
Mason: an Open Development Contextual Sensing
Framework Enabling Reactive Applications

Nathaniel Wendt and Christine Julien
The University of Texas at Austin

{nathanielwendt, c.julien}@utexas.edu

ABSTRACT
Mobile devices continue to push the limits of contextually
aware application intelligence. However, due to the complex-
ity of contextual processing and programming, a centralized
system that handles all mobile context processing is difficult
to realize. The problem of defining such a contextual reason-
ing unit that uses an all-encompassing contextual ontology
for all possible uses of context is not feasible nor useful.
Furthermore, implementing custom contextual logic ad hoc
per application is difficult due to the complexity of sensor
monitoring and contextual reasoning and may be redundant
across applications. In this work we propose an openly de-
veloped dynamic ontology formation that allows developers
to contribute logical pieces to a greater network of contex-
tual reasoning for use by application developers. Specifically,
we introduce Mason, a framework for supporting modular
contextual reasoning development by handling low-level sen-
sor routing and abstracting data sources as composable and
functionally reactive data streams. This provisions for high
levels of abstraction for contextual logic developers that con-
tribute to the framework as well as application developers
that use it. We demonstrate the simplicity of developing
with Mason and show, through an audit of open source
applications, the increased contextual functionality offered,
better enabling the next generation of contextually reactive
applications.

1. INTRODUCTION
Mobile devices have become increasingly intelligent in cater-

ing to user needs. However, a large obstacle to further
improving mobile applications lies in effectively leveraging
available on-device sensors in order to reason about a user’s
context and to allow applications to make actionable de-
cisions that better customize the mobile experience to the
user. Part of customizing the mobile experience includes
making proactive decisions on behalf of the user without
explicit intervention. This means that mobile devices will
need to offer more functionality but remain unobtrusive as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobileSoft’16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4178-3/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897073.2897099

envisioned by Weiser in his seminal paper on pervasive com-
puting [36]. Currently, most applications simply respond
to user input, making them largely passive. Rarely does a
device automatically detect something about its own state
and use that state to take action on behalf of the user, for
the benefit of the user. This is due, in large part, to the
ad hoc nature of current sensor sampling in mobile appli-
cations as well as the code complexity associated with rea-
soning about collected sensor data. Furthermore, with the
exception of a few domain specific aggregations such as Ap-
ple’s HealthKit1, context derivation is not commonly shared
across applications in a way that enables many applications
to sample and reason about context efficiently.

We propose a new model in which a device constantly
samples sensor data and performs system-wide contextual
reasoning that can be shared across applications. This cen-
tralization of sampling and reasoning allows applications
to subscribe to contextual updates, inducing application-
specific actions behind-the-scenes or prompting the user for
interaction. This enables a new breed of reactively intelli-
gent applications that automatically respond and adapt to
user context. To motivate this model, consider the following
use case:

Greg grabs his mobile device as he leaves his apartment
for his evening run. His device constantly monitors its
onboard sensors and derives relevant contextual updates
to which his fitness and music application are subscribed.
As Greg begins jogging, this on-device contextual monitor
determines that his movement profile has changed, caus-
ing a contextual update that spurs his music application
to launch his favorite running playlist without any inter-
action from Greg. Once Greg completes his run, contex-
tual updates trigger the music application to stop and the
fitness application to query recorded spatiotemporal his-
tories, launch to the foreground, and display a summary
of his route and pace.

While these capabilities are readily implementable on mo-
bile devices today, the code required to implement them
requires applications to respond to asynchronous sensor up-
dates across many user contexts, which results in a very
complex programming process. Furthermore, similar func-
tionality would need to be redundantly programmed in each
of the fitness and running applications. In order to support
simplifying this programming process for the user, a central-
ized contextual reasoning system is required that can pro-
cess context and inform applications. Prior work has been

1https://developer.apple.com/healthkit/



done on similar systems [9, 14, 17, 25] but all of the ontolo-
gies supported by these contextual reasoning frameworks are
statically defined and do not encompass many contextual
attributes that may be useful. We posit that creating an
all-encompassing static ontology at deployment time is in-
feasible and not necessary for most application usages. We
propose a framework, Mason, that facilitates open develop-
ment of modular contextual components for which applica-
tion developers can subscribe in order to tune applications
to automatically respond to contextual updates as reasoned
from raw sensor data. Mason introduces two key contribu-
tions: dynamic ontology support and reactive programming
abstraction.

The first contribution of Mason is the formation of an
ontology, or a semantic contract through which applications
agree on interpretations of context. Creating this ontology
is a significant design challenge that has been partially ad-
dressed in prior work, for example in the OWL based mo-
bile ontology [34]. However, many challenges still remain
in adopting a static globally useful knowledge mapping [8].
Rather than tackling the challenge of creating a fully encom-
passing ontology before deployment, we propose facilitating
a dynamic ontology that is sourced from multiple applica-
tion developers. We leverage the AWARE framework [11]
to manage sensor sampling within our contextual engine, on
top of which we provision for custom developed components,
called contextual abstractions (CAb), that applications con-
struct. In union, the available CAbs provide an ontology
that is formed as required from application subscriptions.
For the purposes of this paper, we include several example
CAbs with our sensing engine, but additional CAbs can be
constructed by any developer and packaged as standalone
Android applications. We also implement a simple depen-
dency management system that enables users to download
CAbs on-demand as required by applications. This dynamic
ontology allows applications to (implicitly) agree on context
semantics without requiring a static outline of the semantics
at framework deployment time.

The second primary contribution of Mason is a suitable
level of abstraction such that developers avoid programming
low-level sensor management code with complex callback
chains. Through Mason, application and CAb developers
simply indicate the component interests and desired accura-
cies and define the processing of the resulting updates. All
communication, including component installation and regis-
tration, is handled by the Mason Library, encouraging the
client programmers to focus on the logical processing of data
updates. While providing abstraction is useful, it has been
generally realized in the frameworks mentioned previously.

To further ease the burden of client development, we adopt
the reactive programming paradigm (also known as compo-
sitional event systems) through Reactive Extensions [7], a
library that simplifies composing asynchronous event-based
programs through observable sequences. Essentially, in Re-
active Extensions, both sampling of sensors and logical in-
terpretations and compositions of sensed values are treated
as continuous streams of data. Components can subscribe
to or observe various streams or create their own composi-
tions of streams using a variety of operators. Through this
paradigm, we create a very high-level of abstraction and
code simplicity to allow client developers to focus on the
logic behind the reactive nature of the application rather
than the implementation details related to sensing and sam-

pling. A further boon to abstracting raw sensor data is that
it can help preserve potentially sensitive raw data that appli-
cations may not even need anyway, further supporting user
adoption.

The rest of the paper is organized as follows. We review
motivating related work in Section 2 then present the novel
Mason framework components in 3. Section 4 describe the
framework’s architecture and our prototype implementation
of it. In Section 5 we present the API that developers use
to access Mason’s features and benefits. In Section 6, we
audit several open source applications for potential uses of
Mason and discuss concrete application examples. We con-
clude with a discussion of future development aims in Sec-
tion 7 and a summary of the paper in Section 8.

2. RELATED WORK
The usefulness of providing contextual reasoning has been

demonstrated across many applications. These applications
include contextual reasoning such as providing insight into
socio-economic factors from movements patterns [20] and
cell usage [13], early warning signs of bipolar disorder [28],
and physical activity [33]. Health-centric applications also
demonstrate great potential for using contextual informa-
tion from motion and audio sensing [29] and location and
communication sensing [22]. Additionally, reactive applica-
tions demonstrate capabilities for acting on sensed health
concerns in preprogrammed ways [19, 21, 24]. We borrow
inspiration from these approaches to provide a framework
that allows for all types of applications to be highly cus-
tomized towards reacting to contextual information.

Crucial to the effectiveness of contextual reasoning is the
widely explored area of mobile sensing. Maintaining a strong
degree of energy efficiency is crucial to sensing in mobile en-
vironments and many approaches have been proposed for do-
ing so. EmotionSense allows for declarative programming to
improve the power saving of sensing [31]. Other approaches
such as CenceMe [23] and SociableSense [30] explore offload-
ing computations, but they require significant developer ef-
fort to partition the workload appropriately. We look to
simplify the developer’s task as much as possible in provid-
ing reasoning from mobile sensing. Orchestrator [18] offers
a resource orchestration framework that generates logical
and physical plans to determine the best sensing outcome.
In [16], the authors demonstrate a programming sensing flow
where developers register application level requirements like
monitoring intervals and tolerable delays across sensors and
the system optimizes the overall sensing task. Seemon [17]
introduces high level context monitoring queries (CMQs)
that allow high-level applications to subscribe to contex-
tual updates from sensor values. We borrow two key ideas
from Seemon: only updating context subscriptions on value
changes or updates and implementing bi-directional control
flow to allow the system to reflect on sensing requirements
and monitoring requests to better support energy savings.
In [35], the authors develop a hierarchy of sensors with re-
spect to energy consumption and optimize sensing based on
lower level sensors being used in place of more expensive up-
per level sensors. Our framework’s dynamic ontology based
on CAbs reflects a similar hierarchy to allow for information
reuse to better support energy savings. Lastly, ACE [25] cre-
ates a system of contexters such as (isHome, isDriving, etc.)
to which applications can subscribe. ACE uses both infer-
ence caching and speculative sensing; the former infers one



contexter attribute from another without acquiring sensor
data and the latter infers the value of an expensive attribute
by sensing a cheaper one to improve energy savings. The
CAbs in our system are similar to contexters in ACE, with
the exception that they are generally more extensive, with
each CAb potentially providing several contextual states.
It is important to note that many of these energy saving
approaches are complementary to Mason or could be gen-
erally applied as a sensor management scheme. Our focus
is not on the energy savings of mobile sensing, but rather
on provisioning for a dynamic ontology that supports asyn-
chronous contextual events at a high level of abstraction for
the application programmer.

The framework we propose is motivated by the seminal
work of a conceptual framework for conceptual processing
proposed in [9]. Our key motivations stems from the aim to
create abstractions that encapsulate common context that
support applications. The CORTEX project provides a model
of sentient objects for developing context-aware applications
in ad hoc wireless environments [32]. This model treats sen-
sors as producers of streams of events and software com-
ponents as consumers of the stream, much like the reactive
paradigm that we adopt. Another similar work, Open Data
Kit [14], creates a framework for reusable sensor drivers for
external sensors to connect to mobile devices. Integrating
new sensors is possible by downloading capabilities from the
application market without modifying the system. While
we deal with on-device sensors, we share a common aim to
provide reusable contextual reasoning components that can
by dynamically added to the system to support high level
application uses.

The framework we propose also touches on the field an-
ticipatory computing to better tune applications to user ac-
cess behavior by relying on past, present, and anticipated
future in order to make actionable decisions [27]. Google
Now [6] implements end-user tailoring through contextual
monitoring to supply anticipatory computing. Our frame-
work does not operate at the browser level, but aims to
allow applications to dynamically tune to user context in
an anticipatory manner. Previous studies investigate ideal
conditions to deliver notifications to prevent user interrup-
tion such as between detected user state activities [15], after
completion of an event such as sending a text message [12],
or across various user contexts [26]. Ultimately Mason goes
beyond limiting interruptibility of notifications by providing
application developers with the tools necessary to tune the
responsive and anticipatory nature of their applications to
the appropriate contexts.

3. FRAMEWORK
The key components in Mason are the logical contex-

tual processing units that form contextual abstractions, or
CAbs. Developers and domain experts design CAbs that
process inputs from various sources such as sensor measure-
ments, cloud queries, and other CAbs to provide high levels
of contextual reasoning and abstraction. CAbs might in-
clude anything from determining user physical activity to
user emotional health. Applications then use the outputs of
CAbs to easily create contextually aware applications that
do not require tedious sensor management or input process-
ing. Multiple applications can use the same CAbs, reducing
the amount of redundant processing and logic required.

3.1 CAb Development
A key contribution of Mason is providing a program-

ming interface that greatly reduces the overhead required to
handle asynchronous updates formed from sensor sampling.
Mason allows developers to focus on the logic of process-
ing various inputs rather than the setup and management of
these inputs. We now discuss the process of implementing a
custom CAb with the Mason Library as illustrated in Fig 1.

3.1.1 Naming
Uniquely identifying each CAb is essential for Mason to

determine dependencies, appropriately route updates, and
request user installations if necessary. Mason abstracts the
communication requirements of a CAb developer by only
requiring the implementation of two methods for identifi-
cation: getDisplayName(), which allows for clients of the
CAb to identify the human-readable name of the CAb and
can help with debugging, and getId(), which determines a
unique identifier for the CAb. CAbs and applications use
this identifier to subscribe to the CAb. With this naming in
place, no communication code is required by the CAb devel-
oper to receive registrations. All of this communication is
handled internally within Mason and the Mason libraries.

public class Safety extends Cabs {
@Override
public void init() {

MasonMediator med = new MasonMediator();
Observable.combineLatest(med.gps(0.7),

med.cab(AbstractLocation.ID, 1.0), (x,
y) -> process(x, y)).subscribe();

}

public class Data {
public int value;
public Data(int value){ this.value =

value; }
}

@Override
public String getDisplayName() {

return ‘‘Example’’;
}

@Override
public String getId() {

return ‘‘com.ut.mpc.cabs.example’’;
}

public Sample process(Sample gpsSample, Sample
absLocSample){

// business processing here
onNext(new Data(0.75), false);

}
}

Figure 1: Example CAb outline with required methods.

3.1.2 Schema
A CAb developer defines the schema that the CAb will

use for update values by declaring an inner class named
Data, indicating the desired structure. This provides im-
plicit documentation for clients of the CAb (applications or
other CAbs). Encouraging proper communication between
developers is essential in the open source and dynamic na-
ture of CAb installation and use. Inner class schemas are
packaged for transmission by transforming class members to



a JSON formatted string by use of GSON2 and wrapped in
a Sample or ContextSample class.

3.1.3 Registration
It is essential that registering for sensor and CAb updates

is simplistic. As shown in Figure 1, the init() method,
invoked upon CAb startup, contains the registrations to ex-
ternal components as well as the functional operators per-
formed locally on these components. The mediator object
handles all communication with the context engine and with
other CAbs. Methods invoked on the mediator object indi-
cate registrations for various CAb and sensor components.
The mediator handles checking for the existence of CAbs, re-
questing the user to download missing CAbs, and registering
for sensor updates while presenting the reactive program-
ming paradigm for the client developer. CAb developers
program as if the observable streams are locally available,
greatly simplifying the processing of remote CAbs and sen-
sor data. Furthermore, double values are passed to medi-
ator method invocations to indicate accuracy requirements
for the given component and are passed along with the ap-
propriate registration. CAbs can resolve the required accu-
racies from subscribed components and can adjust methods
for computation (e.g., whether or not to offload computa-
tion) in the event of high accuracy requirements.

In the example Safety CAb in Figure 1, the GPS sen-
sor updates are merged with the AbstractLocation CAb
updates and the process() method is invoked when ei-
ther stream updates. Separating the registration in the
init() method from the sample processing is a design de-
cision to encourage developers to separate data processing
from stream processing and component registration. For
simplicity, we have included the process method within com-

bineLatest(), but it is best practice to include this method
within the subscribe() method, at the expense of a sepa-
rate combine function and process function.

3.1.4 Updates
The primary function of CAbs is to provide contextual

output updates to other CAbs and applications. The on-

Next() method is the only method that the CAb developer
must call to forward a contextual sample. The Data object
discussed previously is passed to the onNext() method and
contains the content of the CAb update. All components
that have registered with the CAb are forwarded the cor-
responding data sample without any effort from the CAb
developer. Note that no client code is required to handle in-
coming component registrations for the CAb, as this is also
handled behind the scenes. The second parameter to the
onNext() method indicates whether consecutively repeated
values should be emitted.

CAbs are packaged as standalone Android applications.
CAbs developers have the option of only implementing the
standard CAb interface that will operate in the Android sys-
tem background but can also include a user interface compo-
nent to help provide feedback and training to any machine
learning models present within the CAbs. An example is
requesting the user to help train with activity recognition or
familiar location detection such as home,work, etc.

3.2 Dynamic Ontology
2https://github.com/google/gson

Another key contribution of Mason is that application
requirements drive the dynamic formation of CAbs. Appli-
cations register for CAbs by their unique identifier and in-
dicate computation accuracy requirements. Mason checks
existing CAb installations and requests the user to install
any missing CAb dependencies, a process which could also,
optionally, be automated. CAbs are composable and may
depend on other CAbs, forming a dependency hierarchy that
also enables CAbs to reuse computations provided by other
CAbs. Mason performs a depth-first traversal of this de-
pendency tree in order to resolve all dependencies. Mason
then begins sampling from data sources only as required
from the CAb dependency hierarchy. The result is the min-
imum sampling required to provide the subset of all context
that is required by the applications on a given device. This
customized contextual specification, provided by the union
of CAbs, forms a dynamic ontology that is unique to each
device and user’s application requirements. This flexibility
relieves Mason from forming some all-encompassing static
ontology that enumerates all possible current and future ap-
plication needs. Developers provide contextual abstractions
through CAbs and context features, states, and specification
contracts can be added and removed to form a minimum
dynamic ontology per-device. Adding and removing CAbs
can occur at any time as required by applications, allow-
ing this dynamic ontology to reform over time to meet the
application-level requirements.

3.3 CAb Hierarchy
To illustrate an instance of the dynamic ontology created

from a hierarchy of CAbs, we have developed several ex-
amples CAbs. As shown in Figure 2, the CAbs conceptu-
ally reside above sensor data sources and form a hierarchy
of inter-CAb dependencies. The physical sensors that we
use for these CAbs are GPS, Accelerometer, and Bluetooth.
We also wrap the Android system calls to application states
(foreground, background, crashes) and communication calls
and messages (incoming, outgoing) to create an updating
stream modeled as a sensor. Therefore, when we speak
of sensors, we speak generally as a source of information
that can be modeled as a stream. We have also included a
spatiotemporally indexed history of location and timestamp
data, labeled as ST DB. This component is a database that
is populated from GPS measurements and is not treated as a
sensor stream, but rather, as a database element that CAbs
may query. Keep in mind that these data sources were cho-
sen for example purposes only, and any number of sensors
and sources can be included in our framework for use with
CAbs.

Figure 2: Example CAb Hierarchy



CAb Values

Familiarity 0.0 - 1.0
Abstract Location Home, Work, School, Unknown
Activity Still, Walking, Driving, Unknown
Proximity Family, Friends, Coworkers
Safety Safe, MidSafe, Unsafe, Unknown
Sociality 0.0 - 1.0

Table 1: CAbs and Values

We created six CAbs:

• Familiarity monitors spatiotemporal histories (location
traces) as well as application states and current GPS
coordinates to determine how familiar a user is with a
context across space, time, and device usage.

• Abstract Location translates raw GPS data into more
abstracted locations such as work or home. This CAb
is a good candidate for connecting to a UI through
which the user can train the CAb by tagging raw lo-
cations with these abstract locations.

• Safety assesses the user safety by performing an HTTP
request to an API that provides crime statistics for
a location as well as checking Abstract Location up-
dates. By monitoring the Abstract Location updates,
this CAb can reuse computations and prevent further
processing. For example, an Abstract Location value
of home may have a fixed safety value without having
to perform an HTTP request.

• Activity computes the physical activity of the user by
monitoring Abstract Location updates as well as GPS
data and accelerometer measurements. Much like Safety,
Activity can avoid unnecessary accelerometer or GPS
processing by receiving Abstract Location updates that
infer a physical activity. For example, if the user is at
home, they are likely either still or walking.

• Proximity monitors Bluetooth sensor readings to de-
tect nearby Bluetooth enabled devices. Bluetooth de-
vice IDs are then mapped to known entities such as
friends or family.

• Sociality captures the degree to which a user is being
social by synthesizing Proximity CAb updates and de-
vice calls and messages.

The possible states of these CAbs are given in Table 1.
CAb updates can take enumerated values as well as inte-
ger values, as chosen by the CAb developer. In some cases,
applications may need raw sensor values such as with GPS
coordinates. Rather than allowing applications the ability to
register for sensor stream updates as CAbs can, we encour-
age developers to create a custom CAb that processes and
creates updates containing the required data. Recall that
application developers can include their own CAbs within
their application project. This preserves our dependency
management model and also maintains re-usability of com-
putations that may be performed on the raw sensor data
before sharing with applications.

Operator Function

Buffer group items emitted by an Observable
Filter emits items only that satisfy a supplied predi-

cate test
CombineLatest applies a function to multiple Observables

when any of them emit an item
Scan apply a function sequentially to each emitted

Observable

Table 2: Useful ReactiveX Operators

3.4 Reactive Extensions
To address the complexity of asynchronous events such as

sampling sensors, we adopt the ReactiveX API, specifically
the RxJava implementation3. ReactiveX combines elements
of the Observer and Iterator patterns while providing func-
tional operators for easily processing streams of data. We
choose to treat both sensor samples as well as contextual
updates generated by CAbs as streams of data. In reac-
tive programming terminology, these streams are treated as
Observables, or sequences of emitted data items, and compo-
nents can subscribe to the Observable to receive data values.
Subscriptions require a function to invoke upon an Observ-
able emitting a new value, and can be conceptually viewed
as a callback. Observables differ from the standard callback
paradigm because they are composable, allowing for com-
bining, filtering, and mapping in addition to several other
operators. By using ReactiveX and Observables, the imple-
mentation of our contextual engine, as well as developers
using the framework, can avoid complex asynchronous pro-
gramming, enabling great programming power with few lines
of code.

Our proposed use of Observables is not intended to serve
as a data store or record such that identical values are re-
peatedly outputted, but rather, only when a change in state
is detected. For example, the Activity CAb would not emit
two consecutive values of “Driving”. This allows other CAbs
and applications to be designed so action can be taken in
their subscription such as launching a new activity without
worrying about repetition such as launching the new activ-
ity repeatedly. However, there may be cases where a CAb
developer may to design a CAb that emits repeated items
such as when Activity’s value of “Driving” does not change
but the associated accuracy does. In order to support this
developer freedom, our framework supports both designs.

To illustrate the composable nature of ReactiveX Observ-
ables, we outline several useful operators in Table 24. For
use cases involving these operators see Sec 6.

4. ARCHITECTURE
In order to support CAb development and operation, Ma-

son must handle multiple sensor integrations, CAb registra-
tions and dependency resolution, and data stream routing.
We now discuss how Mason performs these duties as framed
under the overall architecture as shown in Figure 3. The fig-
ure includes the example CAbs we have developed to indi-
cate where the CAb hierarchy forms within the framework.

Resolving CAb dependencies is crucial to supporting the

3https://github.com/ReactiveX/RxJava
4A complete list of operators can be found at:

http://reactivex.io/documentation/operators.html



open nature of CAb development. Mason facilitates this
process by requiring CAbs to register with their unique iden-
tifier upon initialization, storing these subscriptions in a ta-
ble for lookup. Applications and CAbs that require other
CAbs first check with Mason for availability through the
CAb discovery component. Requests for CAbs that have not
registered, and thus are not contained in the subscription ta-
ble, prompt a user notification to download the CAb. Once
the appropriate CAb is installed, it registers itself with Ma-
son and the availability request completes, indicating the
client of the CAb can proceed.

It is important for Mason to abstract away tedious sensor
initialization and management code. To support this, CAb
registration is simplified to only include the required sensors
and the desired sampling accuracy for each sensor. Recall
from the previous section that the CAb developer does not
need to explicitly perform this registration and communi-
cation as it is handled by the Mason Library. In order
to monitor sensors, Mason leverages AWARE5 to interface
with Android physical sensors and data sources. AWARE
distributes commands to begin sensing to each data source
and allows for tunability in frequency and accuracy of sam-
pling. Sensor receivers within Mason register for updates
from AWARE; these updates are triggered anytime the sen-
sor generates a new data value.

The Sensing Logic Unit within Mason, driven by CAb
registrations, determines which data sources should be mon-
itored and when to activate them (and ultimately which sen-
sor receivers to activate). This allows for Mason to support
a wide array of sensor sources but only sample the sources
as required from application requirements, realizing the low-
est sensor level of the minimum dynamic ontology. While
the main focus of this work is on developing a framework
for the dynamic context ontology, future work optimizations
could be performed in the Sensing Logic Unit to determine
a sampling frequency plan that preserves the most energy
efficiency. Mason is compatible with several prior works dis-
cussed in Section 2 that focus on this optimization of sensor
sampling plans.

Once a sensor receiver receives a sensor source data sam-
ple, all subscriptions are checked with the corresponding
sample. Since samples will only be received for which sub-
scriptions exist, it is guaranteed that at least one CAb will
be notified. Mason then forwards the received data sample
to all CAbs that hold a subscription for that sensor source.
CAbs will in turn process the data values and will likely out-
put update values that are sent to other CAbs and context-
aware applications.

4.1 CAb structure
We have previously discussed how CAb developers create

custom CAbs for use with Mason without concern for reg-
istration and communication details. Now we outline how
the Mason Library performs registration and updates. The
generic internal architecture of a CAb is shown in Figure 4.

The registration component receives incoming registration
requests from other CAbs or applications and stores these
subscriptions. Incoming registrations to CAbs include a re-
quired certainty or accuracy from the CAb. CAb accuracy is
defined by the CAb developer and the significance of values
may vary widely between CAbs. The CAb developer may
choose to implement tunable logic according to this accuracy

5http://www.awareframework.com/

Figure 3: System architecture

such as offloading computations if the required accuracy is
above a certain threshold. A well-documented CAb should
document the effects of accuracy requests on the resulting
contextual updates. The first incoming registration acti-
vates the CAb and spawns a registration with Mason and
with any other CAbs. A CAb may also choose to synthesize
incoming accuracy requests to tune outgoing registration ac-
curacy requirements.

Figure 4: CAb architecture

Data inputs are received from other CAbs or sensor sources
routed from Mason. The CAb then performs any logical
computations on the inputs to determine the new contex-
tual state value(s) from the new inputs. CAbs may be de-
signed to repeatedly emit equivalent updates when an input
changes or they may be designed to only emit updates when
the contextual state has changed. Additionally, there is no
restriction for coupling the timing of inputs and outputs, so
the CAb developer has freedom to determine any periodic
stream of contextual outputs. For example, a CAb may be
created that generates fixed interval outputs regardless of
input value timings. When the CAb determines that an up-



date should be generated, the subscriptions table is queried
and appropriate CAbs and applications are updated with
the contextual state values. Note the interconnected nature
of CAbs as each CAb may interface with other CAbs across
input and output streams as well as incoming and outgoing
registrations.

4.2 Implementation
Mason performs all communication between components

through public Android broadcasts. All components that re-
ceive messages listen for broadcasts by instantiating Broad-
cast Receivers. Most messages are sent as standard Broad-
casts with the exception of queries to the ST DB and CAb
existence requests to Mason, which use Ordered Broadcasts
to make use of message responses. Public Android broad-
casts can be a security concern [10], but mitigating these
security risks is left to future work.

All CAbs extend from a base CAb class that is an exten-
sion of the Android Service class. Therefore, all CAbs oper-
ate as running background services to maintain data state,
but adaptation of Mason Libraries is possible such that
CAb state is maintained in databases that preserve state.
Implementing the non-service approach is a straightforward
extension that is left to future work for CAb developer con-
venience.

In order to fully realize the abstraction and simplicity
of reactive functional programming, Mason supports lamb-
das by compiling the project with Java 8 and using Retro-
lambda6 to support execution on the Android runtime. Code
segments included in this paper use this lambda syntax, re-
flecting the actual implementation of Mason. This project
is open source and open for contribution7.

5. API
Similar to CAb programming, the process of including

Mason into a context-aware Android application relies on
high levels of contextual abstraction. The application de-
veloper never handles sensor level code directly and instead
only declares high-level CAb requirements. There are two
methods for implementing context-aware applications through
Mason: Sentinel services and Reactivities.

Sentinel services are Android Services that passively mon-
itor CAb updates and then subsequently pro-actively launch
appropriate Activities. The Sentinel is meant to launch ac-
tivities when the encompassing application is not in the fore-
ground. The Sentinel may change the foreground activity
for an active device or may wake the device entirely, with
appropriate Android wake locks in place.

Reactivities are extensions of the Android Activity class
and exist to monitor CAb updates and change aspects of the
current foreground Activity. Reactivities may transform the
UI, perform network requests, or any other function useful
for tuning the application to the user context. The mon-
itoring performed in Reactivities will not occur when the
Activity is not in the foreground, any desired background
monitoring should be done in Sentinels. Note that both
Sentinels and Reactivities may launch new Activities, the
difference lies in whether or not the monitoring is done in
the foreground or background.

The process of creating a Reactivity is similar to that of

6https://github.com/evant/gradle-retrolambda
7https://github.com/nathanielwendt/LSTAndroid

public class ChatReActivity extends MasonActivity
{

@Override
public void init() {

MasonMediator med = new MasonMediator();
med.cab(Sociality.ID, 0.8)
.buffer(5)
.subscribe(sample -> process(sample));
med.submit();

}

@Override
public String getDisplayName() {

return ‘‘Example’’;
}

@Override
public String getId() {

return ‘‘com.ut.mpc.cabs.example’’;
}

public Sample process(List<Sample> socSamples){
if(average(socSamples) > 0.8){

Intent intent = new Intent(this,
Social.class);

startActivity(intent);
}

}
}

Figure 5: Example Reactivity outline with required methods.

programming a CAb. An example activity, ChatReActiv-

ity, is given in Figure 5, with the corresponding data flow
modeled as streams in Figure 6. Note the familiar getId()

and getDisplayName() methods as well as the familiar me-

diator object for handling communication and registration.
As demonstrated in ChatReActivity’s init() method, the
application subscribes to the Activity CAb updates and in-
vokes the process function on received samples. Contex-

tActivity subscribes for Sociality CAb updates and evalu-
ates the average across 5 values. If the average is greater
than 0.8, the Social Activity is brought to the foreground.
Note the inclusion of the submit() function on the media-

tor object since the activity needs some action to start the
registration and subscription process. Creating a Sentinel is
similar to CAb and Reactivity development, with the same
methods required for development. The only additional re-
quirement is that Sentinels must extend the MasonSentinel

class and be launched for initialization by the application
programmer. An example Sentinel is given in Section 6.

This example demonstrates the ease with which an ap-
plication developer can implement high level context in an
application without complicated callback code. Much like
CAb development, the developer need not be concerned with
sampling frequency and sensor management, but rather with
designing the logical reactive components of the application.

6. CASE STUDY
In addition to bringing high level contextual abstractions

to developers, it is crucial that Mason offers practicality and
is useful in real world applications. As a means of evaluat-
ing these aspects of Mason, we perform an audit of several
open source applications and indicate potential integrations
of Mason. Note that this audit is not intended to be ex-
haustive as there are many more integration possibilities,
but rather to motivate real world uses of Mason. Also, we



Figure 6: ChatReActivity Data Flow

only outline use cases leveraging the example CAbs that we
have developed. There are many more CAb development
possibilities that further increase the potential uses of Ma-
son.

We selected five open source Android applications that
varied across code complexity, from one activity to complex
controllers and game mechanics. The applications also var-
ied across domains, including leisure applications to security-
intensive applications. The five applications are:

• FotoFinder8 – photo viewing and management appli-
cation

• BankDroid9 – banking application for Swedish banks

• Apollo10 – music player application

• AndroidRun11 – physical fitness application for dis-
playing distance and pace

• AndorsTrail12 – single-player fantasy role playing game

Recall from the previous section that application devel-
opers can choose to implement Mason through Sentinels or
Reactivities. Possible Sentinel integrations of Mason within
the case study applications are shown in Table 3 including
potential activities that might be launched as well as the
CAbs responsible for causing the action. Through these po-
tential uses of Mason, we demonstrate the potential for ap-
plications that monitor context and pro-actively launch or
adapt to changing context. Possible Reactivity integrations
of Mason are shown in Table 4 including the activity that
could be extended as well as the CAbs that could be mon-
itored. These examples motivate the simplicity with which
developers could adapt existing codebases to provide appli-
cations that offer enhanced contextual awareness. Many of

8https://github.com/k3b/androFotoFinder
9https://github.com/liato/android-bankdroid
10https://github.com/adneal/Apollo-CM
11http://sourceforge.net/p/androidrun/code/ci/master/tree/
12https://github.com/oskarwiksten/andors-trail

these examples, such as preventing a new lock pattern in
BankDroid if the user is in an unsafe area, would require ex-
tensive code portions to setup and monitor if implemented
without capabilities like those Mason provides. Mason pro-
vides developers with this functionality with only a few lines
of code.

public class MainReactivity extends MasonActivity
{

@Override
public void init() {

MasonMediator med = new MasonMediator();
med.cab(Activity.ID, 1.0)

.scan( (x,y) -> detectRunToWalk(x,y))

.filter(act -> act.isType(‘‘RunToWalk’’))

.subscribe(x -> showSummary());
med.submit();

}

public Sample detectRunToWalk(Sample x, Sample
y){

String xVal = x.data().get(‘‘value’’);
String yVal = y.data().get(‘‘value’’);

if((‘‘RUNNING’’).equals(x) &&
(‘‘WALKING’’).equals(y)){

return new Sample(null, ‘‘RunToWalk’’,
null);

} else {
return new Sample();

}
}

}

Figure 7: AndroidRun Application Reactivity

It is important to note that the choice between Sentinel
or Reactivity depends on the anticipated user state. For ex-
ample, the MonsterEncounterActivity that is a potential
Reactivity in AndorsTrail could be implemented as a Sen-
tinel if the developer desired monsters to be generated pro-
actively and launched. Similarly, the FotoGalleryActivity

examples could be implemented as Sentinels or Reactivities
depending on whether the application is anticipated to be in
the background or foreground. In some cases, the developer
may include a Sentinel and Reactivity that have similar func-
tionality but are performed both when the app is active or
not active. Ultimately, these examples demonstrate the po-
tential feature extension that real world applications could
use without any considerable developer effort.

Next we demonstrate two concrete examples of integrat-
ing Mason as framed by our motivating scenario of Greg
running and listening to music. We choose the AndroidRun
and Apollo music applications for these examples.
MainReactivity, as shown in Figure 7, is a possible exten-

sion of AndroidRun’s MainActivity. This extension moni-
tors the Activity CAb and applies the scan operator which
compares the current data value and the previous value ac-
cording to the simple detectRunToWalk function. We in-
clude the detectRunToWalk method to illustrate the sim-
plicity with which a developer can compare data values, al-
though we omit some class casting for brevity. A filter op-
erator then checks if the new Sample created in detectRun-

ToWalk is of the appropriate type, and if so, the showSummary
method shows the user’s pace and timing, summarizing the
run. A buffer operator could also be used to ensure that
the user maintains the running state across several updates



App CAb(s) Launch Activity Launch Purpose

AndorsTrail Proximity ConversationActivity user encounters friend that plays game, in-game character meeting
AndorsTrail Activity LoadSaveActivity user motion pattern may indicate play stoppage play, game auto-saves
AndroidRun Activity, ST DB MainActivity user changes from running to walking, query ST DB, show route and pace
Apollo Activity AudioPlayerActivity user changes from walking to running, autoplay running playlist
FotoFinder Proximity FotoGalleryActivity user becomes close to someone tagged in photos, show photos they share
FotoFinder Familiarity FotoGalleryActivity user goes to unfamiliar place, show photos of new location from Internet

Table 3: Application Audit for Sentinel Services

App Location CAb(s) Description

AndorsTrail DisplayWorldMapActivity Activity implement movement feedback based on user movement profile
AndorsTrail MonsterEncounterActivity Abstract Location adjust the difficulty and type of monsters found based on users

abstracted location
AndroidRun MainActivity Activity lock device screen when transition to running
Apollo SearchActivity Familiarity, Abstract

Location
autocomplete music last played with same familiarity and
known locations

Apollo AudioPlayerActivity Proximity, Sociality a friend is detected nearby or a user is active socially, reduce
volume or pause music

BankDroid LockablePreferenceActivity Safety, Familiarity prevent setting new lock pattern in unsafe or unfamiliar areas
BankDroid SettingsActivity Safety, Familiarity disable certain settings in unsafe or unfamiliar areas
BankDroid MainActivity Proximity hide or abstract exact account balances and details if strangers

are nearby
FotoFinder FotoGalleryActivity Proximity prevent deleting pictures when friends/family nearby

Table 4: Application Audit for Reactivities

(provided that the Activity CAb emits consecutive duplicate
values). A Sentinel could also be similarly implemented if
this desired functionality was required when the application
was not in the foreground. This example demonstrates the
simplicity with which a developer can detect state changes
from running to walking without requiring any sensor man-
agement or tedious callback chains.

public class ApolloSentinel extends MasonSentinel
{

@Override
public void init() {

MasonMediator med = new MasonMediator();
med.cab(Activity.ID)

.scan( (x,y) -> detectWalkToRun(x,y))

.filter(act -> act.isType(‘‘WalkToRun’’))

.subscribe(x -> launchPlayer())
med.submit();

}

public void launchPlayer() {
Intent intent = new Intent(this,

AudioPlayerActivity.class);
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
intent.putExtra(‘‘FLAG’’,

‘‘RunningPlaylist’’);
startActivity(intent);

}

Figure 8: Apollo Music Application Sentinel

Figure 8 shows ApolloSentinel, which supports the func-
tionality of automatically playing music when the user starts
running. The init method is similar the one outlined in
MainReactivity, with the exception of including detect-

WalkToRun since the music should be started when the user
starts the running activity. We omit detectWalkToRun due
to its simplicity and similarity to detectRunToWalk. Once it

is determined the user is running, the Sentinel launches the
music player activity with an extra string value that indi-
cates the activity should start playing media from a running
playlist. The Apollo app may require some user configu-
ration to indicate which playlist to play while running, or
alternatively, a history of running could be maintained that
tracked music commonly played while the user was running.
This Sentinel could also be implemented as a Reactivity if
the desired functionality was only necessary while Apollo
was in the foreground.

7. FUTURE WORK
Our initial implementation of Mason motivates exciting

areas of extension and additional work. Future research
could investigate resolving errors from CAbs determining
incorrect contextual state. Beyond determining if a CAb’s
model is incorrect or if a sensor measurement is inaccurate,
Mason could support a feedback system for applications to
indicate that a CAb value was incorrect or unsatisfactory
to the user. Mason might also facilitate some type of UI
rollback to reset to previous device state in the event of a
CAb error.

Additionally, since Mason allows developers to make proac-
tive apps that often launch to the foreground, some kind
of foreground request mediation may be useful. In the fu-
ture, developers might be encouraged to launch new activi-
ties through a UI mediation component within Mason that
resolves priorities and ensures that only a single application
can launch at a time.

Future work might also investigate some kind of market-
place for CAbs similar to the Android marketplace. Cur-
rently, there is no enforcement of uniqueness in CAb IDs, po-
tentially creating issues if multiple CAbs share the same ID.
A centralized marketplace could ensure all IDs were unique
as well as support CAb visibility such that developers might



not make conflicting or redundant types of CAbs such as
multiple activity recognition CAbs. This marketplace could
also support developer reviews to indicate how well the CAb
worked and what kind of energy efficiency it typically main-
tained.

As previously discussed, future work with Mason could
improve sensor sampling efficiency by implementing one or
more prior works in sensor sampling efficiency. Mason could
also batch samples from sensors such as accelerometers to
reduce the overhead of routing updates to CAbs from each
sensor reading. To further support device efficiency, Ma-
son could be incorporated at a lower system level to reduce
the runtime overhead of the large number of required global
Android Broadcasts.

Lastly, future work could investigate developing additional
CAbs. Examples include a CAb for mapping shake pat-
terns of a device such that apps could launch when a user
shook them a certain way. This CAb would require a UI and
user training. Other future CAbs might include an audible
ambiance detection as sensed from devices microphone, or
a mood detection CAb as processed from other CAbs and
various sensors.

8. CONCLUSIONS
Motivated by real-world applications, we introduced Ma-

son, an openly developed dynamic ontology formation frame-
work that allows developers to contribute logical pieces to
a greater network of contextual reasoning for shared use by
application developers. We demonstrated the functionally
reactive programming interfaces for implementing contex-
tual abstractions, or CAbs, and the similar API for appli-
cation developers to integrate CAbs into applications. We
also discussed the dependency resolution system as a part
of Mason to manage CAb installations and prompt users to
install new ones, if necessary. To demonstrate potential uses
of CAbs, we introduced several example CAbs as motivated
by real world application usages. We concluded with a case
study of open source applications to motivate potential im-
plementations of Mason and to demonstrate reactive func-
tionality in application design. Ultimately, Mason enables
a new form of ontology formation by open source developers
and dynamic dependency resolution to provide high levels of
programming abstraction to application developers in order
to provide new levels of contextually intelligent and reactive
applications.

9. REFERENCES
[1] Andofotofinder.

https://github.com/k3b/androFotoFinder. Accessed:
2016-01-04.

[2] Andorstrail. https:
//github.com/oskarwiksten/andors-trail/tree/master/
AndorsTrail/src/com/gpl/rpg/AndorsTrail/activity.
Accessed: 2016-01-04.

[3] Androidrun. http://sourceforge.net/p/androidrun/
code/ci/master/tree/. Accessed: 2016-01-04.

[4] Apollo. https://github.com/adneal/Apollo-CM.
Accessed: 2016-01-04.

[5] Bankdroid.
https://github.com/liato/android-bankdroid.
Accessed: 2016-01-04.

[6] Google now. https://www.google.com/landing/now/.
Accessed: 2016-01-04.

[7] Reactivex. http://reactivex.io/. Accessed: 2016-01-04.

[8] Claudio Bettini, Oliver Brdiczka, Karen Henricksen,
Jadwiga Indulska, Daniela Nicklas, Anand
Ranganathan, and Daniele Riboni. A survey of
context modelling and reasoning techniques. Pervasive
and Mobile Computing, 6(2):161–180, 2010.

[9] Anind K Dey, Gregory D Abowd, and Daniel Salber.
A conceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applications.
Human-computer interaction, 16(2):97–166, 2001.

[10] William Enck, Machigar Ongtang, and Patrick
McDaniel. Understanding android security. IEEE
security & privacy, (1):50–57, 2009.

[11] Denzil Ferreira, Vassilis Kostakos, and Anind K Dey.
Aware: mobile context instrumentation framework.
Frontiers in ICT, 2:6, 2015.

[12] Joel E Fischer, Chris Greenhalgh, and Steve Benford.
Investigating episodes of mobile phone activity as
indicators of opportune moments to deliver
notifications. In Proceedings of the 13th international
conference on human computer interaction with mobile
devices and services, pages 181–190. ACM, 2011.

[13] Vanessa Frias-Martinez and Jesus Virseda. On the
relationship between socio-economic factors and cell
phone usage. In Proceedings of the Fifth International
Conference on Information and Communication
Technologies and Development, pages 76–84. ACM,
2012.

[14] Carl Hartung, Adam Lerer, Yaw Anokwa, Clint
Tseng, Waylon Brunette, and Gaetano Borriello. Open
data kit: tools to build information services for
developing regions. In Proceedings of the 4th
ACM/IEEE International Conference on Information
and Communication Technologies and Development,
page 18. ACM, 2010.

[15] Joyce Ho and Stephen S Intille. Using context-aware
computing to reduce the perceived burden of
interruptions from mobile devices. In Proceedings of
the SIGCHI conference on Human factors in
computing systems, pages 909–918. ACM, 2005.

[16] Younghyun Ju, Youngki Lee, Jihyun Yu, Chulhong
Min, Insik Shin, and Junehwa Song. Symphoney: a
coordinated sensing flow execution engine for
concurrent mobile sensing applications. In Proceedings
of the 10th ACM Conference on Embedded Network
Sensor Systems, pages 211–224. ACM, 2012.

[17] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik
Lee, Youngki Lee, Souneil Park, Taiwoo Park, and
Junehwa Song. Seemon: scalable and energy-efficient
context monitoring framework for sensor-rich mobile
environments. In Proceedings of the 6th international
conference on Mobile systems, applications, and
services, pages 267–280. ACM, 2008.

[18] Seungwoo Kang, Youngki Lee, Chulhong Min,
Younghyun Ju, Talwoo Park, Jmwon Lee, Yunseok
Rhee, and Junehwa Song. Orchestrator: An active
resource orchestration framework for mobile context
monitoring in sensor-rich mobile environments. In
Pervasive Computing and Communications (PerCom),
2010 IEEE International Conference on, pages



135–144. IEEE, 2010.

[19] Predrag Klasnja, Sunny Consolvo, David W
McDonald, James A Landay, and Wanda Pratt. Using
mobile & personal sensing technologies to support
health behavior change in everyday life: lessons
learned. In AMIA Annual Symposium Proceedings,
volume 2009, page 338. American Medical Informatics
Association, 2009.

[20] Neal Lathia, Daniele Quercia, and Jon Crowcroft. The
hidden image of the city: sensing community
well-being from urban mobility. In Pervasive
computing, pages 91–98. Springer, 2012.

[21] Hong Lu, Denise Frauendorfer, Mashfiqui Rabbi,
Marianne Schmid Mast, Gokul T Chittaranjan,
Andrew T Campbell, Daniel Gatica-Perez, and
Tanzeem Choudhury. Stresssense: Detecting stress in
unconstrained acoustic environments using
smartphones. In Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, pages 351–360.
ACM, 2012.

[22] Anmol Madan, Manuel Cebrian, Sai Moturu,
Katayoun Farrahi, et al. Sensing the” health state” of
a community. IEEE Pervasive Computing, (4):36–45,
2012.

[23] Emiliano Miluzzo, Nicholas D Lane, Shane B
Eisenman, and Andrew T Campbell.
Cenceme–injecting sensing presence into social
networking applications. In Smart Sensing and
Context, pages 1–28. Springer, 2007.

[24] Margaret Morris and Farzin Guilak. Mobile heart
health: project highlight. Pervasive Computing, IEEE,
8(2):57–61, 2009.

[25] Suman Nath. Ace: exploiting correlation for
energy-efficient and continuous context sensing. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services, pages
29–42. ACM, 2012.

[26] Veljko Pejovic and Mirco Musolesi. Interruptme:
Designing intelligent prompting mechanisms for
pervasive applications. In Proceedings of the 2014
ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pages 897–908. ACM, 2014.

[27] Veljko Pejovic and Mirco Musolesi. Anticipatory
mobile computing: A survey of the state of the art
and research challenges. ACM Computing Surveys
(CSUR), 47(3):47, 2015.

[28] Alessandro Puiatti, Steven Mudda, Silvia Giordano,
and Oscar Mayora. Smartphone-centred wearable
sensors network for monitoring patients with bipolar
disorder. In Engineering in Medicine and Biology
Society, EMBC, 2011 annual international conference
of the IEEE, pages 3644–3647. IEEE, 2011.

[29] Mashfiqui Rabbi, Shahid Ali, Tanzeem Choudhury,
and Ethan Berke. Passive and in-situ assessment of
mental and physical well-being using mobile sensors.
In Proceedings of the 13th international conference on
Ubiquitous computing, pages 385–394. ACM, 2011.

[30] Kiran K Rachuri, Cecilia Mascolo, Mirco Musolesi,
and Peter J Rentfrow. Sociablesense: exploring the
trade-offs of adaptive sampling and computation
offloading for social sensing. In Proceedings of the 17th
annual international conference on Mobile computing

and networking, pages 73–84. ACM, 2011.

[31] Kiran K Rachuri, Mirco Musolesi, Cecilia Mascolo,
Peter J Rentfrow, Chris Longworth, and Andrius
Aucinas. Emotionsense: a mobile phones based
adaptive platform for experimental social psychology
research. In Proceedings of the 12th ACM
international conference on Ubiquitous computing,
pages 281–290. ACM, 2010.

[32] Carl-Fredrik Sørensen, Maomao Wu,
Thirunavukkarasu Sivaharan, Gordon S Blair, Paul
Okanda, Adrian Friday, and Hector Duran-Limon. A
context-aware middleware for applications in mobile
ad hoc environments. In Proceedings of the 2nd
workshop on Middleware for pervasive and ad-hoc
computing, pages 107–110. ACM, 2004.

[33] Emmanuel Munguia Tapia, Stephen S Intille, William
Haskell, Kent Larson, Julie Wright, Abby King, and
Robert Friedman. Real-time recognition of physical
activities and their intensities using wireless
accelerometers and a heart rate monitor. In Wearable
Computers, 2007 11th IEEE International Symposium
on, pages 37–40. IEEE, 2007.

[34] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and
Hung Keng Pung. Ontology based context modeling
and reasoning using owl. In Pervasive Computing and
Communications Workshops, 2004. Proceedings of the
Second IEEE Annual Conference on, pages 18–22.
Ieee, 2004.

[35] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A
Jacobson, Jason Hong, Bhaskar Krishnamachari, and
Norman Sadeh. A framework of energy efficient mobile
sensing for automatic user state recognition. In
Proceedings of the 7th international conference on
Mobile systems, applications, and services, pages
179–192. ACM, 2009.

[36] Mark Weiser. The computer for the 21st century.
Scientific american, 265(3):94–104, 1991.


