and the true negative detection are the first
stage in Fig. 1. After applying this simple filter, any seemingly
valid value (v⊥) is passed to the next stage filter, which is
where our application-specified filters take over.



We refer to undetected false positives that pass the first
filter as fp⊥. Our innate filter detects whether a value v⊥
is valid given the innate range and type encoding; an invalid
value identified by an innate filter is labeled ⊥i (⊥i is an the
identified false positive; fp⊥ are the actual false positives);
as in the previous step, there may still remain undetected
false positives (i.e., fp⊥i

) that are passed to the next stage
as potentially valid values (v⊥i

).
Even when a value is innately correct, correlations between

attributes, provided by application developers, may identify
a value as a false positive. For instance, if we retrieve a
seemingly correct longitude value but no latitude value, we
can assume that the former is a false positive. Applications
can easily provide sophisticated correlation relations; for ex-
ample, when the contexts found together are {location
name, latitude, longitude}, and f(location name) =
City Park, the location should indicate a place within City
Park. Invalid values detected in this way are identified as ⊥r.

Finally, an application’s contextual filters detect false pos-
itives that simply do not make sense in the current situation.
For instance, if the application is looking for people the
user can play football with, and a player’s location indicates
he is in Antarctica while the user is in the United States,
an application’s contextual filter can indicate that is a false
positive. Such violations are identified as ⊥c.

Filters applied earlier are easier for the programmer to
define, are often reusable across applications, and are less
computationally expensive. Regardless, it is possible that some
false positives slip past these filters and into applications.
These are the undetected false positives; we refer to them as
fp⊥c

. Our fundamental goal is to reduce the number of these
false positives as much as possible while maintaining space
efficiency of context structures.

We next benchmark our false positive filters’ capabilities
by measuring the false positive detection rates for each type
of filter. We use randomly generated contexts that contain
attributes of varying types; each attribute’s value is a randomly
generated bit string of the appropriate length. We use randomly
generated context summaries to make it easy to create sum-
maries of varying sizes. We query these context summaries for
attributes that were not inserted, i.e., for which the application-
level response (after applying all of the false positive filters)
should be some form of ⊥. The results are shown in Table I.

We used string correlations for age, level, temperature,
and float (e.g., we assume correlations between {(age of

kid, 12), (name of kid, John)} and {(recommendation
average, 5.6), (recommendation restaurant, Sushi
Palace)}). For latitude and time, we assume that latitude is
not found without longitude and dates are not found without
times. For contextual filters, we used:

Temperature: |temperature− current temperature| ≤ 25◦C
Latitude: |location−my location| ≤ 10 km
Time: |date/time− today| ≤ 2 months

In Section IV we show how the application can easily specify
such a filter using the Grapevine Context Processor APIs.

The numbers in Table I give the likelihood that a value
returned after each filter is a false positive, e.g., only 1.5%
of the latitude values that pass the innate filter are not actual
latitude values. Almost 100% of the float values that pass the
innate filter are false positives. In all cases, after applying all
of the filters, the false positive probabilities are very small.

TABLE I: False positives probabilities (FBF)

Type fp⊥i
(%) fp⊥r (%) fp⊥c (%)

theory exp. theory exp. theory exp.

Boolean 0.39 0.38
Age 50.0 50.3 0.0427 0.0407

Level 4.29 4.28 0.0037 0.0034
Float 100.0 99.9 0.085 0.082
Temp. 43.3 43.3 0.037 0.036 0.017 0.014

Latitude 1.5 1.5 0.045 0.051 2.8× 10−8 0
Time 2.2 1.9 0.12 0.11 0.0042 0.001

IV. GRAPEVINE CONTEXT PROCESSOR

In this section, we present the Grapevine Context Processor
(GCP) for mobile applications. GCP comprises an application
specific code generator, core libraries that the generated code
interacts with, and a set of simple application programming
interfaces. GCP differs from our prior work [7] in that its main
focus is on a size efficient way of communicating context
information. CALAIS [10] supports context-aware applica-
tions with a similar goal of providing a simple language for
applications to express context-dependent behaviors; CALAIS
describes composite events, while GCP allows applications to
tailor filters for enhancing the false positive detection rate.
Furthermore, CALAIS requires connectivity to a central server.

Application developers use GCP to specify context types
and false positive filters by providing a type description con-
taining the type’s properties and its correlation and contextual
constraints. We use a json file that is processed by the GCP
compiler to generate code that interacts with the GCP core
libraries at runtime. Fig. 2 shows the json for an application-
specific speed type. The developer specifies the speed to use
an unsigned byte with a range of 0 to 200km/h. In line 10,
the correlation relationship states that, for this application,
speed should not be found without both longitude and latitude.
Line 11 shows a contextual relationship; the left side of ->
indicates the input parameters, and the right side describes
the expression to be evaluated. This contextual relationship
filters out any context that contains a speed over 150km/h
when the context also indicates the user is in the Austin area.
The complete GCP expression grammer is omitted for brevity.

Given a json input file, the GCP compiler creates a type
class that inherits from and interacts with the core GCP
libraries. Fig. 3 shows an example of generated code (in
Python). The two check methods are created directly from
the correlated and contextual constraints. These methods are
used in the false positive detection process, which is invoked
from within the core libraries.

GCP’s API has three simple methods: serialize, deserial-
ize, and query. The serialize function takes the application’s



1 {
2 "type": {
3 "name": "speed",
4 "min": 0,
5 "max": 200,
6 "defaultValue": 0,
7 "bits": 8,
8 "signed": false
9 },
10 "correlated": ["longitude", "latitude"],
11 "contextual": "value -> value <= 150 AND in(austin)",
12 "var": {
13 "austin:area": [30.2500, 97.7500, "10km"]
14 }
15 }

Fig. 2: json input file
class SpeedType(SingleBitsSingleByteType):

def __init__(self, value):
SingleBitsSingleByteType.__init__(self)
self.value = value
self.name = ’speed’
self.signed = false
self.defaultValue = 0
self.min = 0
self.max = 200
self.bits = 8

def check_correlated(self, bf):
t1 = bf(’longitude’); t2 = bf(’latitude’)
if (t1 and t2): return True
return False

def check_contextual(self, bf):
l = current_location()
if self.value <= 150 and in(l, austin): return True
return False

Fig. 3: Generated Python code

context and creates a series of bytes that can be shared
with directly connected peer devices. The deserialize function
converts a series of (received) bytes into a queryable Bloomier
filter, which is handed to the application.

serializedeserialize

query

Application Programming Interfaces

l = get_contexts()
s = serialize(l)

Applications

bf = deserialize(s)
r = query(bf, “query”)

Query 
Interpreter

Types
Core libraries

Communication
Channel

s

Bloomier Filter

Types

Fig. 4: Applications

The query function
operates on an input
Bloomier filter context
summary and a
predicate that can
reference attributes
potentially stored in
the summary. A query
invocation relies on the
GCP core libraries: the
query interpreter, the
Bloomier filter context
summary definitions,
and the application-
specified types. When
an application invokes
the query method,
the interpreter parses
the input predicate
and determines whether the context summary contains the
attributes referenced in the predicate. A query returns false
if any of the necessary context attributes are not present.
It returns true if the context attributes are present and the
predicate evaluates to true. As part of the process of executing
a query, GCP invokes the application-specified false positive
filters. These reside alongside the type definitions in the core

libraries as a result of the automatic code generation process
described previously. After applying these filters, only with
very low probability does the query function return a false
positive. Consider an example:

query(contextSummary, ‘age of kid ≤ 7 AND TODAY’),
where contextSummary is received from a neighboring mobile
device. GCP interprets this predicate into the code in Fig 5.
x = contextSummary(’age of kid’);
y = contextSummary(’date’); td = get_today()
if x and y: if x <= 7 and y == td: return True
return False

Fig. 5: Interpreted code

V. CONCLUSION

Representing context in a flexible and size efficient way
is critical to mobile computing applications that need to
share social, networking, and environmental situations using
limited resources. The Grapevine Context Processor enables
application developers to take advantage of properties specific
to context to achieve large savings in the size of a context
representation without sacrificing the quality of knowledge
about that context. GCP uses novel data structures that provide
a significant performance boost for mobile applications that
require sharing context. Because those data structures result
in false positives in context determination, GCP adds a false
positive filter abstraction, which provides application program-
mers a simple and intuitive way to handle the complexities of
the context summary structures. We codify this programming
approach in a suite of automatic code generation tools and
libraries, giving a very simple interface for developers to send
and receive context summaries using the GCP framework.

ACKNOWLEDGEMENTS

This work was funded, in part, by a Samsung GRO and the
NSF, #CNS-1218232. The views and conclusions are those of
the authors and not of the sponsoring agencies.

REFERENCES

[1] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
CACM, 1970.

[2] D. Charles and K. Chellapilla. Bloomier Filters: A Second Look. In
Proc. of ESA, 2008.

[3] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier filter:
an efficient data structure for static support lookup tables. In Proc. of
SODA, 2004.

[4] A. K. Dey and G. D. Abowd. Towards a Better Understanding of Context
and Context-Awareness. In Proc. of HUC, 1999.

[5] M. Dietzfelbinger and R. Pagh. Succinct Data Structures for Retrieval
and Approximate Membership. In Proc. of ICALP, 2008.

[6] C.-L. Fok, E. Grim, and C. Julien. Grapevine: Efficient situational
awareness in pervasive computing environments. In Proc. of PerCom
WiP, 2012.

[7] Gregory Hackmann, Christine Julien, Jamie Payton, and Gruia-Catalin
Roman. Supporting Generalized Context Interactions. SEM, 3437(Chap-
ter 8):91–106, 2004.

[8] C. Julien. The Context of Coordinating Groups in Dynamic Mobile
Networks. In Proc. of Coordination, 2011.

[9] C. Julien, A. Petz, and E. Grim. Rethinking Context for Pervasive
Computing: Adaptive Shared Perspectives. In Proc. of ISPAN, 2012.

[10] G J Nelson. Context-aware and location systems. PhD thesis, University
of Cambridge, 1998.

[11] M. Perttunen, J. Riekki, and O. Lassila. Context Representation and
Reasoning in Pervasive Computing: a Review. IJMUE, 2009.


