
ArcIoT: Enabling Intuitive Device Control in the
Internet of Things through Augmented Reality

Jie Hua†, Sangsu Lee†, Gruia-Catalin Roman‡, Christine Julien†
†Department of Electrical and Computer Engineering, University of Texas at Austin,

{mich94hj, sethlee, c.julien}@utexas.edu
‡Department of Computer Science, University of New Mexico, gcroman@unm.edu

Abstract—Increasing numbers of smart devices have enriched
the possibilities of the IoT. These advances also impose significant
cognitive overhead on the end-users; to interact with IoT devices,
a user must be knowledgeable about the devices, the applications,
the network, etc. We present ArcIoT, a system that enables
intuitive interaction with IoT devices by leveraging Augmented
Reality (AR) and a novel relative indoor localization service. In
ArcIoT, the user points a smartphone camera towards a device to
control, chooses the device by a tap on the screen, and interacts
with the displayed interface. Continuously and transparently, Ar-
cIoT maintains a map of devices in the environment, which allows
it to quickly and reliably control them. Compared to existing
solutions, ArcIoT does not need predefined markers to recognize
a device or require any change to physical infrastructure. ArcIoT
is also robust to changes in the locations of the IoT devices in the
environment. We successfully deployed ArcIoT in different home
environments and evaluated its performance to demonstrate that
ArcIoT helps users control devices in everyday environments
accurately, responsively and intuitively.

Index Terms—human computer interaction, intelligent envi-
ronments, augmented reality, indoor localization

I. INTRODUCTION

A lack of intuitive interactions with IoT devices has im-
peded the widespread adoption of smart spaces. While it is
difficult to measure intuitiveness, one can view it as the inverse
of how conscious a user is of the underlying technology. To
create a smart home today, a user must manually identify and
integrate a device, switch between apps to control devices
from different manufacturers, and explicitly name devices or
choose from long lists of available devices, all of which
expose the user to underlying implementation details. Beyond
smart homes, humans encounter IoT devices in many spaces,
including public ones. Because users have little knowledge of
these spaces, they may not even know which apps or naming
conventions to use, which makes it even harder to interact.

We propose an Augmented Reality Control system for the
IoT, ArcIoT, that allows a user to identify, access and control
individual IoT devices in indoor spaces like homes and offices,
even when those spaces contain visually identical devices.
ArcIoT’s approach is depicted in Fig 1. Once ArcIoT has
matched the device on the screen to a unique device in the
space, the user can tap the image and interact with the device.
In ArcIoT, device controllers can be for a generic device type,
for a specific device, or made specific to a particular user
or situation, based on user preferences or a space’s imposed
constraints. For instance, a generic light controller is a simple

Fig. 1: An ArcIoT user opens an AR “window” to discover nearby
IoT devices and their diverse control interfaces.

on/off switch, while a specific controller could allow the user
to change the light color. A smart speaker might allow the
user to adjust the volume or, depending on the user or time
of day, enable changing the audio stream that is playing.

While existing work on computer vision enables identifying
and tracking objects from the view of a camera [1], it alone
cannot distinguish visually identical devices. ArcIoT’s key
innovation is the use of context to distinguish them. Intuitively,
if we know the locations of the devices in the environment
and the user’s location and heading, we can use geometric
techniques to identify a particular device in the camera view.
Unfortunately, collecting and maintaining reliable locations
in an everyday smart environment is non-trivial. To address
this, we construct a relative localization system using beacons
sent by the IoT devices combined with data from the smart-
phone’s sensors. To make localization robust to noisy sensor
data, ArcIoT incorporates feedback from the user after each
interaction. The user may explicitly inform the system that it
selected the wrong device or may implicitly provide feedback
by accepting the system’s selection. ArcIoT uses this feedback
to adjust its estimations of the IoT devices’ locations.

Our key research contributions are:
• ArcIoT, a mobile AR system enabling intuitive human

interaction without requiring onerous setup processes;
• a novel human-in-the-loop localization scheme that uses

intermittent real-time user feedback to build a map of the
relative locations of the devices and the user;

• algorithms to rapidly adapt to changes in the layout of
the devices without explicit user intervention; and

• a demonstration that it is feasible to implement ArcIoT on
off-the shelf IoT devices in a way that provides responsive
user interactions (i.e., with a latency of less than 100ms).

II. RELATED WORK

ArcIoT addresses situations where a user interacts with a
nearby visible IoT device. This is in contrast to efforts to
completely automate behaviors in smart spaces [2], or in which
the user controls a device from another location [3].

Existing commercial systems (e.g., from Amazon, Apple,
or Google) bring diverse devices under the control of a
single third-party, while middleware research [4] supports
diverse devices under a single programming interface. These
approaches all unify the interface for controlling the devices,
but they do not address the problem of making interactions
more intuitive. That is, they still require identifying devices
by name and navigating many menus or voice controls.

A common way to identify and track objects in a camera
view is using 3-D object recognition, often relying on deep
learning trained on massive datasets [5], [6]. However, obtain-
ing suitable training datasets with associated ground truth is
difficult. In contrast, we enable fast identification based on key
features of a modeled object [7]. When combined, computer
vision and AR make it possible to recognize real-world objects
and augment them with digital control overlays. However,
an essential problem remains unresolved: it is common to
encounter devices whose visual representations are impossible
to distinguish. For instance, a single smart home may have tens
of identical lights. It is not sufficient to correctly label a light
as a light; to control it, one must identify the specific light
that is in the camera frame.

Similar needs pervade other applications, e.g., browsing
in the web of things [8]. Recent breakthroughs can identify
everyday objects [9], but only visually different objects can be
identified uniquely. Early AR systems for smart spaces either
rely on preset devices [10] or markers. To uniquely identify
devices, explicit visual markers [11]–[13] have been used, but
they can be distracting and they make the user aware of the
technology used for identification.

Another way to differentiate visually identical devices is to
use additional context, and one obvious piece of context is
location. Generating precise absolute location indoors at the
granularity needed to differentiate IoT devices is difficult and
often relies on customized hardware [14]. Other approaches
attempt to fingerprint the wireless environment to establish
location [15], [16]; these approaches require intensive training
and are not resilient to changes in the environment. Some
efforts have sought to supplement radio maps with additional
information, for instance from a smartphone’s inertial motion
sensors [17]. Similar efforts seek to turn smartphones into
universal remotes, relying on inertial sensors and radio signals
to create a map of the space [18], though these approaches
have significant deployment limitations.

Motivated by these work, and coupled with the observation
that relative location between the user and the devices is suffi-
cient, we model our problem as one of Simultaneous Localiza-
tion and Mapping (SLAM) [19], [20]. SLAM usually relies on
a control signal from a robot’s motor and observations from a
robot’s “eyes” to track obstacles in the environment. In our re-

(a) (b) (c)

Fig. 2: Screenshots of ArcIoT after ArcIoT has identified the device
and displayed its controls. (a) The user can turn a light on and off;
(b) send a media file to a speaker; or (c) adjust a thermostat set point.

envisioning, the signal from the smartphone’s motion sensors
serves as the control signal and Bluetooth Low Energy (BLE)
beacons from IoT devices are the observations. The benefit
of this abstraction is that we can directly leverage existing
algorithms [21]–[23] to improve accuracy and stability.

III. THE ARCIOT SYSTEM

ArcIoT supports a user interacting with nearby IoT devices.
To interact with a device, the user frames it in the camera view.
ArcIoT recognizes a device as a member of a product family,
using an internal database of scanned objects. For instance,
ArcIoT may recognize a light bulb, a smart speaker, or a
thermostat, as shown in Fig. 2. IoT devices announce their
presence via wireless beacons detected by the smartphone.
These beacons serve two purposes: they aid in uniquely
identifying a device and they carry device-specific information
that ArcIoT uses to tailor interactions with the device.

Continuously and in the background, ArcIoT uses the con-
tent of device beacons, the received signal strength indicator
(RSSI) values of those beacons, and the smartphone’s on-
board sensors (e.g., internal motion unit (IMU)) to maintain
an internal coordinate system that maps all nearby IoT devices
relative to the smartphone. When ArcIoT recognizes a device
in the camera view, it uses this map to determine which device
the user most likely wants to interact with. For simplicity,
ArcIoT uses a 2-D coordinate system that is bootstrapped
using an origin, which is defined as the location where the
user first starts interacting with ArcIoT.

ArcIoT consists of two modules: the augmented reality (AR)
module and the localization service (Fig. 3). The AR module
is the interaction point with the user. It recognizes devices
on the smartphone’s screen and displays the corresponding
user interfaces when the user taps to interact. The localization
service tracks the locations of the user and devices.

Assumptions. To identify an IoT device in the smartphone’s
camera view, ArcIoT uses information about the physical
appearance of the product. We assume this is provided by the
manufacturer in the form of a 3-D model. To enable ArcIoT to

AR Module

Scene

Device managerLocalization  
service

map

camera

IMU

ArcIoT

Object recognition

query feedback

IoT  
Devices

fetch device UI

control devicedevice beacons

device
info

request

user interface

feedback
AR 
database

product 
inventorymotion

sensing

Fig. 3: ArcIoT system architecture. The user interacts with the AR
module, which relies on the localization service to find devices.

discover IoT devices in the surroundings, we assume that each
device periodically transmits device discovery beacons. In our
implementation, we rely on Bluetooth beacons. We assume
that the smartphone can scan for and interpret these beacons
and is equipped with an inertial motion unit (IMU).

In ArcIoT, we assume that the location and heading of the
smartphone are the location and heading of the user. The IoT
devices may be moved between interactions, but we assume
each device is stationary during a single interaction. Finally,
for interactions in public spaces, it will be necessary to enforce
authentication and authorization. These needs are orthogonal
to the contributions of this paper; we assume the user is
already authenticated with all available devices. This could be
accomplished, for example, by having the user’s smartphone
include a validation key with every request.

Augmented Reality Module: Scene. We use the Vuforia
SDK [7] to build an AR object recognition pipeline. We scan
the IoT products used in ArcIoT and store the extracted feature
points in the AR database in Fig. 3. When an object on screen
matches a stored target, the AR module generates a report that
contains the product name and the pose of the object relative to
the smartphone’s camera. The product name is used to retrieve
a user interface from the device manager. The pose represents
the transformation from the object’s coordinate system to the
internal coordinate system created by ArcIoT’s localization
service. A transformation vector vt = (x, y, z) indicates that
the tracked device is displaced below the camera by the value
x, to the right of the camera by the value y, and is estimated
to be −z distance in front of the camera. The localization
service matches the current location and heading of the user
to the locations of the known devices to find a device with the
highest likelihood of being the desired device.

As shown in Fig. 2, the AR scene draws a bounding box
around the tracked device to highlight it to the user. When the
user taps on the object, ArcIoT overlays a control interface
that is provided by the device manager. If ArcIoT identifies the
incorrect object, the user can provide feedback through the AR
module. This information is used to update the relative position

information for the IoT device. In our current implementation,
this feedback is collected either explicitly or not at all; in the
future, we could also incorporate implicit feedback, noting
positive reinforcement if the user simply accepts the provided
interface and proceeds and negative reinforcement if the user
immediately retries the same query.

Augmented Reality Module: Device Manager. ArcIoT’s
device manager stores information about the devices and
manages interactions with them. The product inventory stores
a unique identifier and a user interface template for each IoT
device. Each product has a base functionality shared among
all products of the same type. These base capabilities can
be augmented for a specific device using data carried in the
device’s beacon. Using this information, the Device Manager
renders the device user interface, and hands it to the Scene to
be displayed. As an example, a product of type “smart light”
may be configured with an on/off switch, but a specific device
may add a dimming capability.

Because ArcIoT encapsulates concerns associated with de-
vice capabilities and behaviors within the Device Manager,
adding or updating a product does not require knowledge of
other parts of ArcIoT. To add a new product, an application
developer simply needs to add a product class to the product
inventory and implement the mechanism to render the device’s
UI. The developer does not need to be concerned with how the
device is discovered, identified, or accessed. This also makes
ArcIoT a convenient platform for manufacturers to push new
features to users without installing or updating a separate app.

Interface to the Localization Service. ArcIoT’s localiza-
tion service tracks the relative locations of the user and the IoT
devices. ArcIoT’s localization service continuously collects
beacons, processes their RSSI values, and maintains estimates
of the device locations on a relative 2-D coordinate system.
The localization service’s map indicates, by device identifier,
where each device is estimated to be located, relative to the
user’s position. To respond to a query, the localization service
uses the estimated locations of known devices, the location
and heading of the user (ux, uy, δ), and the translation vector
vt = (x, y, z) provided by the AR Module’s Scene component.
We compute the location of the observed device, (ox, oy) as:
(ux − z · cos(δ) + y · sin(δ), ux − z · sin(δ)− y · cos(δ)).

The next step is to determine which of the known devices is
most likely the one at (ox, oy). A simple solution is to choose
the device with the minimal distance to the observed location.
However, this approach does not account for the heading of
the user and could incorrectly choose a device behind the user
even though that device is not likely to appear on the screen.
We penalize the devices estimated to be behind the user with
a back-turn factor. The corrected distance is: (2−cos(θ/2))×
(uncorrected distance), where the heading angle, θ, captures
the angle between the heading of the user and the vector from
the user’s location to the estimated location of each device.

IV. HUMAN-IN-LOOP LOCALIZATION FRAMEWORK

In theory, any indoor localization system can be integrated
into ArcIoT. However, in the spirit of decreasing user overhead

1 2 3 4 5 6

0

2

4

6

8

10

180°

135°

90°

45°

0°

Distance between the user and the device

E
r
r
o
r
(
m

)

(a) Ordinary RSSI estimate

1 2 3 4 5 6

0

2

4

6

8

10

180°

135°

90°

45°

0°

Distance between the user and the device

(b) RSSI estimate after correction

Fig. 4: Error of the ranging based on RSSI for different angles
between the user and the transmitting IoT device before (a) and after
(b) accounting for human body shadowing.

and increasing intuitiveness, we implement the localization
framework without using any information about the floor plan
or requiring any specialized infrastructure to aid localization.
Thus, ArcIoT can be quickly and easily deployed in any new
space, relying exclusively on the user’s smartphone and the
IoT devices themselves. Anytime an ArcIoT smartphone enters
a new space, it can map that new space, using the beacons
received from the IoT devices in the space. Our approach
builds on the FastSLAM algorithm [20].

A. Background: FastSLAM and Motion Detection

Simultaneous Localization and Mapping (SLAM) is an
approach for measuring movement and updating a map in
an unknown environment. In SLAM, a robot’s location is
commonly sampled from its motor control signal. In ArcIoT,
we instead rely on data from the smartphone’s on-board
inertial motion unit (IMU), which contains a geomagnetic
field sensor, an accelerometer, and a gyroscope. We derive
the heading of the user from the geomagnetic field sensor and
use the accelerometer and gyroscope to detect the user’s steps.
When we detect a step, we update the user’s location as one
iteration in FastSLAM. The location of the user is a vector of
euclidean coordinates st = [ut,x, ut,y]T . The motion model is
thus defined as:

δ′ ∼ N (δ, σδ), r
′ ∼ N (r, σr)

smt = smt−1 + [r′ cos(δ′), r′ sin(δ′)]T
(1)

where δ and σδ are the user’s measured heading and its
variance; r and σr are the mean and variance of the step length.

B. RSSI of Discovery Beacons

We use the RSSI of a beacon to estimate the distance from
the user to the device, using the log distance path loss model:

RSSI = −10n log(
d

d0
) + RSSI0 (2)

where n is the path loss exponent, d is the distance between
the transmitter and receiver, and RSSI0 is the mean RSSI
measured at the reference distance d0 (usually one meter). We
pre-process the signal with a low-pass filter to reduce random
noise and unpredictable multipath effects.

In ArcIoT, the human body is an additional source of
propagation loss. Fig. 4a shows the problem graphically. Each
line represents a different angle between the user and the
device, ranging from 0◦ (the device is directly in front of the

RSSI ReadingIMU Event

Low-pass Filter

Initialization PFInitialization PFInitialization PF
User PF

Initialized?Sample pose

Record
MeasurementsUpdate EKF and

adjust weight

Resample

Resample?

Yes

No

Trigger

Normalized Weighted
Average

Location
Estimations

Yes

No

Interaction
Feedback

Fig. 5: The ArcIoT localization framework. Red boxes indicate inputs
to the system; the green box is the output.

user) to 180◦ (the device is exactly behind the user). As the
angle increases, distance measurements become increasingly
unreliable. To resolve this issue, we correct the distance d from
Equation 2 using the following equation:

dθc = d− γbody × (1− cos(θ/2)) (3)

where θ is the estimated heading angle of the user relative
to the IoT device. When the line-of-sight path is blocked by
the body (i.e., θ > 3π

2), we discard the measurement entirely.
Fig. 4b demonstrates the result after this correction, overall,
the mean squared error between the measured distance and the
ground truth reduces from 5.4 in Fig. 4a to 2.2 in Fig. 4b.

C. Localization framework in ArcIoT

Fig. 5 shows the algorithmic flow of ArcIoT’s localization
service. RSSI values feed into the low-pass filter, which is
adjusted for human body shadowing. The IMU signal feeds
the particle filter (PF) that underlies the FastSLAM algorithm.

Estimating device locations. When ArcIoT first discovers
a device, we initialize a local model of the device’s position.
We adopt a separate particle filter (PF) [21], [24] for each
IoT device. This initialization-PF uses an iterative process to
refine the estimate of the device’s location. The initialization
PF consists of N particles, each of which represents a different
estimate of the device’s location. Using the initial RSSI value,
we initialize the particles to a circle around the user with the
heading angle, θi, of particle i varying from 0◦ to 360◦. A
particle i’s distance di and angle θi (relative to the user)
are: di ∼ N (dθic , σz) and θi = 2πi

N where dθic is from
Equation 3, and σz is the variance of the RSSI measurement.
Initially, we assign a weight of one to each particle, since
all locations are equally likely. As we acquire additional
RSSI samples, each particle’s weight is adjusted based on
how well the particle’s estimate matches each new RSSI
value using: wi,t = wi,t−1f(dθic |di,u, σz), where di,u is the
distance from particle i’s estimate of the device’s location to
the user’s current location and f is the pdf of the normal
distribution. To avoid particle degeneracy, or the situation in
which most particles have weights close to zero, we adopt
the Sequential Importance Resampling algorithm (SIR) [25].
After each iteration, we compute the mean and variance of
the N particle estimates. Once the variance is smaller than a

threshold, the device’s location is considered initialized. We
convert the relative distance di and angle θi to coordinates
based on the current estimation of the user’s location, and
incorporate the measurements into the Extended Kalman Filter
(EKF) for the device. We label the estimated location of device
b as µmb,t and the covariance as Σmb,t.

Estimating the user’s location. We estimate the user’s
location using the prior location, input from the IMU, and
information about the distance to known devices. We use
another particle filter in which each particle represents a
possible location of the user. At time t, the location estimate
smt in particle m is sampled using Equation 1. We use this
new estimate to update the weights of the particles and to
update the EKFs estimating the device locations. We only
update the EKFs and the weights if a new location estimate
is generated (i.e., the user moved) or a sufficient number of
RSSI measurements have been observed. We use a standard
EKF update. For device b at time t, the EKF is updated as:

h(smt , µ
m
nt,t−1) =

∥∥smt − µmnt,t−1
∥∥ (4)

H =
∂h

∂µmnt,t−1
=

smt − µmnt,t−1∥∥smt − µmnt,t−1
∥∥ (5)

S = HΣmnt,t−1H
T +Qt (6)

K = Σmnt,t−1H
TS−1 (7)

where h is the expected distance from the previous model, S is
the innovation covariance computed with the partial derivative
of h over the estimation µ. The Kalman gain K represents
the information in this update. In the standard update for S
(Equation 6), Qt is a constant minimal covariance. In ArcIoT,
based on the characteristics of the RSSI measurements (e.g.,
a small RSSI value has less variance), we adjust this value
based on the current measurement (dθbc):

Qt = Qmin +
dθbc
Qd

(8)

where Qmin is the standard minimal covariance and Qd is a
transfer parameter characterizing the wireless technology used
for beacons. We define a condition A:

A = (dθbc <
σinit

2
) ∧ (|dθbc − h(smt , µ

m
nt,t−1)| < σinit)

that holds if the ranging measurement dθbc is smaller than half
of the initialization threshold σinit while the estimation h is far
from the measurement. In this instance, instead of updating the
current estimation, we reinitialize the estimation at the user’s
current location. Thus the updates for µ and Σ are:

µmnt,t =

{
µmnt,t−1 + K(dθbc − h) if A is FALSE

smt otherwise
(9)

Σmnt,t =

{
Σmnt,t−1 −KSKT if A is FALSE(σinit/2 0

0 σinit/2

)
otherwise

(10)

At each step, we also use S to update the weight of the
particle: wmt = wmt−1f(dθbc |h,S). Similar to the initialization
PF, we run the SIR algorithm to resample the particles when
the number of particles with significant weights is low.

Integrating feedback. ArcIoT’s localization framework in-
corporates real-time feedback from the user. The feedback is a
binary input indicating whether ArcIoT identified the correct
device. We integrate this information by adjusting the weight
of the user particles. At time t, the user tries to interact with
the device on screen with the observed location [ox, oy] and
ArcIoT matches the device on screen to device b. If the user
provides feedback for this interaction, for each user particle
m, we adjust the weight wmt based on the distance between
the observed location o and the estimated location µmb .

wmt =

wm

t−1

‖o−µm
b ‖

, if feedback is positive

wmt−1 ·max{1, ‖o−µ
m
b ‖

γneg
}, if feedback is negative

where γneg is a constant parameter for negative feedback.
Localization Output. The outputs of the localization frame-

work are the location estimates of the user and the devices.
These values are computed as the normalized weighted aver-
ages of the estimations of the particles in the respective filters.

V. EVALUATION

We implemented ArcIoT in Java on a Google Pixel 3
running Android 10. We used the Nordic Thingy52 [26], a
BLE-enabled IoT sensor device, as a beacon associated with
each IoT device. This allowed us to control discovery beacon
parameters and take accurate measurements of our localization
service. The devices were configured to send beacons every
100 milliseconds. To demonstrate bi-directional interaction, we
also directly controlled the Thingy’s LED and speaker from
ArcIoT control interfaces. In addition, we implemented control
interfaces for proprietary devices such as Philips Hue lights.

We performed three experiments. First, we used a scripted
set of smart-home activities to evaluate ArcIoT’s potential day-
to-day performance in a smart home. Second, we drilled more
into ArcIoT’s localization service with a set of benchmarks
in a single controlled environment. Third, we report on the
overhead of ArcIoT on a commodity smartphone.

The first experiment used five different deployments in real
home environments.1 The rest were performed in the home of
the first author. Before our experiments, we initialized ArcIoT
by simply placing an ArcIoT-enabled device in the space and
turning it on. When the user is completely stationary, ArcIoT
can initialize a new device in less than 5 seconds; when a user
is moving around the device, initialization takes less than 21
seconds.

Experiment 1: Interacting with devices. We first evaluated
how accurately ArcIoT responds to users’ intentions and its
resilience to changes in the layout of devices. We used a
scripted set of interactions and define accuracy as the ratio of
successful interactions to all interactions. A failed interaction
is when the user issues a command but a device different from
the one on the screen performs the action. Since our main
challenge is selecting from among visually identical devices,
this experiment used three identical Thingy devices. In every

1COVID-19 curtailed our planned user studies. Instead, five members of
our research team (excluding the first author) evaluated ArcIoT in their homes.

TABLE I: Accuracy of ArcIoT
Deployment No feedback Neg. feedback All feedback
One room 90.5 % 93.3 % 95.2 %
Two rooms 92.4 % 90.5 % 96.2 %
Event W/o re-initialization W/ re-initialization
Displacement 81.0% 92.4%

interaction, the user first locates and points at the device. Then
he/she taps on the displayed controller and observes the action.
At last the user provide feedback after the action.

In each home, we installed the devices at arbitrary locations
at least three meters apart. Our script consisted of 21 inter-
actions: 7 with each of device, randomly interleaved. Each
environment had two deployments; in the first, all of the
devices were in the same room; in the second, the three devices
were spread across two adjoining rooms. We tested three
feedback modes: “no feedback”, in which the user did not give
any feedback; “negative feedback”, in which feedback was
only incorporated when it was negative; and “all feedback”,
in which the user gave a positive or negative feedback after
every interaction. In both deployments, we executed the script
of 21 interactions three times: once for each feedback mode.

The results are in the top of Table I. Accuracy was not
notably affected by the configuration of devices across one
or two rooms. ArcIoT was able to perform better when the
user provided more feedback, but the performance with no
feedback was reasonably good. The lower value for the nega-
tive feedback case in two rooms is likely due to users placing
two devices on opposite sides of the same wall, confusing the
localization service. From our observations, persistent failures
for a specific device could be intuitively remedied by the user
intentionally standing near a device briefly (i.e., less than five
seconds) to allow the PF to stabilize around the detected RSSI.
Overall, ArcIoT reliably identifies devices, even when they are
visually identical. ArcIoT benefits from user feedback, but it
can also benefit from users’ natural self corrections.

To evaluate how resilient ArcIoT is to changes in device
layout, we moved a device at the end of the last experiment
above, in the case of two rooms and all feedback. ArcIoT deals
with device displacement by re-initializing the device using
Equation 9. A user can explicitly trigger re-initialization by
staying close to the device for 5 seconds. The results for when
the user did not explicitly re-initialize the device are shown in
the bottom of Table I. With explicit re-initialization, ArcIoT’s
accuracy immediately recovered to more than 90%. However,
even without explicit re-initialization, ArcIoT recovered by the
end of the script, indicating that it was able to adjust its internal
model of the IoT space.

Experiment 2: Localization accuracy benchmarks. Our
second experiment evaluated the localization system in a home
environment whose layout is depicted in Fig. 6. The devices
(stars) were placed against the wall or on the desk. The
smartphone was carried by a user starting from the location
marked by the red dot and following the path shown with
arrows. In each run, the user repeated the path 5 times, taking
120 steps in total. The user did not interact with or stop in
front of the devices. We continuously computed three values:

1.1m

Fig. 6: Sketched floor plan for Experiment 2 (drawn to scale). The
stars mark the locations of the devices. The user starts at the red dot.

0 20 40 60 80 100

0.5

1

1.5

2

2.5

3
Absolute Error
Relative Error
Error of close devices

Step

Er
ro

r (
m

)
Fig. 7: Localization results in ArcIoT for absolute location, relative
location, and the location of the closest two devices. The vertical
lines mark the repeat of the path.

(i) the absolute error, i.e., the average distance between the
estimated locations of the devices and the ground truth; (ii) the
relative error, i.e., the average distance between the estimated
relative location and the ground truth relative location; and
(iii) the error of close devices, i.e., the average relative error
of the two devices closest to the user.

We show the results (averaged over six runs) in Fig. 7.
The devices were quickly initialized and the absolute er-
ror dropped below 1.5m, which is comparable to state-of-
the-art infrastructure-free Bluetooth-based indoor localization
systems [27]. The absolute error increased slightly at the
end because we do not use predefined calibration landmarks.
However, ArcIoT requires only relative locations of devices.
In the first 40 steps, the absolute and relative errors are close,
but later, the absolute error slightly increases while the relative
error remains low. Because small RSSI readings tend to have
less noise, we introduce adaptive covariance in Equation 8 and
thus ArcIoT should have better estimates for closer landmarks.
This is borne out by the third measurement; the error of the
two closest devices was below the average of all devices most
of the time and was often as low as 0.5m.

Experiment 3: ArcIoT system overhead. Finally, we
evaluated the overhead of ArcIoT in terms of latency and
energy. We focused on latency to capture the responsiveness
of ArcIoT. During a single interaction, there are three types of
delays that may be noticeable to the user: (i) interaction delay,
i.e., the time between a device being visible on the screen
and it being interactive; (ii) interface display delay, i.e., the
time between the user making the intention (tapping on the
screen) to interact and the control interface being displayed;

TABLE II: Energy consumption for five minutes of use (in mAh)

Component ArcIoT
(foreground)

ArcIoT
(background)

Philips Hue
(foreground)

Major 67.0 (Camera) 0.40 (CPU) 13.2 (Display)
Total 80.38 0.47 13.81

and (iii) communication delay, i.e., the time between a control
command being issued and the device’s response.

We used ArcIoT to control a Philips Hue Go light (with
an associated Thingy beacon) then issued a command to the
light via the Philips Hue bridge. The averaged latency over 5
runs of experiments is as follows: interaction delay: 12.8ms,
interface display delay: 63.0ms, and communication delay:
61.0ms. The latency for all components was below 100ms,
which means the delay was not noticeable to a human user.
The Communication Delay depends on the technology used
to control the device (in this case WiFi) which is not part of
ArcIoT. Overall, ArcIoT enables interacting with real smart
home devices without human-perceptible delays.

We measured ArcIoT’s energy consumption using the same
setup and used Android dumpsys to measure battery discharge.
Table II shows the major energy consumer for ArcIoT in
the foreground and background along with the results for the
Philips Hue app. Most of the energy consumed by ArcIoT was
due to camera and screen use, which only occur when the user
interacted with a device. When ArcIoT and its localization ser-
vice were running in the background, the energy consumption
was minimal. ArcIoT’s energy footprint is within reason for
executing on commodity smartphones. For context, the Pixel
3’s battery capacity is 2915mAh.

VI. CONCLUSION

In this paper, we demonstrated ArcIoT’s ability to enable
intuitive and responsive device interactions in the IoT. ArcIoT
reliably monitors the mobility of the user and maintains a map
of devices by leveraging built-in sensors and low-cost BLE
beacons. We evaluated ArcIoT in various home environments
to show that it performs with high accuracy and is resilient
to environmental dynamics. We also showed that ArcIoT’s
overhead with respect to latency and energy consumption is
within reason on commodity smartphones.

While we evaluated ArcIoT in smart home applications,
many other applications can also be realized. For example,
in a store, ArcIoT can be used to render information next to a
product; in an office, ArcIoT can be used to control projectors,
displays, speakers, etc. In this context, ArcIoT enacts the
user’s intentions on digital devices in the surrounding world
by leveraging the combined benefits of AR and contextual
information provided by pervasive computing devices. Overall,
ArcIoT demonstrates the intuitiveness and efficiency of visual-
based interactions and opens new possibilities of an IoT world
where the user is exposed to minimal technological details.

ACKNOWLEDGEMENTS

The authors would like to thank the members of the
Mobile and Pervasive Computing group at UT Austin for
their assistance in the evaluation. This work was funded
in part by the National Science Foundation under grants

CNS-1813263, CNS-1909221, CNS-1907959. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the NSF.

REFERENCES

[1] P. Achlioptas et al., “Referit3d: Neural listeners for fine-grained 3D
object identification in real-world scenes,” in Proc. of ECCV. Springer,
2020, pp. 422–440.

[2] J. Hua et al., “rIoT: Enabling seamless context-aware automation in the
internet of things,” in Proc. of IEEE MASS, 2019.

[3] I. Ullah et al., “Cloud based IoT network virtualization for supporting
dynamic connectivity among connected devices,” Electronics, vol. 8,
no. 7, 2019.

[4] Y. Saputra et al., “Warble: Programming abstractions for personalizing
interactions in the internet of things,” in Proc. of MOBILESoft, 2019.

[5] S. Song and J. Xiao, “Deep sliding shapes for amodal 3D object
detection in RGB-D images,” in Proc. of CVPR, 2016.

[6] J. Yu et al., “A vision-based robotic grasping system using deep learning
for 3D object recognition and pose estimation,” in Proc. of ROBIO, 2013.

[7] A. Simonetti Ibañez and J. Paredes Figueras, “Vuforia v1. 5 SDK:
Analysis and evaluation of capabilities,” Master’s thesis, Universitat
Politècnica de Catalunya, 2013.

[8] T. Zachariah and P. Dutta, “Browsing the web of things in mobile
augmented reality,” in Proc. of ACM HotMobile, 2019.

[9] D. Jo and G. J. Kim, “IoT+ AR: pervasive and augmented environments
for “Digi-log” shopping experience,” Human-Centric Computing and
Information Sciences, vol. 9, no. 1, pp. 1–17, 2019.

[10] S. Mayer et al., “Device recognition for intuitive interaction with the
web of things,” in Proc. of ACM Ubicomp, 2013.

[11] K. Ruan and H. Jeong, “An augmented reality system using QR code
as marker in android smartphone,” in Proc. of IEEE SCET, 2012.

[12] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial
detection,” in Proc. of IEEE/RSJ IROS, 2016.

[13] V. Heun, S. Kasahara, and P. Maes, “Smarter objects: using AR
technology to program physical objects and their interactions,” in Proc.
of CHI, 2013.

[14] Y. Park, S. Yun, and K.-H. Kim, “When IoT met augmented reality:
Visualizing the source of the wireless signal in AR view,” in Proc. of
ACM MobiSys, 2019.

[15] F. Subhan et al., “Indoor positioning in bluetooth networks using
fingerprinting and lateration approach,” in Proc. of ICISA, 2011.

[16] R. Faragher and R. Harle, “Location fingerprinting with bluetooth low
energy beacons,” IEEE J. on Selected Areas in Communications, vol. 33,
no. 11, pp. 2418–2428, 2015.

[17] A. R. Jiménez and F. Seco, “Finding objects using UWB or BLE
localization technology: A museum-like use case,” in Proc. of IPIN,
2017.

[18] M.-S. Pan and C.-J. Chen, “Intuitive control on electric devices by
smartphones for smart home environments,” IEEE Sensors Journal,
vol. 16, no. 11, pp. 4281–4294, 2016.

[19] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and map-
ping: part i,” IEEE Robotics & Automation Magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[20] M. Montemerlo et al., “FastSLAM: A factored solution to the simulta-
neous localization and mapping problem,” in Proc. of AAAI, 2002.

[21] W. Bulten, A. C. Van Rossum, and W. F. Haselager, “Human SLAM,
indoor localisation of devices and users,” in Proc. of IEEE IoTDI, 2016.

[22] B. Jang, H. Kim, and J. W. Kim, “IPSCL: An accurate indoor positioning
algorithm using sensors and crowdsourced landmarks,” Sensors, vol. 19,
no. 13, p. 2891, 2019.

[23] F. Seco and A. R. Jiménez, “Autocalibration of a wireless positioning
network with a FastSLAM algorithm,” in Proc. of IPIN, 2017.

[24] J. Svečko, M. Malajner, and D. Gleich, “Distance estimation using RSSI
and particle filter,” ISA Transactions, vol. 55, pp. 275–285, 2015.

[25] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” in Proc. of IEEE NSSPW, 2006.

[26] Nordic, “Nordic Thingy52 Sensor Tag,” https://www.nordicsemi.com/
eng/Products/Nordic-Thingy-52.

[27] U. M. Qureshi, Z. Umair, and G. P. Hancke, “Evaluating the implications
of varying bluetooth low energy (BLE) transmission power levels on
wireless indoor localization accuracy and precision,” Sensors, vol. 19,
no. 15, p. 3282, 2019.

