
Trends and Challenges for Software Engineering in the Mobile
Domain

AUTHORS

● Luciano Baresi (Politecnico di Milano)
● William G. Griswold (University of California San Diego)
● Grace A. Lewis (Carnegie Mellon Software Engineering Institute)
● Marco Autili (University of L’Aquila)
● Ivano Malavolta (Vrije Universiteit Amsterdam)
● Christine Julien (University of Texas at Austin)

ABSTRACT
Mobile computing is relevant, everywhere, and evolves so fast that it deserves special
attention. This article builds on conversations that started during a panel session on “ the role
of engineering and development in mobile software” held at the IEEE/ACM International
Conference on Mobile Software Engineering and Systems (MobileSoft’18). The panel
highlighted that mobile computing is not just Android and mobile apps. It touched on the
impact of mobile computing on software engineering practices, the problem of forming the
mobile software engineering professional, and the transition of research to industry. It also
addressed the problems of logical vs. physical mobility and of supporting the "always on"
mentality. At the end of the panel we all felt that there was so much more to talk about, that
we continued the conversation and summarized our extended discussions in this article.

KEYWORDS
Mobile computing, Software engineering, Android and beyond, Research and Industry.

1. Introduction

During the past decade, the rapid rise of mobile computing has upended software
engineering research and practice [1]. Applications now readily integrate on-device
capabilities, from GPS data and wireless communications, to cameras and myriad other
sensors [2]. Applications are also immersive, integrating their end users with a rapidly
changing digital landscape and leveraging dynamically available resources to enable more
expressive sensing or to reduce energy consumption.

The impact of these changes is evident in both software engineering research and in
industry settings. New sensing contexts, combined with the power of mobility and ubiquity,
have radically changed how mobile software is developed in industry settings. The
“classical” phases of software engineering no longer apply directly, and novel approaches,
frameworks, and the changing landscape demand a substantial shift of perception with
respect to these classical approaches. New methodologies, solutions, and frameworks, and
also a different way of working are mandatory and require a direct link between research,
industry, and end users.

1

The recent uptick in research directly related to mobile computing has been dramatic and
highlights the importance of the topic. In ICSE and FSE combined, the two flagship software
engineering conferences, the number of articles in the main research tracks relating to
“mobile” or “Android” has increased from 14% of all accepted research papers in 2016 to
31% of the accepted papers in 2018, a 120% increase in the span of two years. On the end
users side, the digital media usage time is strongly driven by mobile devices, with
smartphones and tablets accounting for 66% of all time spent, against desktop usage which
accounts for 34% only [3]. Starting from these figures, this article provides an organized
summary of the outcomes of the discussions that 65 researchers and practitioners had
during a panel session on “ the role of engineering and development in mobile software” held
at the MobileSoft’18 conference in Gothenburg, Sweden. The panel was designed as a
guided conversation over the dimensions shown in Figure 1.

Figure 1 - Dimensions of the role of engineering and development in Mobile Software

The dimensions are orthogonal concerns that crosscut the main stages of the software
development life cycle (i.e., requirements, design and development, testing, and
maintenance). These dimensions are complementary and give fresh life to the work in [12]
that, at the time of writing (2016), discussed current and future research trends and was
organized around these stages.

The rest of the article is organized as follows. Sections 2 through 8 discuss the seven
dimensions in detail. Section 9 identifies some lessons learned and concludes the article.

2

2. The Impact of Mobile Computing on Software Engineering Practices

Apps are GUI-centered — efficient, responsive, and appealing user interfaces are key for the
success of apps. Apps require ultra-fast development cycles because end users rate and
review apps massively and at tremendous rates, new versions of Android and iOS are
released at least every year, and new competitors continuously pop up in app stores. Apps
are very complex software systems that interact with many physical entities (both inside and
outside the phone) and integrate diverse (potentially third-party) services in the cloud. Apps
must also work on very diverse devices in terms of version of the operating system, sensors,
etc. [4].

Context-awareness [5,6] enables the development of innovative features for mobile
applications but creates challenges for mobile software engineering. Being able to take
advantage of different sensors on mobile devices, as well as use data from end users, can
lead to an improved user experience. However, there are tradeoffs with energy efficiency,
security, and privacy that need to be considered as well. We advocate that performing
tradeoff analysis should be an explicit tenet of the design and development of mobile apps.

Another unique aspect of mobile software development is the need to be adaptive. For
example, in power management, non-urgent communications can be delayed to save power
(e.g., reporting pulse rate over time), while urgent ones should not (e.g., reporting
tachycardia). This points to another unique aspect, which is the constant presence of failure:
poor connectivity, low battery levels, sensor inaccuracies, etc.

These challenges make fully automated approaches to adaptivity difficult. When a (network)
failure occurs, sometimes it should not be hidden from the end user in order to allow them to
take action outside the application (e.g., troubleshoot the failure and change the phone’s
wireless settings). End users desire responsiveness, energy efficiency, always-on
connectivity, and of course correctness [8]. End users also want the latest features.
Developers desire rapid development at reasonable costs. Software researchers have long
sought for language-based and compiler-based solutions for managing trade offs. These are
critical, but they cannot be a silver bullet [7].

Research in aspect-oriented software development can find application here. Two recent
projects highlight the promise, APE and ANEL. APE (and its successor TEMPUS) addressed
the challenges of adaptive power management, enabling a developer to declare which
computations, under given situations, could be delayed to save power [13]. ANEL addressed
the complexities of robust mobile networking, enabling a developer to incrementally and
declaratively improve simple networking implementations [15]. There are also many
available libraries such as Retrofit and Volley that enable developers to separate complex 1 2

service consumption and networking code from application and fault tolerance logic.

The bottom line is that although architecture, system qualities, and tradeoffs have always
been a key part of software engineering, these concepts become more prevalent and

1 https://square.github.io/retrofit/
2 https://developer.android.com/training/volley

3

https://square.github.io/retrofit/
https://developer.android.com/training/volley

important to address in mobile software engineering due to much more dynamic operating
environments and diversity of end users and platforms [12]. Providing software engineers
the tools to analyze and study tradeoffs, in addition to tools to help with separation of
concerns, is key for the development of adaptive mobile applications.

3. Support for the “Always-on” Mentality

End users want a seamless experience, whether in the home, at work, or on the move. The
challenges of supporting the always-on mentality [9] of end users can only be addressed
with the always-on connectivity in the mind of software engineers.

Today’s ubiquitous networking pursues the convergence of wireless telecommunication
networks and wireless IP networks to provide seamless connectivity from everywhere at any
time thanks to the multi-radio capabilities offered by today’s mobile devices. As a result, the
ubiquitous networking environment cannot be considered as a “passive” entity that only
transports data between end points. Rather, mobile apps must consider it as an “active”
party to be fully exploited. Supporting the always-on mentality in such a complex and
dynamic networking environment calls for the development of ubiquitous-oriented solutions,
which give mobile apps the “impression” of perfect connectivity, hence assuming the always
accessibility of remote hosts.

End users expect their apps to always work and their devices to always be available, In this
respect, Defensive Programming is a needed software engineer mentality in today’s world. 3

Systems need to be written expecting that the worst will happen. Fault Tree Analysis, a tool
commonly used by hardware engineers, is useful to brainstorm about all the bad things that
can happen. Even though not specific to mobile software development, another example of a
tool that reflects this mentality is the Netflix project Chaos Monkey, a tool developed in 2011
by Netflix to test their infrastructure. The tool intentionally disables components in the
production network to test how remaining systems respond to the outage.

4. Logical vs. Physical Mobility

About 15 years ago, we used to distinguish between Physical Mobility of devices (where
mobile devices move around) and Logical Mobility (where pieces of code and state are
moved across hosts). We can definitely still distinguish between logical and physical mobility,
but the real question is whether it makes sense to continue doing so. For the past decade,
ever since Mahadev “Satya” Satyanarayanan introduced the concept of cyber-foraging [8],
there has been a lot of research in how to partition and deploy mobile applications so that
they can opportunistically take advantage of more powerful computing resources in order to
optimize battery life and network usage . The runtime optimization algorithms that have been
developed to determine whether it makes sense to execute locally or remotely are very
creative. The techniques to design and partition applications to determine the unit of offload
have ranged from offloading at the thread level, method, class, service, to full application. In
the end, the conclusion for all that research has been (1) it only makes sense to offload if the

3 http://www.drdobbs.com/defensive-programming/184401915

4

http://www.drdobbs.com/defensive-programming/184401915

cost of remote execution is lower than the cost of local execution, and (2) the more
information you have to make this decision the better. However, if you look at the
assumptions made by most of this research, they are impossible to guarantee in practice.
For example, they assume perfect connectivity, or perfect knowledge of the information
needed in the optimization function, or identical local and remote applications that are
always accessible, or extensive tagging on behalf of the developer, or that there are trusted
edge or cloud servers always available to receive computation offload requests. The real
(and more feasible) power of cyber-foraging is in determining how to place data and
computation closer to mobile devices, when they need it. This means that the app is no
longer solely responsible for making cyber-foraging decisions; instead, the problem becomes
a system and network one. Cloud-based systems need to be able to push computation and
data to their trusted surrogates, and mobile devices need to be able to (automatically) locate
these surrogates and deal with the intermittent connectivity and device mobility.

5. Moving Past Android

With 88% of all sold smartphones being Android phones, Android has a huge portion of the
market share today . This is also reflected in the amount of scientific contributions on 4

Android in our flagship conferences. For example, out of the 105 studies published in the
technical track of the 40th edition of the International Conference on Software Engineering
(ICSE 2018), 15 studies are about mobile apps, and among them 14 are about Android. We
can also trace this trend towards Android to technical aspects . Firstly, Android is
open-source, meaning that researchers can customize the Android OS integrating their
solutions and perform experiments on them; the source code of the whole platform is
available and versioned since the beginning, allowing researchers to study the internals of
the platform and how it evolved over time. Secondly, Android is heavily based on Java, a
language that is widely adopted and taught in Universities. Moreover, many researchers are
comfortable with Java, thus easing their understanding about the specific phenomena
happening in the source code of Android apps. Finally, today a large amount of techniques,
tools, and datasets exist for statically analyzing and testing Android apps, which can be
leveraged by researchers for scaling up the execution of new studies, thus leaving behind
other aspects of the mobile app ecosystem, which are less covered, e.g. in terms of analysis
tools.

Nevertheless, if we look back in time it is evident that the mobile ecosystem is extremely
dynamic, with platforms unpredictably rising and falling in terms of sales of devices (for
example, 16% of all smartphones sold in 2010 were running the Blackberry OS), company
acquisitions, and end users flowing from/to other platforms.

This technological volatility makes us wonder what will be the fate of the Android-specific
large body of knowledge and tools that researchers are producing . As a step forward, we
suggest to the research community to direct their focus on more fundamental aspects of the
mobile ecosystem, such as the (currently sub-optimal) distribution model of mobile apps, the

4
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-system
s/

5

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

IDEs, the APIs provided by the mobile platforms, etc. In order to make research results
more future-proof and relevant, researchers should focus on fundamental challenges in the
mobile software engineering ecosystem. As a first step, researchers may commit to have
dedicated sections in their papers about the generality of the conducted studies, e.g., by
showing how they are not specifically bound to Android and by highlighting which parts
depend on Android and which can be considered as generally applicable.

Complementary, new languages and cross-platform frameworks are emerging for mobile
apps (e.g., Kotlin, React Native, Flutter) and they are extremely popular and heavily adopted
in industry, but the research community tends to ignore them. As a community, researchers
should get out of the (Java+Android) comfort zone and strive towards studying new
technologies and considering their potential impact on the mobile computing landscape.

6. Going Beyond Mobile Apps

Wearables and constellations of Internet-of-Things (IoT) devices are revolutionizing the way
we live and work (e.g., smart home appliances, Industry 4.0, healthcare) and will be driving
the research in the near future. New applications of mobile computing will likely have an
even bigger impact, such as those enabled by machine learning, computer vision,
augmented/virtual reality, natural language processing, and speech recognition. Privacy,
security, performance, and energy consumption for mobile apps are being actively
investigated by researchers and practitioners, but they have not been fully explored yet in
the context of these new applications of mobile computing.

From the infrastructure perspective, we are moving towards a continuum where computing
starts on mobile devices and continues onto edge and cloud infrastructures, reaching also
many other devices (e.g., ISP gateways, cellular base stations) [10]. We need solutions to
exploit such a continuum in a flexible way, without pre-deciding the allocation of components
and thus the languages and tools to create them. Edge infrastructures may add a new
interesting dimension to the problem of managing computationally heavy tasks on mobile
devices, especially in the context of wearable devices with very limited battery life and
computational power, connected cars, and smart objects (e.g., home automation and
advanced logistics).

In this context, a possible step forward may be the combination of the microservices
architectural style and devOps concepts for dynamic surrogate provisioning at the edge,
networking protocols that deal better with intermittent communications such as delay-tolerant
networking, and new business models to support cyber-foraging at industrial scale.
Cyber-foraging will be one of the enablers of augmented reality, given that performing image
recognition and analysis are crucial elements of augmented reality frameworks like Google’s
ARCore , but they are extremely expensive for mobile devices both in terms of performance 5

and battery consumption.

7. Transitioning Research into Industry

5 https://developers.google.com/ar/

6

https://developers.google.com/ar/

If we look at research papers on mobile software, we see a spectrum of solutions, ranging
from narrow studies on low-level aspects of mobile app development (e.g., how Java
collections may impact the performance of an app) to system-level approaches on the whole
mobile ecosystem (e.g., new permission systems for Android). Our perception is that narrow
and in-depth studies may be more easily adopted by industry (e.g., a new static checker for
Android Studio) compared to wide studies which may strongly improve (but also disrupt) the
current status quo.

Adoptability is also facilitated by the development of well-tested and maintained tools
embodying the research results proposed by researchers, so that industry can independently
verify, check, and start using the proposed solutions. However, if on one side we know that
industry expects ready-to-use solutions, on the other side going too much towards this
model may lead to the risk of not focusing on more fundamental problems, which may be
more rewarding in the long run. As often happens in software engineering, it is up to the
involved players to find the right tradeoff. A first step is to build a certain sensibility with
respect to the technology transfer process (use [6] as starting point) and to learn from known
success stories (see Sidebar). From our experience we learned that when setting up a
collaboration, the first and necessary condition towards success is to share and discuss
up-front the goals of both the academic and industrial partners and let them converge. This
shields researchers from running the risks of not considering the realities of operational
environments and also from falling into the trap of trying to sell to industry the answers we
have without listening to their questions.

The APE approach discussed above is an example of how the complexities of a research
product may be a “good fit” for near-term impact. After the APE work was published, Google
came out with extensions to the AsyncTask Android class to conditionally run a task based
on the network or energy status of the device. Although less powerful than the APE
approach, Google’s extension was perfect for Android, given the centrality of AsyncTasks in
Android. In this regard, the APE-related research was less transferable in the near term, but
more impactful in the long term. Another problem with some research results is the
excessive complexity of the proposed solutions. To address limitations in APE’s path-based
power management, TEMPUS takes an object-oriented approach. This requires elaborate
static and runtime analysis, which could make it difficult for industry to adopt. This kind of
complexity was criticized by Willy Zwaenepoel in his MobiSys’07 keynote “ P2P, DSM, and
Other Products of the Complexity Factory ”, in which he said “ complexity is untenable at
scale -- and scale is what industry does ”. We, both researchers and professionals, should
remember this and focus more on solving problems rather than creating new (and more
complex) ones.

SIDEBAR - Success stories about research that has impacted the mobile industry

7

Notably, two industry sectors, namely (1) medical devices and equipment, and (2) network
systems and communications, have a recent history of extensive collaboration with
academic researchers. For instance, concerning the network systems and
communications’ sector, we can mention the contributions of applied academic research to

8. Forming the Mobile Software Engineering Professional

When talking about the future of software, it is inevitable to acknowledge that the supreme
value is in students (both Computer Science and other disciplines) and on their professional
education. This leads to the following key question: what is the role of education when
forming the next mobile software engineering professional ?

“Mobile software engineering” is a very applied topic, which is why a very applied program
would be preferable. Our hypothetical program would be composed of four main orthogonal
dimensions: Foundations , Experience , Business , and Research . Foundations is the largest
dimension and it includes software engineering and systems engineering courses at different
levels, followed by mobile-specific software engineering courses. Given that a mobile
software engineer these days is in charge of realizing software which will be likely part of
users’ everyday life, the Experience dimension entails courses related to Human-Computer
Interaction, user experience design, GUI design, etc. The Business dimension aims at
providing the instruments for setting up and working within a software company (e.g., a
startup) via courses about entrepreneurship and business-related topics. As far as the
Research dimension, students would find a real problem to work on, study the current
literature on solutions for that problem, and then propose a solution that is novel and
advances the state of the art. Orthogonally to those four dimensions, instructors will be in
charge of building a rich interface between students and companies, so to facilitate (i) their
transition towards positions in industry and (ii) their exposure to industry-relevant problems
and practices.

8

packet switching and the Internet TCP/IP protocol, both key elements in the development
of the Internet, contribution to the development of routers, ATM switches, DSL (digital
subscriber line) technology, computer graphics, search engines, traffic management,
stable broadcast networking and, last but not least, the development of standards.
At Carnegie Mellon University there are several cases of researchers who have started
their own companies based on their research results. For example, Luis von Ahn, the CEO
and co-founder of DuoLingo, changed the way that people learn languages. He is also the
founder of the company reCAPTCHA, which was sold to Google in 2009. Fernando de la
Torre founded Faciometrics, a company developing technology for facial image analysis
which was recently acquired by Facebook. What all these ideas had in common is that
they were (1) simple, (2) addressed a very specific, concrete need, problem or idea, (3)
had a solid implementation of a tool/app to accompany the idea.
The examples mentioned above are surely intriguing success stories, but in other cases
the impacts of research can be much more diffused and difficult to track. For example, in
2008 Timothy Sohn (an alumni of the University of California, San Diego) conducted a
study on mobile information needs [11]. Sohn’s study ultimately formed the core of his
dissertation and had a relatively high academic impact. But perhaps more importantly,
three years later Sohn was hired at Google and worked on Google Now, which was an
early version of Google’s context-aware features in many of its mobile apps. It is doubtful
that Sohn’s research gave Google the idea for Google Now, but his research prepared him
to work on this project and helped bring these capabilities to the masses.

9. Lessons Learned and Next Steps

This article summarizes the main takeaways that emerged during the panel discussion, plus
our continued discussion on the topic. Researchers and practitioners can build on the
highlighted themes and on some lessons learned:

● Diverse sensors and data can lead to an improved user experience, but there are
tradeoffs with energy efficiency, security, and privacy.

● Mobile software must be adaptive (e.g., power management) and ready to manage
the constant presence of failures (e.g., poor connectivity or low battery levels).
Systems need to be written expecting that many bad things will happen.

● The research community is urged to focus more on fundamental aspects of the
mobile ecosystem, instead of being too Android-specific.

● We must be ready to manage a computing continuum where computing starts on
mobile devices and continues onto edge and cloud infrastructures.

● Industry expects ready-to-use solutions, but going too much towards this model may
lead to the risk of not focusing on more fundamental problems.

● Mobile software engineering is a very applied topic that calls for a very applied
educational programs that include Foundations, Experience, Business, and
Research.

As for next steps, there is room for taking mobile computing in many different ways:

● Advancing the mobile experience - The always-on mentality of today’s mobile users
calls for the engineering of ubiquitous-oriented network- and middleware-layer
solutions which give mobile apps seamless connectivity, while guaranteeing security
and privacy.

● Innovation and growth - The ultra-fast and low-latency network capacities, and
low-power consumption promised by 5G networks, call for a new generation of
engineers that can revamp the mobile market with cutting-edge apps that fully exploit
the power of AI-enabled devices coupled with the power of a 5G network.

● Protection - Mobile systems are increasingly autonomous in making decisions over
and above users or on behalf of them. Often, their autonomy exceeds the system
boundaries and invades user prerogatives. As a consequence, ethical issues such as
unauthorized disclosure and mining of personal data, or access to restricted
resources, are matters of utmost concern because they impact the moral rights of
each human being and affect social, economic, and political spheres [14]. As next
step, engineers must approach these problems from the regulatory side by
contributing to the introduction of new laws, and from the technical side by adopting
transparency and accountability criteria in software development.

References

1. C. Ebert, K. Shankar, “ Industry Trends 2017 ”, IEEE Software, vol. 34(2), pp. 112-116,
2017 - doi. 10.1109/MS.2017.55.

2. V. Pejovic, M. Musolesi, “ Anticipatory Mobile Computing: A Survey of the State of the
Art and Research Challenges ”, ACM Computing Surveys, vol. 47(3), 29 pages, 2015
- doi: 10.1145/2693843.

9

3. A. Lella, A. Lipsman, The U.S. Mobile App Report, comsCore white paper, 2017.
4. M. E. Joorabchi, A. Mesbah, P. Kruchten, “ Real challenges in mobile app

development ”, in ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 15-24, 2013 - doi: 10.1109/ESEM.2013.9.

5. K. Mens, R. Capilla, H. Hartmann, T. Kropf, “ Modeling and Managing Context-Aware
Systems’ Variability ”, in IEEE Software, vol. 34, no. 6, pp. 58-63, 2017 - doi:
10.1109/MS.2017.4121225.

6. E. Eshet, H. Bouwman, “ Addressing the Context of Use in Mobile Computing: a
Survey on the State of the Practice ”, in Interacting with Computers, vol. 27(4), pp.
392-412, 2015 - doi: 10.1093/iwc/iwu002.

7. C. Wohlin et al., “ The Success Factors Powering Industry-Academia Collaboration ”,
in IEEE Software, vol. 29(2), pp. 67-73, 2012 - doi: 10.1109/MS.2011.92.

8. G. P. Picco, C. Julien, A. L. Murphy, M. Musolesi, G. Roman, “ Software engineering
for mobility: reflecting on the past, peering into the future ”, in Proceedings of Future
of Software Engineering, pp. 13-28, 2014 - doi: 10.1145/2593882.2593884.

9. M. Satyanarayanan et al., “ Pervasive Computing: Vision and Challenges ”, in IEEE
Personal Communications, vol. 8(4), pp. 10-17, 2001 - doi: 10.1109/98.943998.

10. L. Baresi, D. F. Mendonça, M. Garriga, S. Guinea, G. Quattrocchi. 2019. A Unified
Model for the Mobile-Edge-Cloud Continuum. ACM Transactions on Internet
Technology. 19, 2, Article 29, 21 pages, 2019 - doi: 10.1145/3226644.

11. T. Sohn, K. A. Li, W. G. Griswold, J. D. Hollan, “ A diary study of mobile information
needs ”, in Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems, pp. 433-442, 2008 - doi: 10.1145/1357054.1357125.

12. M. Nagappan and E. Shihab, “ Future Trends in Software Engineering Research for
Mobile Apps ”, in Proceedings of the IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, pp. 21-32, 2016 - doi:
10.1109/SANER.2016.88.

13. N. Nikzad, O. Chipara, W. G. Griswold, “ APE: an annotation language and
middleware for energy-efficient mobile application development ”, in Proceedings of
the 36th International Conference on Software Engineering, pp. 515-526, 2014 - doi:
10.1145/2568225.2568288.

14. M. Autili, D. D. Ruscio, P. Inverardi, P. Pelliccione and M. Tivoli, “ A Software
Exoskeleton to Protect and Support Citizen’s Ethics and Privacy in the Digital World ”,
in IEEE Access, vol. 7, pp. 62011-62021, 2019 - doi:
10.1109/ACCESS.2019.2916203.

15. X. Jin, W. G. Griswold, Y. Zhou, “ ANEL: robust mobile network programming using a
declarative language ”, in Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems, pp. 202-213, 2018 - doi:
10.1145/3197231.3197237.

Authors bios

Luciano Baresi is a full professor at the Politecnico di Milano. Luciano was visiting
professor at University of Oregon (USA) and visiting researcher at University of
Paderborn (Germany). His research interests are in the broad area of software
engineering and include formal approaches for modeling and specification languages,

10

distributed systems, service-based applications and mobile, self-adaptive, and pervasive
software systems. Email: luciano.baresi@polimi.it

William G. Griswold is a Professor of Computer Science and Engineering at UC San Diego.
He received his Ph.D. in Computer Science from the University of Washington in 1991. His
research interests include ubiquitous computing, software engineering, and computer
science education. Griswold is a pioneer in the area of software refactoring, and was a
major contributor to the development of Aspect-Oriented Software Development. Later he
built ActiveCampus, an early mobile location-aware system. His recent CitiSense and
MetaSense projects investigated mobile technologies for low-cost ubiquitous real-time
air-quality sensing. He is a professional member of the ACM and IEEE Computer Society,
and a past Chair of the ACM Special Interest Group on Software Engineering (SIGSOFT).
Email: wgg@cs.ucsd.edu

Grace A. Lewis is Principal Researcher and lead of the Tactical and AI-enabled Systems
(TAS) initiative at the Software Engineering Institute at Carnegie Mellon University. Her
current areas of research and interest include software engineering for AI/ML systems, IoT
security, edge computing, software architecture (in particular for systems that integrate
emerging technologies), and software engineering in society. She is a member of organizing
and program committees for multiple conferences in the areas of software engineering and
software architecture, as well as an author and reviewer in these fields. She received her
PhD in Computer Science from Vrije Universiteit Amsterdam. She is a Senior Member of
IEEE and a member of the IEEE Computer Society Board of Governors (2020-2022). Email:
glewis@sei.cmu.edu

Marco Autili is associate professor at the University of L’Aquila. His research focuses on
automated synthesis for composing distributed systems, context-oriented privacy-aware
mobile software programming, resource-oriented analysis of mobile apps, formal
specification and checking of temporal properties. He is (has been) involved in several EU
and Italian research and development projects, as scientific coordinator, scientific and
technical leader, research unit coordinator, and work package leader. He is in the editorial
board and in the programme committee of several top-level international journals,
international conferences and workshops. He received his PhD in Computer Science from
the University of L’Aquila in 2008. He is a professional member of ACM and IEEE. Email:
marco.autili@univaq.it

Ivano Malavolta is assistant professor at the Computer Science Department of the Vrije
Universiteit Amsterdam (The Netherlands). His research focuses on data-driven software
engineering, with a special emphasis on software architecture, mobile software
development, and robotics software. He applies empirical methods to assess practices and
trends in the field of software engineering. He has authored several scientific articles in
international journals and peer-reviewed international conferences proceedings in the
software engineering field. He received a PhD in computer science from the University of
L'Aquila in 2012. He is a member of ACM, IEEE, VERSEN, Amsterdam Young Academy,
and Amsterdam Data Science. Email: i.malavolta@vu.nl

11

mailto:luciano.baresi@polimi.it
mailto:wgg@cs.ucsd.edu
mailto:glewis@sei.cmu.edu
mailto:marco.autili@univaq.it
mailto:i.malavolta@vu.nl

Christine Julien is a full professor in the Center for Advanced Research in Software
Engineering at the University of Texas at Austin. Her research is at the intersection of
software engineering and dynamic, unpredictable networked environments, with a focus on
models, abstractions, tools, and middleware to ease the software engineering burden
associated with building applications for pervasive and mobile computing environments. Her
research has been funded by numerous foundations and organizations, her work has
appeared in many peer-reviewed journal and conference publications, and she serves
regularly as a peer reviewer for conferences and journals in these fields. She is a Senior
Member of the IEEE. She received her D.Sc. from Washington University in Saint Louis.
Email: c.julien@utexas.edu

12

mailto:c.julien@utexas.edu

