
Enabling Ubiquitous Coordination
Using Application Sessions

Christine Julien and Drew Stovall

The Center for Excellence in Distributed Global Environments
The Department of Electrical and Computer Engineering

The University of Texas at Austin
{c.julien, dstovall}@mail.utexas.edu

Abstract. Enabling coordination among ubiquitous computing applica-
tions and resources requires programming abstractions and development
tools tailored to this unique environment. This paper introduces a suite
of coordination abstractions that enables expressive interaction between
ubiquitous computing applications and dynamically available resources.
In our model, applications express their coordination needs in terms of
application sessions that are loosely defined by a set of interactions with
remote resources. Our approach allows developers to delegate responsibil-
ity for the construction and maintenance of the communication links nec-
essary to support the application’s sessions to an underlying middleware.
In this paper, we formalize a suite of session definitions for coordination
in general classes of ubiquitous computing applications. We also present
a middleware based on this coordination model that directly supports
the software development task. Finally, we demonstrate the simplicity
and flexibility of our approach using a real-world application.

1 Introduction

The increasing pervasiveness of computing capabilities has enabled new classes
of ubiquitous applications that rely on interactions with dynamically available
resources to provide an adaptive, responsive, and intuitive computing experi-
ence. Many applications have been built, but existing development tools are not
flexible enough to meet the demands of interactive general-purpose applications.
This paper undertakes a coordination approach to specifying and managing the
interactions between application and resources. We leverage the benefits of this
coordination to realize a programming framework that removes the need for an
application programmer to be intimately familiar with the details of communi-
cation in pervasive computing. Our approach promises to simplify application
development by promoting abstraction, reuse, and transparency.

Within this paper, we use two application domains that exemplify the unique
challenges of building ubiquitous computing applications. In first responder ap-
plications, a dynamic set of participants is deployed in an emergency situation.
People with differing tasks (e.g., paramedics, firemen, policemen, search and res-
cue personnel, etc.) converge on a geographic area, bringing with them comput-
ing, communicating, and sensing devices. Their applications benefit significantly



from heightened degrees of cooperation involving pairs of participants or large
dynamic groups of people. As a second example, construction sites are becoming
increasingly loaded with sensing and computing capabilities. Supervisors and
workers on the site desire to connect to local resources in real time to monitor
and maintain safety or to track materials for planning.

This work defines new coordination mechanisms specifically tailored to perva-
sive computing applications. We define an application session to be a temporary
logical connection among two or more networked devices over which application
data is exchanged. We differentiate this application session from other connection
mechanisms in that the state maintained involves an application-level dialog be-
tween the communicating entities and depends significantly on the application.
As such, a session is further defined by the set of operations the application in-
tends to perform over the logical connection, which is provided by an underlying
physical connection between two (or more) distinct endpoints.

This paper’s contributions are on two fronts, both focused on using coordi-
nation to simplify application development for ubiquitous computing. First, we
define a coordination framework around the concept of application sessions and
provide formal characterizations of a useful set of such sessions that clearly com-
municate the constructs’ behavior to application developers. Second, we provide
a middleware infrastructure that allows application developers to use these coor-
dination constructs to create flexible and adaptive applications. Our framework
is the first such programming environment to recognize applications’ needs for
diverse session semantics and to provide them in a unified manner.

This paper is organized as follows. Section 2 describes related projects. Sec-
tion 3 introduces the new coordination constructs. In Section 4 we describe the
programming interface and middleware implementation. Section 5 demonstrates
the use of the framework in a real-world scenario, and Section 6 concludes.

2 Related Work

It has been shown that adopting a coordination approach to handling the un-
predictability inherent in mobile computing can lead to solutions that simplify
programming [1]. Several middleware solutions have taken this approach [2–4]
but focus on exchanging data items in dynamic conditions and not on generic
resource usage in pervasive computing situations. As ubiquitous computing has
come to the forefront, projects have increasingly focused on providing dynamic
access to a changing set of resources. Many efforts mediate quality of service re-
quirements by leveraging object mobility to enhance application responsiveness
and network-wide performance metrics [5–7]. These approaches focus on bring-
ing objects closer to clients instead of on mobile clients that require inherently
location-dependent resources.

Projects closer to our goals update bindings between clients and services as
processing or environment dictates [8, 9]. A follow-me session [10] provides con-
stant connectivity to services by transferring a connection from one provider to
another. Context-Sensitive Bindings [10, 11] implement the follow-me session by



defining a context and selecting resources from that context that match an appli-
cation’s specification. The approach favors complete transparency, and assumes
that a resource binding should always be transferred, subject to an applica-
tion’s specified policies. Service Oriented Network Sockets [12] provide a similar
abstraction but use well-accepted service discovery mechanisms to gather all
matching services locally, then decide which services to connect to. This can in-
cur significant amounts of overhead in networks that are dynamic, large in size,
or contain numerous satisfactory services. iMash [13] presents a dynamic session
hand-off scheme but relies on knowledgeable intermediaries that handle service
switches on behalf of clients and resources. Similarly, Atlas [14] uses a central
server to mediate the transfer of a service binding from one provider to another.

Our framework differs from these projects in several ways. First, we seek not
to limit an application’s sessions to a single type but to adapt to an applica-
tion’s needs, including simple queries, lasting connections, transparent resource
migration, etc. Second, while we aim to decouple the semantics of application
sessions from the implementation supporting the session, we recognize that the
extreme scale and device constraints necessitate communication protocols tai-
lored to particular session requirements. Instead of requiring all session types to
use the same communication style, our framework incorporates a suite of novel
protocols that efficiently support a variety of coordination semantics.

3 Defining Application Sessions

Our model introduces a set of application session definitions that coordinate
interactions between ubiquitous computing applications and dynamic resources.

As shown in Fig. 1, we explicitly
shared 

variables

spec

o

session
management

user
program

Fig. 1. Separation of Session Manage-
ment from User Program

separate a user program (i.e., the appli-
cation) from the session management
infrastructure that manages coordina-
tion with available resources. The only
knowledge shared between the session
management and the user program are
a specification (spec) that describes the
resource(s) the application is looking
for and an object handle (o) that al-
lows the application to access the re-
source(s) that the infrastructure connects it to. Through the coordination primi-
tives this framework provides, the application completely delegates responsibility
for maintaining resource connections to the infrastructure.

Substantial work has focused on allowing applications to abstractly define
their resource needs through a variety of specification mechanisms. We assume
resource requirements are described using semi-structured data [15], an approach
common among description languages [16–18] and tuple based systems [2, 3, 19,
20]. Our approach can incorporate any of these schemes, so application develop-
ers can utilize specification languages with which they are familiar.



3.1 A Notation

Section 3.2 will introduce the sessions that provide varying coordination seman-
tics between applications and resources. Each requires the application to provide
a resource specification, and the session mechanics fill in and maintain the ob-
ject handle on behalf of the application. In general, an application will invoke a
session using code with semantics similar to those shown in Fig. 2.

The uninitialized value (⊥) indicates that a re-

spec = specification
[request session]
〈await o 6=⊥〉
if o 6= ε then

[use o]
fi

Fig. 2. Application Ses-
sion Interaction

source o declared by an application has not yet
been modified by the session management scheme
(i.e., a search is in progress). A null value (ε) indi-
cates that a matching resource does not exist (or no
longer exists). The 〈await B → S〉 construct [21]
allows a program to delay execution until the con-
dition B holds. When B is true, the statements
in S are executed in order. The angle brackets en-
closing the construct indicate that the statement is
executed atomically, i.e., no state internal to S is
visible outside the execution of S. If S is omitted
(as in Fig. 2), then the entire expression signifies a point of conditional synchro-
nization.

Throughout the next section, we will use some additional notational conven-
tions. First, the entails (|=) relation expresses the fact that a resource satisfies
a specification, i.e., o |= spec indicates that the resource o satisfies the speci-
fication spec. The selection of a resource matching a specification will use the
non-deterministic assignment statement [22]. A statement x := x′.Q assigns to
x a value x′ nondeterministically selected from among the values satisfying the
predicate Q. If an assignment is not possible, the statement aborts; we assume
this results in assigning ε (a null value) to x. Within our model’s semantics, we
will use this notation to indicate that a resource is selected nondeterministically
from any that satisfy the application’s provided specification. Finally, we will
also use a three-part notation: 〈op quantified variables : range :: expression〉,
in which the variables from quantified variables take on all possible values per-
mitted by range. Each instantiation of the variables is substituted in expression,
producing a multiset of values to which op is applied, yielding the value of the
three-part expression. If no instantiation of the variables satisfies range, then the
value of the three part expression is the identity element for op, e.g., true if op
is ∀ or ∅ when op is set.

3.2 Basic Session Types

We next detail four basic sessions that form the foundation of our coordination
framework. In Section 3.3, we describe a few generic extensions.

Query Session. Some application requests are simple data queries. For exam-
ple, a first responder might request a copy of a nearby building’s blueprints.



After downloading the blueprints, the application may have no further need for
interactions with the device providing the data. Using the constraints provided
in the specification, the application should be connected to a single resource
for the duration of the operation. Our first session type provides no long-lived
interaction with the selected resource. This can be both beneficial (in terms of
reduced network overhead) and limiting (in terms of capturing the environment’s
dynamics). We write the semantics of a query session as:

o = spec

, o = o′.(o′ |= spec ∧ o′.connected)

In these definitions, the expression in the box denotes the particular session
semantic; in this case, the query semantic is expressed by assigning the specifi-
cation to the shared object handle, o. The remainder of the expression defines
the session’s semantics. In a query session, the value assigned to o is nondeter-
ministically selected from all objects that satisfy the specification spec and are
connected. The connected relationship models the requirement that the applica-
tion’s device must be able to communicate with the selected resource’s device.
This abstraction allows the developer to delegate communication management
to the middleware that implements the session constructs. In some cases, con-
nectedness alone may not be enough to model usefulness of a resource; other
characteristics can be handled as discussed in Section 3.3.

Provider Session. In many cases, once

vital statistics

treatment plan

Fig. 3. Using a Provider Session
in a first responder application.

an application connects to a resource, it
needs to perform several operations with
that specific resource. For example, a para-
medic may request a connection to a criti-
cal patient designated by a medical tag [23]
placed by a triage worker. Once a patient
is discovered, the paramedic may further
query the patient’s tag for injury infor-
mation, vital signs, etc., and may wish to
change and/or add information. As depicted
in Fig. 3, to ensure data consistency, the
paramedic must interact with the same tag
that satisfied the initial request. The opera-
tional semantics for this session are:

o J← spec

, o = o′.(o′ |= spec ∧ o′.connected)
if o 6= ε then
〈await ¬o.connected→ o = ε〉

fi

In a provider session, an application requests that the infrastructure maintains
the connection to a particular resource given dynamics in the network topology.
The application attaches the specification (spec) to the object handle o. If an



object is found, the connection to it is monitored, and as long as the middleware
can maintain communication between the application and the resource, it does
so. This session is a two-way connection, so not only can the application make
requests of the resource, but, if the resource changes, the client is also updated.
If two paramedics are treating the same patient, and one changes the resource
(e.g., updates the patient’s record), this change is propagated to the second
paramedic. The application’s resource handle o is a local reflection of the remote
resource. When the connection to the resource fails (i.e., when o.connected
becomes false), the handle is assigned ε, which effectively notifies the application
that the requested resource is no longer available.

Type Session. In other scenarios, an
location servers

session
transfer

Fig. 4. Using a Type Session on
a construction site.

application may need persistent connection
to any matching resource. On the construc-
tion site, safety applications may require
that a device always knows its location (or
an estimate of its location). Location servers
around the site may periodically publish
a region identifier, and a vehicle moving
through the site can maintain a connection
to a nearby location server. As Fig. 4 shows,
as the vehicle moves, the particular server
offering the location data may change, but
the application receives a steady stream of location updates. We express a type
session as:

o⇐ spec

, o = o′.(o′ |= spec ∧ o′.connected)
while o 6= ε do
〈await ¬o.connected→ o = o′.(o′ |= spec ∧ o′.connected)〉

od

This expression uses an open arrow (⇐) to represent the dynamic nature of a
type session. When an attached resource becomes unavailable, the infrastructure
attempts to locate a new resource that is connected and matches the specifica-
tion. As long as such a resource is available, the application is connected to one,
nondeterministically chosen from those that meet the requirements. If a match
is not possible, the application’s reference handle is assigned ε, which indicates
that no matching resource is available. The above definition is a bit restrictive
in that if a satisfactory resource is not available, the application must poll until
one becomes available. This limitation will be addressed in Section 3.3.

Group Session. Some applications require a session with a group of re-
sources. For example, an application may monitor the movement of workers and
vehicles within the arc of a crane’s movement. A device in the crane needs a
session that includes the devices of workers and vehicles in this region, as shown
in Fig. 5. In a group session, the application is connected to every resource
that matches its specification, and the connections to matching resources are
maintained as long as some resource matches. This session can be expressed as:



o⇐{} spec

, o = 〈set o′ : o′ |= spec ∧ o′.connected∧ :: o′〉
while o 6= ∅ do
〈await group-change → o = 〈set o′ : o′ |= spec ∧ o′.connected :: o′〉 〉

od

where group-change is defined by the following expression:

group-change

≡ 〈∃o′ : o′ ∈ o ∧ ¬o′.connected〉
∨〈∃o′ : o′ ∈ o ∧ o 6|= spec〉
∨〈∃o′ : o′ /∈ o ∧ o′.connected ∧ o′ |= spec〉

The object handle o is connected

crane arc

Fig. 5. Using a Group Session on a
construction site.

to a set of objects that match the
specification, and the application can
subsequently use set operations to in-
teract with the resources. As this set
changes (either because a matching re-
source disconnected, dynamics caused
a matching resource to no longer sat-
isfy spec, or because a new matching
resource connected), the set reflects all
of the connected matching resources.
Some group definitions are easier to
maintain than others, i.e., the com-
munication constructs required for cer-
tain group definitions have acceptable
performance under reasonable guaran-
tees. The mechanisms our infrastruc-
ture uses to provide group communi-
cations are discussed in Section 4.

3.3 Session Extensions

We next describe generic extensions that add flexibility and expressiveness.

Specifications of Preference. In many instances, an application would like to
express preferences that determine a partial ordering of matching resources. We
allow programmers to specify a metric (f(R)) that selects a preferred resource
over others. Generically, a metric accepts a resource’s description (which can
include information about the device where the resource is located) and generates
an integer. Preferences may be specified for query sessions, provider sessions, or
type sessions. The semantics of the augmented query session are:

o = spec/f(R)

, o = 〈max o′ : o′ |= spec ∧ o′.connected :: f(o′)〉



This statement selects the resource with the largest metric value. If multiple
resources have the same value, one is selected nondeterministically. For a provider
session, the selection statement is very similar. In a type session, an additional
change ensures that the connection is maintained to the most preferred resource:

o⇐ spec/f(R)

, o = 〈max o′ : o′ |= spec ∧ o′.connected :: f(o′)〉
while o 6= ε do
〈await ¬o.connected ∨ 〈∃o′ : o′.connected ∧ o′ |= spec ∧ f(o′) > f(o)〉 →

o = o′.(o′ |= spec ∧ o′.connected)〉
od

For brevity, the mechanics behind metric definition are omitted from this
paper; an example is provided in Section 5. Useful metrics include:

– relative mobility: more stationary (i.e., less mobile) resources may be prefer-
able due to their increased stability.

– proximity: closer resources (or resources in the same building) may often be
preferable to more distant ones.

– reliability: resources with more consistent up-times are likely to be preferable.
– error rate: resources with smaller potential for error are more desirable.

These metrics can also be used to account for the cost or quality of service
associated with using a particular resource, based on application-level definitions.

More Persistent Connections. In the basic session types, if an application’s
request cannot be satisfied, the infrastructure ceases looking for matches. This
reduces communication overhead, but an application that cannot continue with-
out a matching resource must poll on its own. For this reason we augment our
type and group sessions with the ability to request that a session remain “active”
even in the absence of a matching resource. As soon as a satisfactory resource
does appear, it is connected. An active session ends only when the application
explicitly shuts it down. The semantics for an active type session are:

o⇐ spec

, o = o′.(o′ |= spec ∧ o′.connected)
while ¬stop do
〈await o = ε ∨ ¬o.connected→ o = o′.(o′ |= spec ∧ o′.connected)〉

od

This differs from the regular type session in a few subtle ways. First, the guard
on the await statement now also attempts to reassign a resource when o is already
ε. Second, the condition on the while loop is ¬stop, which references a third
shared variable that is true when the session begins and set to false when the
application quits the session. Without the stop variable, an application simply
stops using the object handle o, which implicitly signals the end to the session.
In the implementation, however, the underlying communication protocols should
stop maintaining the session as soon as possible to ensure the best overall network
performance, so our implementation uses the stop variable in all cases.



Maintenance and Migration of State. One aspect of sessions we have ig-
nored so far is the migration of session state from one resource provider to
another. This is significant in the case of the type session (as it directly involves
moving an ongoing session from one provider to another) and may also affect
group sessions (if a newcomer needs the history of an ongoing session). For now,
our framework does not support the transfer of such session state and instead
leaves its maintenance up to the application. Future work will include the for-
malization of such state transfers and their integration into our middleware.

4 Application Sessions: A Middleware

We provide our session constructs in a programming framework that enables
rapid development of ubiquitous computing applications. We briefly detail the
programming interface and our prototype implementation. Where appropriate,
we also describe intended enhancements to the existing prototype.

4.1 Data Types

While our model does not restrict the format of descriptions and specifications,
our implementation uses the eLights tuple space implementation [3]. Resources
are provided as tuples that contain not only the resource (or its proxy) but also
describe its properties. The Resource class serves as a wrapper for the ETuple;
the Specification class is a wrapper of the ETemplate and provides restric-
tions over Resources. The Metric interface allows applications to provide re-
source preferences and requires an implementing class to provide an evaluate
method, which returns the metric’s value for a provided Resource. Finally, we
explicitly separate the properties of an application’s group specification into two
categories. The Region contains all those properties that can be used to restrict
the communication region (e.g., distance, latency of communication, bandwidth,
etc.). The remainder of the properties are placed in a regular Specification.
Our implementation provides specific Region classes applications can use. We
can use the Region to parameterize the communication protocols, thereby max-
imizing the application’s performance.

4.2 The Session Factory

The major point of interaction between an application and the framework is the
SessionFactory. A version of its interface (slightly simplified for presentation
purposes) is shown in Fig. 6. The first three methods create basic sessions us-
ing a provided specification. The active boolean in the type session designates
whether the middleware should monitor the available resources for a new match.
The fourth method, createGroupSession uses information about the Region of
communication. The next three methods allow a metric for preference in addition
to the resource specification. The method endSession allows the application to
determine when a session for a given Specification ends (instead of waiting



public class SessionFactory {
public Resource createQuerySession(Specification spec);

public Resource createProviderSession(Specification spec);

public Resource createTypeSession(Specification spec, boolean active);

public Resource[] createGroupSession(Region r, Specification spec,

boolean active);

public Resource createQuerySession(Specification spec, Metric m);

public Resource createProviderSession(Specification spec, Metric m);

public Resource createTypeSession(Specification spec, Metric m,

boolean active);

public void endSession(Specification spec);

public void addResource(Resource r);

}

Fig. 6. Application Sessions Programming Interface

until a resource is no longer available). The final method allows applications to
make resources available to other components.

4.3 Middleware Support

Fig. 7 overviews our middleware’s architecture. Many of the underlying protocols
use peer-to-peer communication, which requires each session factory to respond
to remote applications’ requests. When requests arrive, the session factory de-
termines whether a matching resource exists at this location (by looking in the
local repository). Because our implementation represents resources and requests
as tuples and templates, this matching is performed within eLights. While
matching tuples against templates is straightforward, the complexity of check-
ing o |= spec depends on both the specification language used (e.g., eLights
vs. another service description language) and the application. Future work will
evaluate the difficulty associated with this aspect of the framework.

Efficiently discovering a resource in a dynamic pervasive computing environ-
ment can be very difficult. As Figure 7 shows, we use a package of discovery pro-
tocols. In relatively static environments, where the devices and resources change
rarely, we use a registry method similar to Jini [18]. While such an approach
is straightforward to implement, we have shown that a more application-aware
protocol is more efficient in dynamic environments [24]. We have created Cross-
Layer Discovery and Routing (CDR) [24] that uses information encapsulated in
application requests to perform distributed resource discovery without a lookup
service. Our evaluations have further shown that an ideal discovery protocol may
lie between the above two implementations. A hybrid protocol that combines the
proactive style with the reactive style is under development. Currently, the selec-
tion of protocols associated with static or dynamic environments is performed
off-line; future work will integrate context-awareness and adaptation into the
middleware to allow it to switch between protocols as the environment dictates.

In our tuple based approach, descriptions contain “advertised” resource prop-
erties. Based on these properties and network conditions (e.g., latency, band-
width, and mobility conditions), a session can use the application’s preferences



to determine which discovered resource best satisfies a request. In our prototype,
the protocol waits for a predetermined time (based on the double of an estimate
of the network’s worst case round trip time) to ensure that it has received a
response from the “best” resource. Currently, QoS requirements and preferences
are sorted out as part of the resource matching process. In the future, using this
information as part of the communication protocol may boost performance; we
have seen promising results with the protocol for group communication (below)
and are incorporating similar mechanisms into our CDR protocol.

To provide the long-lived con-

Query
Session

Group
Session

Type Session

Provider Session

Session Factory

Discovery Routing

C
D

R

H
yb

rid

R
eg

is
try

Group
Coordination

DSR

Applications

SICC

lo
ca

l
re

po
si

to
ry

Fig. 7. Application Session Middleware

nection required by a provider ses-
sion, we use a mobile ad hoc rout-
ing scheme (DSR [25]) to maintain
a route and discover when the route
fails. In our current implementation,
we provide a type session as a se-
ries of provider sessions. The con-
nection to the first discovered re-
source is maintained as long as pos-
sible. When the connection to the
resource breaks, the implementation
attempts to launch another provider
session. As long as this is successful,
the application remains connected
to a satisfactory resource. When ap-
plications specify preferences, the im-
plementation must monitor the network for new resources that better satisfy the
request. In this case, the middleware periodically reissues this initial request to
determine whether a better resource exists. This polling implementation does
not exactly match the semantics of the type session given in Section 3, and fu-
ture work will develop reactive protocols for updating type session bindings that
are not cost or performance prohibitive.

We use an entirely different communication approach to provide efficient
communication in group sessions. Our approach is based on our Source-Initiated
Context Construction (SICC) protocol [26] that creates and maintains connec-
tions to a set of devices that satisfy the application’s region specification. Effec-
tively, SICC creates a reverse multicast tree that allows information to funnel
back to the requesting device from other devices within the region. By providing
the region abstraction to the developer, our framework ensures that the regions
a programmer defines satisfy the underlying protocol’s requirements. By issuing
persistent queries over SICC’s network structure, the group session implemen-
tation can be assured that it receives notification of new resources and removes
old resources as mobility and other conditions change the group membership.
Our current implementation allows iteration over the group of resources; future
work will formalize the semantics of varying forms of iteration.



A prototype implementation of this coordination middleware and its associ-
ated documentation are available at http://dstovall.org/servicesessions/.

5 An Application Scenario

To demonstrate how a developer uses our framework to build pervasive appli-
cations, we consider a team of first responders in an urban environment, tasked
with search and rescue. A responder moves from building to building, looks for
survivors, tags them with small sensors that emit information about their con-
ditions and locations, and summons transportation. We take a few of the tasks
that the responder’s application supports and examine how these operations use
our framework to find and coordinate with resources in the environment. To
simplify the example code fragments, we use very simple resource specifications
that search for resources based only on their types; most applications (including
the ones we describe) will use more sophisticated requests.

Finding a local map: When the responder is first deployed, she may down-
load a street map of the region. This map may be available on the device of a
nearby responder who has already downloaded it or it may need to be down-
loaded from a central server. The application code that performs this action is:

Specification spec = new Specification();

spec.addConstraint(type, Specification.EQUALS, ‘‘Map’’);

Map localMap = (Map)sessionFactory.createQuerySession(spec);

if(localMap != null)

[display map]

The Map class extends Resource and is defined within the application. The first
two lines define the simple resource specification. The third line requires that the
returned resource must be of type “Map” and calls the createQuerySession
method to retrieve the specified resource. When a map has been discovered,
localMap will reflect the map, and it can be displayed to the user.

Staying connected to local blueprints: As the responder moves from
one building to the next, she will likely want a copy of the blueprints of the local
building if they are available. These blueprints could be stored in a device in the
building itself (e.g., as part of the building’s security system) or constructed by
the device of a nearby responder. The application creates a type session:

Specification spec = new Specification();

spec.addConstraint(type, Specification.EQUALS, ‘‘Blueprint’’);

Metric local = new MyBuildingMetric();

Blueprint building =

(Blueprint)sessionFactory.createTypeSession(spec, local, true);

[display blueprints when available]

The type session prefers blueprints for the current building over any others.
This preference is encapsulated in MyBuildingMetric, whose evaluate method



assigns “1” to resources in my building and “0” to any other resource. When the
responder moves to a new building, a different set of blueprints are automatically
attached to the building handle and can be displayed.

It is possible for the application’s session to connect to a blueprint for a
building other than the current one if a blueprint for the current building is
unavailable. This disadvantage may be overcome by an extension of our approach
that allows specifications to be based on contextual properties. In the above
example, this would allow the specification to require that a matching resource
is within the current building. Future work will investigate this approach.

Learning about nearby workers’ movements: Once the responder has a
good picture of her environment, she wants to coordinate with other responders.
In our application, each responder keeps track of the buildings (and the rooms
within the buildings) he or she has recently visited. Then the map (or the blue-
print) can be overlaid with this information to ensure that our responder does
not cover the same territory that has been searched by one of her colleagues.
The code to discover and monitor these trajectories is:

Specification spec = new Specification();

spec.addConstraint(type, Specification.EQUALS,‘‘Trajectory’’);

Region r = DistanceRegion(100);

Trajectory[] trajectories =

(Trajectory[])sessionFactory.createGroupSession(r, spec, true);

[display trajectories on map]

This code fragment defines a DistanceRegion that restricts the returned tra-
jectories to those belonging to other first responders within 100 meters. This
DistanceRegion class is provided within our framework and restricts a group
to only those devices within the number of meters specified. Once this session is
created, our responder’s application will be constantly updated with respect to
changes to the trajectories of other responders within 100 meters.

Summoning evacuation transportation: Once our responder has located
a survivor, she tags him and loads information about the survivor’s condition
and location into the tag. She then needs to contact some form of evacuation
vehicle to transport the survivor to safety. The responder would like to contact
a particular vehicle, transfer the information about the survivor (including his
location), and receive a confirmation that a particular vehicle will be retrieving
the survivor. To ensure data consistency, the responder’s device should connect
to a proper vehicle and remain connected for the duration of the exchange:

Specification spec = new Specification();

spec.addConstraint(type, Specification.EQUALS, ‘‘Ambulance’’);

Vehicle ambulance = (Vehicle)sessionFactory.createProviderSession(spec);

[transfer information about survivor]
[receive confirmation]
sessionFactory.endSession(spec)

Because this session is defined by a discrete number of well-known tasks, when
the session completes, the application invokes the endSession method to tear
down the communication lines that were created for the session.



Sharing resources: The previous discussions assume that another applica-
tion component has made the requested resource available. When an application
shares a resource, the resource and its description are placed in a local reposi-
tory. For example, a first responder creates an instance of the Trajectory class
(which extends the Resource class). As the responder moves, he updates his tra-
jectory, changing the resource stored in the local repository. This change then
propagates to a first responder who has requested a group session that monitors
other nearby responders.

6 Conclusions

Simplifying the development of pervasive computing applications requires coor-
dination abstractions that succinctly represent the interactions among applica-
tions and ubiquitous resources. In this paper, we have defined such a coordina-
tion model based on application sessions and demonstrated a novel set of such
sessions that prove useful to a wide range of dynamic interactive applications.
By subsequently capturing our rigorously defined sessions in a programming in-
frastructure, we present application developers with abstractions that ease their
programming burdens and enable programmers to create complex, adaptive ap-
plications. By incorporating a suite of dynamic and adaptive communication
protocols, the middleware that supports these session definitions provides appro-
priate, efficient, and scalable form of communication for different session types
in varying environments. Such an integrative approach to abstraction and com-
munication is imperative to meeting the rapidly growing demand for ubiquitous
computing applications.

References

1. Roman, G.C., Murphy, A., Picco, G.: Coordination and mobility. In Omicini, A.,
Zambonelli, F., Klusch, M., Tolksdorf, R., eds.: Coordination of Internet Agents:
Models, Technologies and Applications. (2000) 254–273

2. Murphy, A., Picco, G., Roman, G.C.: Lime: A middleware for physical and logical
mobility. In: Proc. of ICDCS. (2001) 524–533

3. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mobile
environments. In: Proc. of FSE-10. (2002) 21–30

4. Fok, C.L., Roman, G.C., Hackmann, G.: A lightweight coordination middleware
for mobile computing. In: Proc. of Coordination. (2004) 135–151

5. Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T., Ber-
shad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive
applications. ACM Trans. on Computer Sys. 22(4) (2004) 421–486

6. Holder, O., Ben-Shaul, I., Gazit, H.: Dynamic layout of distributed applications
in FarGo. In: Proc. of ICSE. (1999) 163–173

7. Ryan, C., Westhorpe, C.: Application adaptation through transparent and portable
object mobility in java. In: Proc. of OTM Federated Confs. (2004) 1262–1284

8. Bellavista, P., Corradi, A., Montanari, R., Stefanelli, C.: Dynamic binding in
mobile applications. IEEE Internet Comp. 7(3) (2003) 34–42



9. Klein, M., Konig-Ries, B.: Combining query and preference—an approach to fully
automize dynamic service binding. In: Proc. of the Int’l. Conf. on Web Services.
(2004) 788–791

10. Handorean, R., Sen, R., Hackmann, G., Roman, G.C.: Context aware session
management for services in ad hoc networks. In: Proc. of the Int’l. Conf. on
Services Comp. (2005) 113–120

11. Roman, G.C., Julien, C., Murphy, A.: A declarative approach to agent-centered
context-aware computing in ad hoc wireless environments. In: Soft. Eng. for Large-
Scale Multi-Agent Sys. Volume 2603 of LNCS. (2003) 94–109

12. Saif, U., Paluska, J.: Service-oriented network sockets. In: Proc. of MobiSys. (2003)
159–172

13. Bagrodia, R., Bhattacharyya, S., Cheng, F., Gerding, S., Glazer, G., Guy, R., Ji,
Z., Lin, J., Phan, T., Skow, E., Varshney, M., Zorpas, G.: iMASH: Interactive
mobile application session handoff. In: Proc. of MobiSys. (2003) 259–272

14. Cole, A., Duri, S., Munson, J., Murdock, J., Wood, D.: Adaptive service binding
middleware to support mobility. In: Proc. of ICDCS Wkshps. (2003) 396–374

15. Abiteboul, S.: Querying semi-structured data. In: Proc. of the 6th Int’l. Conf. on
Database Theory. (1997) 1–18

16. Bremers-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

17. Christensen, E., Gubera, F., Meredith, G., Weerawarana, S.: Web services descrip-
tion language (WSDL) 1.1 (2001) Current as of 2005.

18. Edwards, K.: Core Jini. Prentice Hall (1999)
19. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination

architecture for mobile agents. IEEE Internet Comp. 4(4) (2000) 26–35
20. Gelernter, D.: Generative communication in Linda. ACM Trans. on Prog. Langs.

and Sys. 7(1) (1985) 80–112
21. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Program-

ming. Addison Wesley (1999)
22. Back, R., Sere, K.: Stepwise refinement of parallel algorithms. Science of Computer

Prog. 13(2-3) (1990) 133–180
23. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: CodeBlue: An ad hoc sensor

network infrastructure for emergency medical care. In: Proc. of the Int’l. Wkshp.
on Wearable and Implanted Body Sensor Networks. (2004)

24. Julien, C., Venkataraman, M.: Resource-directed discovery and routing in mobile
ad hoc networks. Technical Report TR-UTEDGE-2005-01, Univ. of Texas (2005)

25. Johnson, D., Maltz, D., Broch, J.: DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networks. Ad Hoc Networking (2001) 139–172

26. Julien, C., Roman, G.C.: Supporting context-aware interaction in dynamic multi-
agent systems (invited paper). In: Environments for Multiagent Sys. Volume 3374
of LNCS. (2005) 168–189


