
Intelligent Information Sharing among IoT Devices:
Models, Strategies, and Language

Samuel Sungmin Cho∗, Myungkyu Song†, Christine Julien‡
∗Northern Kentucky University, †University of Nebraska at Omaha, ‡The University of Texas at Austin

Email: ∗chos5@nku.edu, †myoungkyu@unomaha.edu, ‡c.julien@utexas.edu

Abstract—Various smart objects are connected in the invisible
and intelligent Internet of Things (IoT) network to share informa-
tion. However, considering the heterogeneity of Internet of Things
devices, connecting devices with differences in capabilities–
processing, storage, energy, and communication bandwidth–and
programming methods–language, compiler, and tools–can burden
developers with the complexities caused by interoperability.
This paper proposes a solution to address this interoperability
issue when sharing information among IoT devices. We model
information sharing as the communication between a sender and
a receiver with constraints from application requirements. We
explore tradeoffs from constraints to propose three strategies to
hide technical details of various data representations to meet
their application needs. We propose the CHITCHAT Information
Sharing Language (CISL) for developing IoT applications so that
IoT developers can focus solely on their applications by delegating
the control of information sharing details to the features that the
CISL language provides.

I. INTRODUCTION

The Internet of Things (IoT) aims to create an invisible
and intelligent network fabric with smart objects called IoT
devices. These devices can sense the environment, process
the acquired information, and communicate among themselves
directly or indirectly through a device-to-device or Internet
connection. Using these connections, IoT programmers can
build applications to provide services that can fundamentally
change society as a whole [1], [2].

However, programming IoT devices requires multiple levels
of complexity due to their inherent diversity. The first level of
complexity is from the different programming environments.
IoT devices are supposed to be operated on different hardware
and software. For example, sensor devices are programmed
using low-level programming tools. Also, these devices have
limitations in computing power, energy, and communication
bandwidth. However, the device that receives information from
these devices may have no such limitations and may be
programmed using high-level tools.

The next level of complexity comes from application
requirements. The constraints of each IoT device dictates
priorities of each device. As an example, consider an IoT
application where a server collects temperature information
from a massive number of wireless sensors to monitor a
wildfire. The sensor devices will prioritize minimal energy
consumption due to their battery-powered operations. How-
ever, for the server that collects the temperature information
from sensors and uploads the aggregated information through
the Internet, reducing the data size can result in large savings

in storage and bandwidth. For IoT application programmers
these complexities need to be addressed so that they can focus
solely on the applications.

In this paper, we present an information sharing model,
related strategies, and a programming language for IoT ap-
plication developers to alleviate the problems caused by these
complexities. We model a conceptual information sharing as
a communication between a sender and a receiver, and both
of them have different constraints. The sender encodes infor-
mation and sends the information through a communication
channel (1) with a minimal cost of communication and (2) in
a way that the receiver can decode the information received
without a loss of data quality. This research uses our previous
work of CHITCHAT context representation models [3]. In the
research, we presented various encoding representations that
have tradeoffs in size, flexibility, encoding energy, and data
quality. However, from an IoT application developers’ per-
spective, it is still difficult for them to understand the varieties
of representations and to find the optimal representation to
meet their application requirements. Therefore, we introduce
four strategies that can be used to meet various requirements.

The conceptual information sharing model and related
strategies are implemented in the CHITCHAT Information
Sharing Programming (CISL) language. The language pro-
vides the tools to control the life-cycle of IoT information
from the generation, processing, storing, and to sharing. Pro-
grammers can use the high-level CISL language to describe
the application behavior, and the CISL compiler translates
CISL code into application code targeted for various IoT
programming environments.

Our contributions are as follows:

• We propose the CHITCHAT information sharing model
among IoT devices. IoT programmers can choose the
strategy for their applications without understanding tech-
nological details.

• We introduce the CHITCHAT programming model and the
CHITCHAT Information Sharing Programming language
(CISL). This programming model is based on the con-
ceptual model. Programmers can use the CISL and its
compiler to generate the application code for IoT devices
to facilitate the their development of information sharing
applications.

• We assess the benefits of using our tools. We compare
the size reduction, information quality degradation, and



relative energy consumption in encoding with different
strategies based on real-world scenarios.

The rest of this paper starts with the conceptual context
sharing model in Section III. We introduce the CHITCHAT
programming model in Section IV followed by the examples of
CISL in Sub-section IV-A. Our experiment results are analyzed
and explained in Section V.

II. RELATED WORK

The CHITCHAT programming model is a model based
aggregation of tools for IoT application developers to control
the life-cycle of contexts. Similar research includes a model-
based autonomic context management system (ACoMS) [4]
that provides the context life-cycle control functions, but
the CHITCHAT programming model focuses mainly on the
structures and services for context shared among IoT devices.
The Context Toolkit [5] also provides services that mediate
between the environment and the application with context
widgets; the CHITCHAT programming model is similar in pro-
viding services to the application developers, but CHITCHAT
does not provide low level features. Mobile Sensor Data Pro-
cessing Engine (MODSEN) [6] is a plug-in-based middleware
for resource constrained IoT mobile devices.

Context information can reshape the knowledge [7]; The
CISL expands this view in that the degree of the reshaped
knowledge can even be controlled by sharing pre-knowledge,
which is also knowledge that can be shared. Further, the infor-
mation can be treated from database to process the knowledge
effectively using database technologies and tools. Our view of
context as a schema-less database entry is explored in NoSQL
databases [8], [9].

CISL is a domain-specific language (DSL) for expressing
how the IoT information is shared among IoT devices. Other
domains also leverage DSLs for heterogeneous environment
of the IoT platform. Garcı́a et al. [10] propose a DSL for
abstracting the application generation problem in an IoT
platform. Their DSL allows the creation of IoT applications for
interconnected heterogeneous objects: sensors, mobile devices,
etc. Given the domain of the problem and its properties, the
DSL helps a user to interconnect many objects without any
programming knowledge by supporting an abstraction of the
base programming language. Salihbegovic et al. [11] present
a DSL that helps to develop IoT applications on complex
communication, protocols and operating systems. The DSL is
used for formal representation as a meta-model to describe a
set of visual notations for IoT applications. In contrast to their
approaches, CISL focuses on the abstraction of the information
sharing models and the special constructs for domain-specific
strategies to be described declaratively.

III. THE CHITCHAT INFORMATION SHARING MODEL

We model the sharing of information among IoT devices as
sending knowledge, i.e., encoded information, from a sender
to a receiver. The contents of the knowledge can be queried to
be retrieved and the inner representation of the knowledge is
hidden outside. In this model, information is represented as a

dictionary: a set of a pair of (key, value). The representation of
information, i.e., the encoding method of the dictionary, can be
different depending on the devices’ application requirements.

Fig. 1 shows our conceptual model for storing and sharing
information in IoT devices. In this model, sharing information
involves two intelligent agents with different capabilities and
priorities: a sender 1 and a receiver 2 . Knowledge 3 is
shared via some available communication channel 4 between
the sender and receiver. We define pre-knowledge 5 as
any information shared among agents a priori and post-
knowledge 6 as any information reconstructed by the receiver
from the combination of the received knowledge and pre-
knowledge. The cost of communication 7 is the energy
consumed in the course of sharing information. This energy
cost can come from many sources, including energy consump-
tion for communication (which is proportional to the size of
the information shared) or energy consumption in processing
information to reduce its representation size. Some agents with
severely limited bandwidth may make reducing the size the top
priority, with a goal to reduce the cost of communication 8 .
However this approach may require more energy to encode
the information 9 at the sender and to decode it 10 at the
receiver.

Knowledge 
(Context)

Cost of communication

Communication Channel

Encode

Sender

Decode

Receiver

1

6

3

Pre-knowledge
(before communication)

5

8
Post-knowledge

(after communication)

2

9

10

4

7

Encoded
Knowledge 
(Context)

Pre-knowledge

5

Fig. 1: A conceptual context sharing and storage model

Priorities in sharing information entail tradeoffs. To ana-
lyze the tradeoffs, we start by considering several strategies
that represent possible alternatives in sharing contexts under
various requirements. As an example, we can sacrifice the
precision of data in a context by using a single precision
floating point number (4 bytes) instead of double precision (8
bytes) to reduce communication costs by communicating with
fewer bytes. Alternatively, we may consume more energy in
encoding and decoding by compressing the data to achieve
a smaller size. If each device already shared the keys in the
dictionary (pre-knowledge), we can reduce the communication
burden by sending only the values to be recovered from
the sender by combining the already shared keys and newly
received values. In this case, we trade flexibility (because the
keys must be shared a priori) for size (and therefore communi-
cation cost). Likewise, privacy, latency, andexpressiveness can
all be possible tradeoffs. In this paper, we consider only the
following factors in tradeoff analysis when sharing and storing
information:

Size: The number of bytes used to capture a dictionary.
Encoding energy: The power consumed in processing (en-

coding, decoding) a dictionary.



Flexibility: The ability to add, remove, and update a value in
a context summary.

Data quality: The fidelity with which the data at the receiver
matches the sent information.

These factors are related to each other; when we priori-
tize one factor, other factors can be affected positively or
negatively. For example, reducing size using a compression
algorithm requires more energy than not compressing. Data
quality and size are similarly related. In addition to examples
like the floating point precision given above, we can reduce
data quality using techniques that run the risk of introducing
false positives into dictionaries [12], [13]. The CHITCHAT
information representation model provides an abstraction to
query a context summary for its stored context values, using
a value’s associated key. A correct value is expected to be
returned from the given key, and the result should be empty
when there is no matching value of the label. In the case that
some random value is returned instead, we call the value a
false positive, and the presence of false positives results in
degraded data quality. In our previous research, we introduce
context summary structures that can dramatically reduce the
size of stored context information with a tradeoff in a slight
increase in the probability of a false positive, i.e., when the
context summary is queried for a given label that was not
inserted, the query returns untrue value [3], [12].

We categorize our information sharing and storage model
using three strategies to analyze the tradeoffs among the
factors under each strategy. Fig. 2 shows the “High cost,
high quality (HCHQ)” strategy, which is representative of
the current state-of-the-art strategies that rely on text-based
representations such as XML. In this strategy, the sender sends
the knowledge (information) without any loss in data quality;
the sender also does not assume any pre-knowledge from the
receiver. As a result, users can get the best data quality, but
have a high energy consumption for communication and a
larger footprint for storage due to the large size required to
represent the information.

Knowledge 
(Context)

Cost of communication

Communication Channel

Post-knowledge

Encode
Decode

Sender Receiver

Fig. 2: High cost, high quality strategy

Fig. 3 shows the “Low cost, low flexibility strategy (LCLF)”
strategy, which lies at the other end of the spectrum. It is
representative of state-of-the-art approaches used in propri-
etary applications. This strategy assumes pre-knowledge in
the receiver. The sender can send only partial knowledge
(information) to reduce the size (and therefore the cost) of the
information shared. In this strategy, the energy consumption is
low due to the small size, but there are constraints in flexibility
as the receiver can only know the information that it can

recover using its pre-knowledge. This strategy is the opposite
of HCHQ strategy.

Knowledge 
(Context)

Cost of communication

Post-knowledge

Communication Channel

Pre-knowledge

Sender Receiver

Encode
Decode

Fig. 3: Low cost, Low flexibility strategy

The HCHQ and LCLF strategies mark the two ends of the
spectrum for analyzing the tradeoffs in sharing and storing
information. In this paper, we introduce a “Tunable strategy”,
in which users can tune the aforementioned trade-off factors
to meet application constraints while achieving a balance
between size and flexibility. In Fig. 4, the sender assumes
no pre-knowledge, giving flexibility and expressiveness. In-
formation is encoded 1 in a dictionary to reduce the size,
and the information in the dictionary retrieved using a query
interface 2 . Senders can control the size reduction, data
quality, and energy consumption with encoding parameters.
This strategy can reduce the context summary size without
affecting flexibility. However, when the queried result is false
positive, data quality 3 is affected.

Wrong post-knowledge 
(false positive)

Knowledge 
(Context)

Cost of communication

Communication Channel

Post-knowledgeSender

Receiver

Encode Decode

2

3

1

Fig. 4: Tunable strategy

The overall tradeoff relationships when considering the four
strategies are (roughly) summarized in Table I. In this table, the
‘+’ indicates a factor that we consider to be a positive, while
the ‘−’ implies a negative factor. In this table, the HCHQ and
LCLF strategies compensate each other except in terms of the
data quality. Users can tune parameters for their applications in
the tunable strategy so that (1) they can consume less energy in
communication with possible energy consumption in encoding
a dictionary (+∗) and (2) they can get generally excellent
performance with possible and controllable sacrifice in data
quality (+∗∗).

TABLE I: Strategies and tradeoff factors

HCHQ LCLF Tunable

Size − + +
Energy − + +∗

Flexibility + − +
Data Quality + − +∗∗



IV. THE CHITCHAT PROGRAMMING MODEL

In this section, we present the CHITCHAT programming
model to demonstrate how the conceptual model shown in
the previous chapter can be implemented for application
programmers. The CHITCHAT programming model focuses
on the interoperability among IoT devices. For IoT appli-
cation developers, interoperability is one of the main issues
because (1) IoT devices have varying capabilities in data
acquisition, data processing, communication bandwidth, and
energy storage and (2) the software tools for IoT devices
require different configurations, environments, and services
when building applications.

The first conceptual integrity for interoperability in the
CHITCHAT programming model is that ‘every information is
represented as a dictionary’. The key is a string type data,
but the value can be any data type to represent the nature of
the information to share among IoT devices. For example, it
can be a floating point type value to represent sensor data,
a boolean type value to represent the state of a system, or a
string type value to store name or address. It can also be a
user-defined type to compactly represent information.

The second conceptual integrity for interoperability in the
CHITCHAT programming model is the common set of opera-
tions. Fig 5 shows the seven operations that programmers can
use for controlling the life cycle of information they share.

Key Value
Modification

create serialize/
deserialize

010…011
ValueKey

ValueKey

Memory

get
(Label)

schema
Labels
Value

 Query

size
bytes

load/
save

loadbin/
savebin

{k:v, …}

Text File

010…011

File

Binary File

update add delete

4

2

5

6

3

1A dictionary

Fig. 5: CHITCHAT information sharing conceptual model

The information is represented as a dictionary 1 . The
dictionary is created from any information 2 selected to be
shared or stored. For communication, the dictionary should be
transformed into a serialized bit stream. Likewise, the received
bitstream needs to be transformed into a dictionary 3 . The
dictionary can be stored and retrieved both in a text or a binary
file 4 . When the dictionary needs to be modified, keys or
values can be added, updated, or deleted 5 . The information
in the dictionary can be retrieved with a query operation 6 .

Programmers can use the same CHITCHAT programming
model to program any IoT devices. This interoperability is
possible because (1) the CHITCHAT programming model is
implemented in the CISL, and (2) programmers need to
specify the strategy that each IoT device should use when
they program in the CISL.

For example, when programmers need to generate informa-
tion sharing code for mobile devices using the CISL, they can

tag @android to specify that the CISL generate the target
code for Android devices. The default option, @server, does
not generate any target code as the CHITCHAT language can
be executed as a script on high-end servers. Programmers
can also specify the strategy for the device. For example,
when they need to use the HCHQ strategy for the Android
device, they can tag @strategy(HCHQ). When the application
requirements demand small dictionary size, they can tag
@strategy(tunable, size) to generate the code that encodes
and decodes the dictionary with maximum size efficiency.
The tag @strategy(tunable, encoding energy) can be used
to generate the dictionary with minimum encoding energy.

A. CISL Language Design and Semantics

The CISL is a declarative, domain-specific language that
was designed to be easy to learn, use, and understand. Fig. 6
shows the syntax definition of the CISL that defines the
ability to add, remove, and update a value in the infor-
mation summary. Fig. 7 demonstrates the semantics of the
information sharing operations using set operations. Adding
new summaries to existing ones is described using ∪, the
set union operator. Deleting summaries is described using \,
the set difference operator. Updating summaries is described
using →, which designates existing elements being modified.
D/Serializing summaries is described using⇒, which indicates
transformation from/to a byte array.

We followed a minimalistic approach, introducing new con-
structs only if absolutely necessary, thus lowering the learning
curve for the programmer; however, more complex features
of the CISL, including annotations and inheritance, have been
reduced to save space and streamline the presentation.

A set of original/created summaries, S = {s1, s2, . . . , sn}
A set of serialized summaries, S∗ = {s∗1, s∗2, . . . , s∗n}
A set of updated summaries, S! = {s!1, s!2, . . . , s!n}
A set of added summaries, S+ = {s+1 , s

+
2 , . . . , s

+
n }

A set of deleted summaries, S− = {s−1 , s
−
2 , . . . , s

−
n }

〈s〉p denotes a summary s of program p
〈S〉p denotes a set of summaries S of program p

Fig. 6: Syntax definition

AddSummary(〈S〉p, 〈S+〉p) = ∪i∈S〈i〉p ∪ ∪j∈S+〈j〉p
DeleteSummary(〈S〉p, 〈S−〉p) = ∪i∈S〈i〉p \ ∪j∈S−〈j〉p
UpdateSummary(〈S〉p, 〈S!〉p) = ∪i∈S〈i〉p→ ∪j∈S!〈j〉p
SerializeSummary(〈S〉p) = ∪i∈S〈i〉p⇒ ∪j∈S∗〈j〉p
DeserializeSummary(〈S∗〉p) = ∪i∈S∗〈i〉p⇒ ∪j∈S〈j〉p

Fig. 7: The information sharing operations.

B. High-Level CISL Programming

Using high-level abstraction, programmers can build their
IoT applications without knowing configurations details. All
they need to know is the strategy that each device should use
and the target device where the generated code is executed.



Values and Dictionaries. The value keyword is used to
define values; it requires parameters specifying the type(s) of
the value(s) used the definition. Applications can create dic-
tionaries and load them into memory using the dictionary
keyword in the CISL language.

High Level Scripts. The CISL language provides vari-
ous control structures including loops and selections. These
structures, values, and dictionaries are used in functions to
implement the features that IoT applications specify.

Listing 1 shows an CISL function example that calculates
the average temperature from an array of dictionaries. Pro-
grammers can use the CISL provided functions such as ‘get’
and ‘contains’. The features that were explained in Section IV
are available in the form of functions.

1 function getAverageTemperature(dictionaries:dictionary[])
: temperature = {

2 var temp: temperature = 0.0; count: int = 0;
3
4 for (dictionary in dictionaries) {
5 if (contains(dictionary, "temperature")) {
6 temp = get(dictionary("temperature"))
7 count = count + 1
8 }
9 return (temp / count)

10 }

Listing 1: Function definition example (computes average
temperature)

A CISL script is a unit of programming. Each CISL script
has definitions and functions to describe the behavior of
the program to implement a programmer’s IoT application
requirements. Listing 2 is an example that uses the function
we defined in Listing 1 to alert users when the average
temperature is more than 50°C. The dictionaries that contain
the temperature information are in a serialized bytes (stream),
so the stream input should be converted into an array of
dictionaries using the deserialize CISL function. This script
will generate Android source code from the @android tag.
Also, this script will generate all the necessary code to
make the dictionary size as small as possible, but without
losing flexibility in information representation, because of the
@strategy(tunable, size) tag.

1 @android
2 @strategy(tunable, size)
3 var averageTemp: temperature
4 var dictionaries: dictionary[]
5 dictionaries = deserialize(stream)
6 averageTemp = getAverageTemperature(dictionaries)
7 if (averageTemp > 50)
8 alert("Abnormal temperature)

Listing 2: Script example (detects abnormal temperature)
C. Low Level CISL Programming

The CISL low level programming enables programmers
to use the exposed core features of the CISL programming
language.

Types and Filters. A type in CISL describes the innate
properties of a value in a dictionary. In addition to the
data types supported by CISL, programmers can define their

data types for their applications. Applications that use CISL
also define false-positive filters that constrain legal values
of attributes in the information summaries. In our previous
research [3], we explained that various situational filters can
detect practically all false positives to enhance data quality
dramatically. Programmers who have the requirements of (1)
high data quality and (2) a small dictionary can add their filters
to remove possible data degradation.

Script example. CISL provides low-level functions for pro-
grammers to control the life-cycle of the information sharing
activities among IoT devices. Fig. 3 shows an example low
level script that defines a function that converts a feature rich
format, JSON, encoding into the representation in size efficient
format, FBF, using a low level function such as ‘toFbf’ and
‘toJson’.

1 function from_json_to_fbf(json_file:file, binary_file:
file) = {

2 dictionary = load(json_file); fbf = toFbf(dictionary)
3 binary = serailize(fbf); save(binary, binary_file)
4 }
5 function transform_dictionary(
6 binary_file:file, schema_description:file, json_file:

file) = {
7 dictionary = load(binary_file)
8 json = toJson(summary, schema_description); save(json,

json_file)
9 }

Listing 3: Script that uses low level functions

V. CISL EXPERIMENTS

In this section, we simulate how developers build IoT
applications that share information intelligently among IoT
devices. The developers use the CISL language without know-
ing implementation details of various dictionary representa-
tions, but they are aware of the application requirements.
They use four different strategy tags: @strategy(tunable, size),
@strategy(tunable, encoding energy), @strategy(HQHS), and
@strategy(LCLF) to meet their application requirements from
device constraints. We compare size efficiency, false positive
probabilities (data quality), and relative energy consumption
for encoding using these strategies. We show how the CISL
language facilitate intelligent interoperability among IoT de-
vices.

For experiments, we used the same real-world information
sharing situation as in our previous work [3]. In the research,
we used a basic epidemic information dissemination protocol
to simulate our open-air market. We used a city, modeled on
Manhattan, with four open-air markets [3]. We tested with
three different test dictionary sets. The first dictionary contains
situational information, including markets summaries, describe
inventory descriptions, opening hours, locations, and dis-
counts, to be shared among both book sellers and buyers [3].
The second test uses the dictionary from our research [14].
In the research, we modeled streaming sensor data—count,
date, time, location, name, id, value, and unit—to monitor the
health of a structure. Application developers write a single
CISL code to generate target languages. We use @android
tag and @server tag to emulate the communication between



Android mobile devices and server devices. We measured the
size reduction rate and data quality degradation rate from
various options for sharing information among IoT devices.

Table II shows the size reduction when each strategy is
compared with the HCHQ strategy. In our previous research,
we showed that we can use internal table size to control the
dictionary size and data quality [3] [15]. For the turnable
strategy of maximum size reduction (size option), we set a
smaller (width of 2) internal table size. For the tunable strategy
of minimum encoding energy (encoding energy option), we
used a large (width of 6) internal table size. It is difficult to
measure the energy consumption accurately when encoding
a dictionary [3], so we measure the time for encoding a
dictionary to estimate the relative energy consumption.

The LCLF strategy shows the maximum size reduction. For
tunable strategy with size option, we obtained a relatively
worse data reduction rate compared to LCLF. However, con-
sidering the constraints of using LCLF, the size option gives
benefits that can compensate for the reduced size reduction.
With an encoding energy option, the overall size reduction is
smaller than the results with a size option. However, energy
consumed for encoding is dramatically smaller: generally, it
took seconds to have a maximum size reduction rate when
encoding with size option but milliseconds with an encoding
energy option.

TABLE II: Size reduction rate comparison with HCHQ.

LCLF Tunable
size encoding energy

Test1 74.2% 71.3% 60.1%
Test2 84.5% 76.7% 65.6%

Table III shows the data quality degradation rate of dif-
ferent strategies. There is no data quality degradation for the
HCHQ strategy. However, with the LCLF strategy, we can
decode information from received dictionaries only with pre-
knowledge as we explained in Fig. 3. This explains why
the degradation rate in a ‘pre (knowledge) column’ is 0%.
Otherwise, the degradation rate becomes 100%, as in the
data in a ‘non-pre (knowledge) column’, because we cannot
decode information from dictionaries. Tunable strategies’ data
degradation is calculated from false positive probabilities as
we explained in Fig. 4. The false positive probabilities are
extremely low—practically zero—both with size and encoding
energy options. In our experiments, we do not have any data
degradation with a tunable option.

TABLE III: Data quality degradation rate

HCHQ LCLF Tunable
pre non-pre size encoding energy

Test1 0% 0% 100.0% 3.49× 10−14% 4.80× 10−15%
Test2 0% 0% 100.0% 2.71× 10−15% 3.73× 10−16%

These experiments show that IoT developers can use the
CISL language for their applications that should meet differ-
ent requirements such as small data size, high data quality,

or small encoding energy, with simple tags added in their
programs. The CHITCHAT programming model can alleviate
coding burdens for application programmers.

VI. CONCLUSION AND FUTURE WORK

The emerging technology of IoT has the potential to change
not only people’s lives, but also the industry, services, and
society as a whole. However, context sharing among het-
erogeneous IoT devices requires different approaches than
sharing context among homogeneous devices, because IoT
devices have widely differing capabilities and priorities. In this
work, we provide a conceptual model and strategies in sharing
information among heterogeneous IoT devices to propose a
homogeneous approach for IoT application developers. We
propose a programming model, the CHITCHAT information
sharing language (CISL), and its semantics to be used to
implement the functionalities for sharing information. We
showed how programmers can use the conceptual strategies
with the CISL language to make the applications that meet
the program requirements, and we assessed the tradeoffs of
each strategy by analyzing the size reduction and data quality
degradation quantitatively. As the future work for improving
the CHITCHAT approach and language, we plan to conduct
empirical studies with professional developers in industry
settings requiring an adequate share of context knowledge in
scalable, heterogeneous environment.

REFERENCES

[1] J. Chase, “The evolution of the internet of things,” Texas Instruments,
White Paper, 2013.

[2] D. Evans, “The Internet of Things ,” Cisco Internet Business Solutions
Group, White Paper, Apr. 2011.

[3] S. Cho and C. Julien, “CHITCHAT - Navigating tradeoffs in device-to-
device context sharing.” in PerCom’16: Proceedings of the 2016 IEEE
International Conference on Pervasive Computing and Communications.
IEEE, 2016, pp. 1–10.

[4] P. Hu, J. Indulska, and R. Robinson, “An Autonomic Context Manage-
ment System for Pervasive Computing,” in PerCom.

[5] D. Salber, A. K. Dey, and G. D. Abowd, “The Context Toolkit - Aiding
the Development of Context-Enabled Applications.” in CHI’99. New
York, New York, USA: ACM Press, 1999, pp. 434–441.

[6] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos, and
P. Christen, “MOSDEN: An Internet of Things Middleware for Resource
Constrained Mobile Devices,” in HICSS’14.

[7] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca,
“Context Information for Knowledge Reshaping,” International Journal
Web Engineering Technology, vol. 5, no. 1, pp. 88–103, May 2009.

[8] C. Băzăr and C. S. Iosif, “The Transition from RDBMS to NoSQL.”
[9] mongoDB, “Top 5 Considerations When Evaluating NoSQL Databases,”

White Paper, pp. 1–9, Oct. 2013.
[10] C. G. Garcı́a, B. C. P. G-Bustelo, J. P. Espada, and G. Cueva-Fernandez,

“Midgar: Generation of heterogeneous objects interconnecting appli-
cations. a domain specific language proposal for internet of things
scenarios,” Computer Networks, vol. 64, pp. 143–158, 2014.

[11] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a
domain specific language and ide for internet of things applications,”
in MIPRO 2015.

[12] E. Grim, C.-L. Fok, and C. Julien, “Grapevine - Efficient situational
awareness in pervasive computing environments.” in PerComW.

[13] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter:
an efficient data structure for static support lookup tables.” in SODA’04.

[14] S. Cho and C. Julien, “Size Efficient Big Data Sharing Among Internet
of Things Devices,” in PerCom Workshop BICA.

[15] S. Cho, “Navigating Tradeoffs in Context Sharing Among the Internet
of Things,” Ph.D. dissertation, The University of Texas at Austin, The
University of Texas at Austin, Aug. 2016.


