
MadApp: A Middleware for
Opportunistic Data in Mobile Web Applications

Venkat Srinivasan and Christine Julien
Center for Advanced Research in Software Engineering

The University of Texas at Austin
Email: venkat.s@utexas.edu, christine.julien@mail.utexas.edu

Abstract—Mobile computing increasingly often entails applica-
tions that embody opportunistic or delay-tolerant communication,
and while much work has focused on refining and optimizing the
technical underpinnings for providing delay-tolerant communi-
cation constructs, there is almost a complete lack of support
for integrating opportunistic communication functionality at the
application level. This paper introduces MadApp, an application-
level development framework that provides tailored abstractions
and support infrastructure for creating dynamic web pages that
can incorporate received content from various opportunistic com-
munication channels on-the-fly. We describe multiple application
scenarios in which these constructs can seamlessly apply, and
provide a complete conceptual and concrete architecture and
implementation for MadApp. We evaluate MadApp’s support
for opportunistic mobile computing web applications using two
different mobility trace data sets collected from the real-world.
This paper demonstrates that MadApp enables opportunistic
mobile computing applications to begin to leverage the significant
advances in delay-tolerant communication research, opening
doors for even more dynamic and adaptive applications.

I. INTRODUCTION

Imagine you are attending a festival, and before arriving,
you download to your mobile device static content such as a
map of festival locations or a schedule of events. As the festival
unfolds, this static content can be supplemented by user-
generated content that your device collects from peer devices
at the festival. Such interactions can fill in peers’ reviews of
festival venues or photographs of shared experiences. Recent
commercial efforts1 support this kind of application using
JavaScript enhancements to allow a site’s static supplemental
media (e.g., the images and file downloads within a web site)
to be distributed among a traditional peer-to-peer network,
but these approaches fail when the network exhibits canonical
delay-tolerant network characteristics, such as a high churn
in connectivity, highly dynamic sets of available peers, and
unpredictable and large delays. However, many of today’s
mobile computing applications implicitly incorporate some
form of delay-tolerance, in which data, connectivity, or some
other resource is available only after a user-perceptible delay.
Significant research attention has focused on the technical
components associated with getting delay-tolerant communi-
cation to work, specifically focusing on strategies for forward-
ing, caching, and routing data in these inherently intermittently
connected environments [3], but it is increasingly evident that

1e.g., peerCDN (https://peercdn.com/), using WebRTC (http://webrtc.org/)

applications are not being developed to take advantage of these
new styles of communication.

We introduce MadApp, which bridges the gap between
expressive communication capabilities for delay-tolerant or
opportunistic mobile computing networks and applications,
which, to date, remain largely inflexible and delay-intolerant.
MadApp’s key innovation is to enable the content available to a
web application to be received across multiple delivery vectors
without the application having to handle or even be aware
of the different vectors. MadApp uses widely adopted web
application strategies to support collecting the content from
the multiple delivery vectors, and MadApp provides intuitive
programming constructs that focus on enabling average pro-
grammers to create these highly flexible applications. MadApp
layers on top of existing content delivery strategies and, as data
arrives, demultiplexes it to already executing web applications.

Paper Overview. MadApp supports the development of
delay-tolerant applications, specifically user-facing web ap-
plications. While its conceptual model is platform indepen-
dent, our implementation of MadApp is integrated with the
Django web framework, making it simple and straightforward
for application developers to integrate delay-tolerant delivery
paradigms into otherwise ordinary web applications. We de-
scribe MadApp’s context within existing work (Section II).
Then we describe the conceptual model that underlies MadApp
(Section III) and give the details of the MadApp implementa-
tion (Section IV). We demonstrate MadApp’s use with a case
study (Section V) and evaluation over traces of real mobile
computing network interactions (Section VI). We demonstrate
that, by incorporating existing delay-tolerant network data
dissemination approaches, MadApp can support today’s op-
portunistic mobile computing application needs, connecting
the applications to dynamic, user-generated content seamlessly
and flexibly. In a simple, streamlined, and intuitive way,
MadApp brings the potential of opportunistic data networks to
real, user-facing web applications, both decreasing the burden
for web content delivery experienced by potentially overloaded
“centralized” servers and making it possible to receive real-
time, dynamic data directly from peers in an opportunistic
mobile computing environment.

II. RELATED WORK

In mobile networks, content downloading can be enabled us-
ing existing infrastructure supplemented by opportunistic peer-

to-peer interactions in a delay tolerant network (DTN) [10],
[15]. Work specifically targeted at enabling web browsing has
used, for example Internet proxies and prefetching [4] and,
more recently, supplementing these proxies using mobile-to-
mobile interaction [1]. Theoretical results have shown that
relaying content through DTN nodes can significantly increase
the system’s overall throughput [13].

Most research in DTNs focuses on one aspect or another of
how to get packets from a source to a destination. Middleware
efforts generally focus on encapsulating intelligent forwarding
and routing paradigms [14] or on providing abstractions of
these communication primitives (e.g., in the publish-subscribe
paradigm [12]). Other efforts have adopted a content ab-
straction [6], which is important for applications in general,
but, to date, efforts have still not incorporated these content
abstractions into programming abstractions to support the
development of applications. The DTN Service Adaptation
Middleware (DSAM) [22] does specifically attempt to ease
the programming burden associated with DTN applications;
DSAM is effectively an adaptor between a DTN daemon and
the application layer. This middleware shares our application
level motivation but focuses on connecting layers on a single
device, across programming languages instead of connecting
across devices via shared content.

Prior work has enabled peer devices to directly ex-
change streaming media between devices in peer-to-peer net-
works [19]–[21]. The focus has been on how to route data;
further, the approaches assume a traditional network, where
delays are small and manageable; even the routing strategies
are not appropriate for DTNs, whose data needs are very
different. Cabernet [8] more directly addresses the needs of
intermittently connected web clients by developing constructs
to set up content delivery connections over dynamic wireless
connections, even when those connections experience high
churn caused by extreme mobility. Approaches like Caber-
net are orthogonal to our goals; integrating a Cabernet-style
approach to managing connections would only magnify the
benefits of MadApp’s application-level abstractions.

SCAMPI [17] uses social interactions to enable shared us-
age of opportunistically available resources. SCAMPI’s focus
is orthogonal to ours: SCAMPI abstracts the opportunistically
available services into a “service layer,” including integrating
aggregate primitive service functionality into more sophisti-
cated emergent services. In the sense that these services are
just opportunistically available resources, MadApp could be
combined with SCAMPI to enable novice programmers to
integrate services available in SCAMPI’s opportunistic service
layer into their MadApp enabled web applications. Other
work has enabled limited capabilities for rapidly prototyping
applications [9]; our approach is similar in structure but
focuses on refining a usable and accessible set of programming
abstractions for real deployed applications.

III. MADAPP: CONCEPTUAL MODEL

The MadApp middleware that aids developers of web-based
applications in naturally integrating DTN interactions into

otherwise ordinary webpages. Fig. 1 shows the conceptual
model underlying MadApp.

!"#$%&'()*%&
!"#$%&'()*%&+","#&)'-&.%$-/&0"1)$0-$-*#&
.+'(')'0'12&$,'-/&)$+&+"&$'*)%"+&-$%("#&
'10'+'+*1-&*-&,.3"#$&$-&+","#$&%.21.&.,'4*.5&
!

"#$%!

!"#$%&'($$
$$$$$$%)&*&+,'$(-+-$

&
!

!.#$/'/0-*/1&$(-+-$
$$$$$$*/%+&'&2%$

'!

'!

'!

!3#$45(-+&$$
$$$$$$(/%5*-6$

!7#$,55,2+4'/%08-**6$
$$$$$$8,**&8+$(-+-$

()%*#+!

()%*#+!

(,-.#+)/!

Fig. 1. MadApp Conceptual Model

Loading a MadApp enabled web application on a mobile
device triggers the following sequence of events. (1) A web
server sends an apparently ordinary webpage to the mobile
device; this page includes “holes” for transiently received data
and event listeners that receive and fill in data dynamically.
(2) Upon receiving the skeleton webpage, the mobile device
displays it; the device subsequently initializes the data lis-
tener(s) that will receive and dynamically fill in the holes
according to the application logic embedded in the skeleton
webpage. (3) As the user moves through a dynamic mobile
computing space, the device may encounter data that can
fill the specified holes; the listeners opportunistically collect
this data. (4) Received data is filled in on the dynamically
displayed webpage as dictated by the page’s application logic.

Building a MadApp Enabled Web Application. From
the developer’s perspective, constructing a MadApp enabled
web application requires two steps in addition to traditional
tasks: identifying “holes” in the webpage that are expected
to be filled in later, which includes identifying the “types”
of the expected information, and implementing the logic for
how content should be reflected in the webpage as it arrives
dynamically. MadApp allows the developer to delegate all of
the data and network connectivity handling to the middleware.

A MadApp enabled web application must identify (i.e.,
register for) the types of opportunistically received content
of interest. We assume that all content items are labeled with
“hash tags”2. Along with each of the webpage’s registered
hash tags, the developer defines a listener that is invoked
when content matching the registration is received from peers
encountered opportunistically in the mobile computing space.
The body of this call back defines whether and how received
data is incorporated into the application. At the most basic
level, a MadApp enabled web application can simply add the
received content to the displayed page (e.g., by updating the
web document definition), changing the user’s view of the
displayed information, but the action taken can be anything
within the application’s purview.

2This simple mechanism can easily be exchanged for a more sophisticated
and potentially semantically hierarchical naming system without impacting
any other functionality in MadApp

Enabling MadApp’s Listeners. MadApp relies on a local
neighbor discovery service that hands the identities and con-
nection information of discovered peers to MadApp, which
creates content listeners that wait to receive incoming content
from connected peer devices. As a webpage is loaded on
a client device, it registers interests in specific content, and
MadApp connects these registrations to the peer listeners by
filtering any opportunistically received data and forwarding
“matches” to registered pages. Fig. 2 shows the sequence of
steps that get a MadApp enabled web application up and
running. The init steps initialize the content event streams via
the neighbor discovery service and the MadApp enabled web
application received from an external web server and launched
on the client device. The latter init action relies on MadApp’s
addEventListener function to initialize data structures in
the MadApp middleware that connect 〈#type, callback〉 pairs
and enable MadApp to forward received content to registered
web applications. Steps 1 through 4 in Fig. 2 follow the
path of opportunistically received content through the MadApp
middleware to the web application.

*.html'

MadApp'

…''

callback'
callback'

callback'

applica2on5specific'filters'

init'
addEventListener()

2' mul2plex'

neighbor'
discovery'
service'

create'
event'
streams'

1' receive'data'

3' demul2plex'

4' update'

init'

Fig. 2. The MadApp client-side architecture.

Opportunistic Data Collection. Upon arrival at the client
device, a MadApp enabled web application is incomplete,
but logic embedded in the webpage dictates how the missing
information should be filled in as the client device interacts
with discovered peers via direct connections. These peers are
depicted at the right side of Fig. 1. These peer devices run
MadApp push servers that are connected into the client-side
MadApp middleware via the neighbor discovery service; as
these content providing push servers have data available to
share with peers, they generate events that encapsulate the
content and stream into the MadApp middleware on the client
side. These events arrive through the pipes depicted at the
bottom of Fig. 2. MadApp multiplexes these received event
streams onto its application-level filters (step 2 in Fig. 2). If
a piece of received content matches a #type for which a live
web application has registered, MadApp invokes the associated
callback, passing the received content into the application layer
(step 3).

On the content providing device, the push server is a dedi-
cated application that collects content and shares it in a local

area via direct peer to peer connections. The nature of this
application is one of crowd-sourcing or crowd-sensing, where
the data may be generated automatically by peer devices (e.g.,
automatically sensed environmental data) or at a more human
time-scale (e.g., eye-witness photos taken by people nearby
an unfolding event). As such, the push server application can
be a user-interactive one or an application that runs “in the
background.” We provide additional details on our specific
prototype push server in the next section.

For our prototype implementation and case study demon-
stration described in the subsequent sections, we assume a
MadApp client device can collect information from “one-hop”
neighbors, i.e., neighbors to which the client device is directly
connected via a wireless link. However, MadApp is itself
independent of the underlying networking implementation.
Therefore, the MadApp model and middleware implemen-
tation can seamlessly integrate with more advanced delay-
tolerant routing approaches (e.g., those that enable multi-hop
forwarding or those that implement probabilistic routing based
on context) to distribute content even more widely.

In this paper, when we refer to MadApp clients and MadApp
push servers, we speak of disjoint sets of devices. In the typical
deployment we envision, however, the average device serves
as both a client device (a consumer of information) and a push
server device (a provider of locally relevant content). These
two functions are completely independent so we treat them as
such in the remainder of this paper.

IV. IMPLEMENTATION

Our implementation of MadApp is based on a combination
of javascript, the Django web framework3, and Server-Sent
Events (SSE) [11]; we use the python implementation of
SSE4. We build on the widely used Django web framework
to enable a smooth transition for otherwise ordinary web
developers. In our prototype implementation, we demonstrate
the capabilities of MadApp by assuming a statically defined
set of peer devices. We do not assume that the client device is
persistently connected to all of the peers; instead our MadApp
implementation connects only to peers in this static set as they
become available (and can disconnect and reconnect to them
as mobility dictates). In general, we assume the availability
of approaches already described in the literature that can
discover available connected devices in the mobile computing
environment, e.g., via bluetooth or wifi connections [7], which
can easily replace our static neighbor definition component.

Fig. 3 depicts the architecture of a complete MadApp
deployment, including the client, which initially requests a
webpage and opportunistically receives content to fill holes in
that web application, the HTML server, which provides the
basic MadApp enabled web application, and the HTML push
server, which runs on peer devices that the client opportunisti-
cally discovers in the mobile computing environment. We omit
the implementation details for brevity, but the complete details

3https://www.djangoproject.com
4https://github.com/niwibe/sse

HTML%Server%

Client%

HTML%Push%Server%(Peer%Device)%

Browser/(
Applica/on(

Django((
Framework(

Template(Layer(

Model(Layer(

Views((
Layer(

URL(
Dispatcher(

Caching(
Framework(

Database(

Browser/(
Applica/on(

Django((
Framework(

Template(Layer(

Model(Layer(

Views((
Layer(

URL(
Dispatcher(

Caching(
Framework(

Database(

*.html(

…(event(
listeners(

1(

2(

views.py(server(
sent(
events(

4(

5(

6(3(

MadApp(

Fig. 3. Architecture of Django-based implementation. A client requests a
MadApp enabled webpage (step 1), which is retrieved via Django in the
traditional way (step 2). The webpage is delivered to the client and loaded on
top of MadApp (step 3). Asynchronously, peer devices’ push servers generate
content, which is passed into the peer device’s Django views layer (step 4),
encapsulated in a server-sent event (step 5) and sent to the client device using
the sse implementation (step 6).

can be found in [18]. We have implemented the architecture for
both a full-fledged browser (e.g., on a laptop) and on Android.

V. CASE STUDY

To study the use of MadApp and to evaluate the perfor-
mance of its ability to opportunistically deliver dynamic con-
tent in a variety of opportunistic mobile computing scenarios,
we implemented a simple MadApp enabled web application
that opportunistically collects and dynamically displays photos
from nearby tourists depicting local sights.

The client’s web browser retrieves the basic page from
the HTML server and loads it for display into the browser.
The page that is initially retrieved contains simple plain
formatted text and the code that interacts with MadApp
to prepare to receive the photographs opportunistically. The
webpage’s callback is the simplest possible use of MadApp;
it simply updates the displayed webpage by appending any
received photos. The code of this callback is shown in Fig. 4;
source is an EventSource, connected to an application-
level MadApp event stream. The webpage’s state includes
an array of received photos (imgs[]), and the number of
received images (numImgs). The received content is added
to the list of images, and, after preparing the received image
for display, the image is added to the body of the webpage.

source.addEventListener("touristPhoto",
function(e) {

indexof=(indexof+1)%numImgs;
imgs[indexof]=new Image();
imgs[indexof].src=e.data;
imgs[indexof].setAttribute("width", "20%");
document.body.appendChild(imgs[indexof]);
events_dom.html("<div>" + e.data + "</div>");

});
Fig. 4. MadApp Example callback. The callback (“function” in the figure)
simply appends the received photo on the displayed webpage.

On the push server side, we implemented multiple options.
In our Windows deployment, we developed a user facing
application in C# that allows a user to select a photo from

the file system to “share.” When the user selects the photo, the
push server implementation immediately pushes the content to
any client that is connected to the push server and has loaded
the webpage in its browser. Recall that loading a MadApp
enabled webpage caused the client to “register” to receive the
photo. For testing and evaluation purposes, we also created
an automated content generator that periodically (according
to a specified schedule) creates data and shares it with the
push server implementation. Finally, we created an Android
version of the push server that runs a user-facing file browser
in QPython on the Android operating system.

To accomplish the described functionality, every push server
implements the code shown in Fig. 5 within the views.py
definition in the views layer of the Django framework.
...
myopen=open(fileURL)
self.sse.add_message("touristPhoto",

unicode(myopen.readline()))
...
Fig. 5. MadApp push server functionality. This code snippet assumes that
fileURL contains a local handle to the photograph to be pushed; this file is
created by the user-facing application when the user selects a photo to send.6

We have used this case study to demonstrate the capabilities
of MadApp in supporting opportunistic content collection for
delay-tolerant mobile computing applications by executing
the entire deployment on a variety of types and numbers of
devices, connected over a mobile ad hoc network in which peer
devices can join and leave the network, generating content as
they are available. These efforts demonstrate MadApp’s feasi-
bility and potential usefulness. In the next section, we also use
this implementation to evaluate the performance of MadApp
with respect to its ability to distribute opportunistically shared
data in a pair of real-world scenarios.

VI. EVALUATION

We used MadApp with our case study to evaluate the
enabled opportunistic data sharing in two real-world oppor-
tunistic mobile computing scenarios. We used two connectivity
traces from the CRAWDAD repository7 to dictate the one-hop
connectivity among peer devices.

Evaluation Setup. The first data set, St. Andrews [2], was
generated from 27 study participants at the University of
St. Andrews (undergraduate students, postgraduate students,
and staff members) with mobile devices. The participants
carried the devices for 79 days, during which time the devices
collected contacts consisting of the encountered device, the
start time of the encounter, and the end time of the encounter.

Our second data set, SIGCOMM [16], was generated during
the SIGCOMM conference in 2009, from 76 conference
participants with mobile devices that collected their pairwise
interactions over the conference. A contact consisted of the en-
countered device and a timestamp. We used these timestamps
as the initiation of a contact and filled in the duration of the
contact according to a normal distribution with a mean of 30

6Due to idiosyncracies of our implementation, we convert image files to
base64 data before sending and convert the data back to images on the client.

7crawdad.cs.dartmouth.edu

Fig. 6. Percentage of Available Content Received at Client

minutes and a standard deviation of 15 minutes to mimic a
conference scenario, where contacts are likely to be of a long
duration (e.g., the length of a “session” of the conference).

A single “run” randomly selects a device in the trace
file to be the client, which requests the webpage from an
always available web server. A randomly selected subset of
the remaining devices are peer push servers. The number
of push servers used varies between runs. Each push server
made available at most 50 tourist photos that were shared
opportunistically as the push server encountered the client
device as governed by the contact trace.

We generated photos on push servers to mimic automatically
generated and human-generated data. Each run is parame-
terized by a send delay, which specifies the delay between
sending two photos. If the send delay is 0, all content is
available at the beginning of the scenario, so any delays in
receiving content at the client are governed purely by contact
availability. A run is also parameterized by an initialization
delay, which models the amount of time it takes to set up a
connection between peers. The initialization delay captures an
application delay that might be incurred, for example, if the
user is required to give permission for the devices to pair.

Results. We measure and report two types of data. First, we
report the amount of the content that the client device was able
to receive and display. We compute both the raw number of
content items the client receives and the percentage of the total
available content that is received. We also plot the cumulative
acquisition of data, measured at 60 second intervals, over the
entire period of the contact trace. We average across 10 unique
runs, consisting of a different device acting as the client and
a different selection of push servers.

Fig. 6 shows the results for the first metric as we vary our
automator’s send delay. The four curves depict four different
initialization delay values; due to space limitations we show
only the chart for the St. Andrews data set, in which we had
a single client and 20 push servers. The amount of content
received by the client when both the send delay and initializa-
tion delay are set to 0 is effectively the best possible outcome.
Any data not delivered in this scenario was not delivered not
because of MadApp or its networking behavior, but simply
because the contact opportunities did not allow the push server
holding the data to meet the client and transmit the files.

The results in Fig. 6 show that increasing the initialization
delay has a significant impact on the performance in the St.
Andrews traces (this was not the case at all in the SIGCOMM
traces). This is due to the highly transient nature of the St.
Andrews traces. When the contact opportunities are fleetingly
brief, any time spent kickstarting the exchange is time that is
not spent exchanging content, resulting in a dramatic decline
in the percentage of content the client receives. This has no
statistically significant impact in the SIGCOMM traces, simply
because the contact durations are so much longer that the
initialization delay (even at 60 seconds) is a very small fraction
of the contact interval and therefore does not significantly
disrupt the exchange of content.

The results for the St. Andrews data set also show a surpris-
ingly steep decrease in the percentage of content received as
the send delay increases. This is a further testament to the
transient nature of the opportunistic contacts. As the send
delay increases, MadApp does not have all of the content
available from the beginning of the trace, so contact opportu-
nities, especially those earlier in the trace, are potentially lost
opportunities to share content that has not been generated yet.

Fig. 7. Cumulative Data Acquisition (St. Andrews data set, 15sec. send delay)

To get a better picture of the collection rate of the op-
portunistic content, we also look at plots of the cumulative
acquisition of the available data. Fig. 7 shows this metric for
the St. Andrews data set, given a 15 second send delay and
varying initialization delays. Fig. 8 shows this metric for the
SIGCOMM data set, using a 60 second send delay; the four
different curves in Fig. 8 correspond to varying numbers of
push servers available in the mobile computing environment.

In the St. Andrews data trace (Fig. 7, which executed over
79 days (the first 70 days are shown in the figure), a very
large portion of the content that was ultimately delivered
was delivered in the first three weeks. Increments after this
time period indicate data that was generated early on (again,
within the first few hours of the execution) and was carried
around by the push servers for days or weeks before the
push server happened to encounter the client and deliver the
content. The usefulness of content received this long after its
generation time is clearly application dependent. Concretely,
in our specific example, before 2 hours completed in the St.
Andrews trace, the client, on average, received not only the
static web page content but also between 9.6 and 14 live tourist
photos supplementing that static content and shared locally by

Fig. 8. Cumulative Data Acquisition (SIGCOMM data set, 60sec. send delay)

peers in the mobile computing network.
The SIGCOMM trace shows a more gradual accumulation

of content (over the course of the two day conference). Flat
periods in the graph indicate either that no contacts were
made during this time (e.g., it was nighttime) or that no novel
contacts were made. The results in Fig. 8 show no significant
difference in the percentage of total available content delivered
when the number of push servers increases; obviously, when
there are more push servers generating content, there is more
content to be collected. While the percentage of content
collected is the same for different numbers of push servers,
the diversity of that information is higher when there are more
content sharers; this is a boon for the types of applications
MadApp targets. In these scenarios, the first tourist photo
always arrived within the first hour (after an average of 57
minutes for 10 push servers), but came, on average, within the
first seven minutes when there were 75 push servers. This “first
content” metric measures the user’s perceived “responsive-
ness” of the webpage; in this regard, MadApp strikes a balance
between traditional (nearly instantaneous) web browsing and
existing asynchronous browsing of approaches [5].

VII. CONCLUSION

We introduced MadApp, a middleware for supporting de-
velopment of applications that incorporate inherently delay-
tolerant data in mobile computing environments. We outlined
MadApp’s conceptual model and implementation and used a
case study to demonstrate the feasibility and potential per-
formance aspects of MadApp. Applications built on MadApp
can accomplish myriad tasks using the dynamic content they
receive from connected peers. For now we have focused on
the application-level display of webpages and the updating of
those webpages to reflect newly arriving content. Other appli-
cation capabilities can easily be layered on top of MadApp,
taking advantage of all of its dynamic content delivery aspects
and just doing something different with the content when
it arrives. This simply requires “routing” the incoming data
streams appropriately on the local device. While existing work
has made opportunistic mobile computing applications tech-
nically feasible, MadApp is a key step in fully realizing these
applications by augmenting the traditional networking focus
with a focus on equally important application abstractions.

ACKNOWLEDGMENTS

This work was funded, in part, by the National Science
Foundation (NSF), Grant #CNS-0844850 and the Department
of Defense (DoD), Grant #H98230-12-C-0336. The views
and conclusions herein are those of the authors and do not
necessarily reflect the views of the sponsoring agencies. The
authors would like to thank Agoston Petz for his initial work
on the project and input on the implementation.

REFERENCES

[1] A. Balasubramanian, B. Levine, and A. Venkataramani. Enhancing
interactive web applications in hybrid networks. In Proc. of MobiCom,
pages 70–80, 2008.

[2] G. Bigwood, D. Rehunathan, M. Bateman, T. Henderson, and S. Bhatti.
Exploiting self-reported social networks for routing in ubiquitous com-
puting environments. In Proc. of WiMob, pages 484–489, 2008.

[3] Y. Cao and Z. Sun. Routing in delay/disruption tolerant networks: A
taxonomy, survey and challenges. IEEE Communications Surveys and
Tutorials, 15(2):654–677, 2013.

[4] S. Chava, R. Ennaji, J. Chen, and L. Subramanian. Cost-aware mobile
web browsing. IEEE Pervasive Computing, 11(3):34–42, 2012.

[5] J. Chen, S. Amershi, A. Dhananjay, and L. Subramanian. Comparing
web interaction models in developing regions. In Proc. of DEV, 2010.

[6] L.-J. Chen, C.-H. Yu, C.-L. Tseng, H.-H. Chu, and C.-F. Chou. A
content-centric framework for effective data dissemination in oppor-
tuntistic networks. IEEE J. on Selected Areas in Communications,
26(5):761–772, 2008.

[7] T. Clausen, C. Dearlove, and J. Dean. Mobile ad hoc network
(manet) neighborhood discovery protocol (nhdp). IETF RFC 6130,
http://xml2rfc.tools.ietf.org/html/rfc6130, 2011.

[8] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet: Vehicular
content delivery using WiFi. In Proc. of MobiCom, 2008.

[9] A. Goliath, J. A. B. Link, and K. Wehrle. Demo: A versatile architecture
for DTN services. In Proc. of ExtremeCom, 2012.

[10] B. Han, P. Hui, V. Kuman, M. Marathe, J. Shao, and A. Srinivasan.
Mobile data offloading through opportunistic communications and social
participation. IEEE Trans. on Mobile Computing, 11(5):821–834, 2012.

[11] I. Hickson. Server-sent events. W3C Candidate Recommendation CR-
eventsource-20121211, http://www.w3.org/TR/eventsource, 2012.

[12] P. Jiang, J. Bigham, E. Bodanese, and E. Claudel. Publish/subscribe
delay-tolerant message-oriented middleware for resilient communica-
tion. IEEE Communications Magazine, 49(9):124–130, 2011.

[13] F. Malandrino, C. Casetti, C. Chiasserini, and M. Fiore. Content
downloading in vehicular networks: What really matters. In Proc. of
INFOCOM, pages 426–430, 2011.

[14] A. Petz and C. Julien. An adaptive middleware to support delay-tolerant
networking. In Proc. of ARM, pages 17–22, 2008.

[15] A. Petz, A. Lindgren, P. Hui, and C. Julien. MADServer: A server
architecture for mobile advanced delivery. In Proc. of CHANTS, 2012.

[16] A.-K. Pietilänen and C. Diot. Dissemination in opportunistic social
networks: the role of temporal communities. In Proc. of MobiHoc,
pages 165–174, 2012.

[17] M. Pitkänen et al. SCAMPI: Service platform for social aware mobile
and pervasive computing. ACM SIGCOMM Computer Communication
Review, 42(4):503–508, October 2012.

[18] V. Srinivasan and C. Julien. Madapp: A middleware foropportunistic
data in mobile web applications. Technical Report TR-UTARISE-2014-
02, The Center for Advanced Research in Software Engineering, The
University of Texas at Austin, 2014.

[19] D. Tran, K. Hua, and T. Do. ZIGZAG: An efficient peer-to-peer scheme
for media streaming. In Proc. of INFOCOM, pages 1283–1292, 2003.

[20] J. Wu, Z. Lu, B. Lu, and S. Zhang. PeerCDN: A novel P2P network
assisted streaming content delivery network scheme. In Proc. of ICCST,
pages 601–606, 2008.

[21] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang. A peer-to-peer network
for live media streaming using a push-pull approach. In Proc. of MM,
pages 287–290, 2005.

[22] H. Zhuang, H. Ntareme, Z. Ou, and B. Pehrson. A service adaptation
middleware for delay tolerant network based on HTTP simple queue
service. In Proc. of NSDR, 2012.

