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ABSTRACT
Identifying “who is around” is key in a plethora of smart scenarios.
While many solutions exist, they o�en take a theoretical approach,
reasoning about protocol behavior with an abstract model that
makes simplifying assumptions about the environment. �is ap-
proach creates a gap between protocol implementations and the
models used during design and analysis. In this paper, we take a
system approach to continuous neighbor discovery: starting with
the concrete technology of Bluetooth Low Energy (BLE) we build
a protocol, called BLEnd, tailored to its constraints. Moreover, we
also consider the very real e�ects of packet collisions, to our knowl-
edge a �rst in this domain. Our ultimate goal is to directly empower
developers with the ability to determine the optimal protocol con�g-
uration for their applications; in this respect, the slotless operation
of BLEnd o�ers richer alternatives than state-of-the-art protocols.
Developers specify the minimum discovery probability, the target
discovery latency, and the maximum expected node density; these
are used by an optimizer tool to parameterize the BLEnd implemen-
tation towards maximum lifetime. �is paper shows that BLEnd not
only achieves the user-speci�ed goals, but does so more e�ciently
than analogous con�gurations of competing protocols.
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•Networks→Networkprotocol design; •Human-centered com-
puting→Ubiquitous andmobile computing systems and tools;
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1 INTRODUCTION
�e ability to continuously discover neighboring devices in range
of wireless communication is a key building block of many Internet
of �ings (IoT) scenarios. Smart spaces require the ability to detect
the proximity of users to devices deployed in the space, to trigger
interactions. Smart retail systems need to detect the time a person
spends in each area of the store; information acquired via device
discovery serves both to orchestrate interaction with the user and
to analyze long-term shopping behavior to improve the retail expe-
rience. Smart cities take these capabilities to a larger geographical
scale, enabling the automatic triggering of personalized services
on a smartphone based on physical proximity to designated places
(e.g., monuments or exhibits [9]) hosting �xed nodes.

Neighbor discovery can also be used as a stepping stone for
services concerned with proximity among people, e.g., to ensure
that tourists do not get separated from their tour group, to enable
proximity-based authentication [11], or to ensure that children on
the way to school are always close enough to at least one responsible
adult [5, 14]. Studies on behavioral analytics are fueled by the
ability to non-invasively detect proximity among humans [3] or
animals [12]. In general, the continuous and unsupervised (i.e.,
without explicit user interaction, such as pairing) ability to detect
proximity to other nearby, potentially mobile, devices enables new
interaction pa�erns, unlocking novel application domains.
Continuous Neighbor Discovery: State of the Art. Most state-
of-the-art continuous neighbor discovery protocols divide time into
equal-sized slots, during which a node is either active or inactive.
When the active slots of two nodes overlap, discovery occurs. �e
protocols are evaluated by assessing the discovery latency, de�ned
as the number of slots until a neighbor is detected; a protocol’s
duty cycle, de�ned as the number of active slots over a unit of time,
serves as an indirect measure of energy consumption. Protocols
are described relative to the mechanisms they use to determine
which slots are active, with the result being either probabilistic
or deterministic discovery. In the Birthday protocol [10], nodes
randomly make a slot active with a given probability, o�ering good
average case performance but not providing guarantees on discov-
ery latency. Instead, Disco [4] and U-Connect [7] space active slots
according to prime numbers, relying on the properties of the Chi-
nese Remainder �eorem to guarantee discovery within a tight time
bound. Searchlight [1] and BlindDate [17] o�er hybrid approaches,
placing some active slots for deterministic discovery, then adding
more in a pseudo-random manner to improve performance.
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Nihao [13] departs from these protocols by specifying that a slot
can either be for listening or transmi�ing, where the la�er behavior
is de�ned by a single, short beacon at the beginning of the slot. By
observing that a single short beacon costs much less than listening
for the entire slot, Nihao proposes to “talk more and listen less”,
resulting in a protocol with more active slots, but with competitive
consumption as most slots are cheaper, transmission-only slots.
�eory vs. Practice. Research on continuous neighbor discovery
has been hitherto characterized by a strong slant towards theory,
with most protocols taking the slo�ed approach described earlier
and assuming slots of arbitrary length. Much work has focused on
relating protocols to one another at the model level, based entirely
on a �xed size slot. As a consequence, details concerning the actual
behavior within a slot are o�en abstracted away.

Unfortunately, these assumptions overlook system-level con-
straints that signi�cantly change tradeo�s and may even prevent
the use of a given protocol with a given network technology. For
instance, an average discovery latency of 10,000 slots or more is
common [13]. �is is acceptable when slots are small; a common
slot length is 10 ms, yielding a latency of minutes. However, the
Bluetooth Low Energy (BLE) standard, available on many commod-
ity devices, prescribes that advertisements are separated by at least
20ms (and even 100ms for some advertisement types). �is places a
hard lower bound on slot duration and can increase discovery laten-
cies by up to an order of magnitude, rendering them unacceptable
in practice. Further, existing protocols’ models ignore the density
of nearby nodes, a factor that can increase the potential for beacon
collisions that hinder discovery, as discussed next.
Our Perspective. We take a view motivated by a desire for a
practical approach to continuous neighbor discovery.

First, we do not neglect system-level concerns; instead they are
the starting point of our endeavor. We choose BLE as our reference
platform as it is pervasive on many consumer electronics. On top
of BLE, we devise a continuous neighbor discovery protocol, called
BLEnd (BLE neighbor discovery), that is compatible with BLE’s
technological constraints and features, as outlined in Section 2.

Moreover, we emphasize metrics that impact the use of BLEnd
in real environments. Speci�cally, we recognize that packet colli-
sions reduce discovery rates, making it di�cult if not impossible to
reach 100% discovery. State-of-the-art protocols ignore this aspect,
simultaneously aiming to reach this una�ainable goal and failing to
provide application designers with information about the concrete,
negative e�ects of collisions. Instead, BLEnd enables designers
to express requirements as a service level agreement that includes
the target discovery latency plus two parameters related to colli-
sions: expected node density and target discovery probability. An
optimizer tool automatically derives the BLEnd parameters that
meet these requirements with the lowest energy costs, allowing
application designers to both tune BLEnd to their speci�c needs
and to use it with a precise understanding of its actual performance.
Our Protocol: BLEnd. In a system without energy constraints,
discovery can be achieved with an always-on receiver and peri-
odic broadcasts to announce presence. As long as messages do not
collide, discovery is guaranteed. Alternatively, if nodes are syn-
chronized, they can exchange discovery messages at predetermined
times, allowing the radio to be otherwise turned o�. Unfortunately,

most real systems have tight power budgets and providing per-
fect synchronization is expensive. �erefore our goal is to make
guarantees about discovery latency while minimizing power con-
sumption, allowing neighbor discovery to be continuous. As with
other protocols, the key is scheduling transmi�ing and listening,
whose spatio-temporal overlaps enable discovery. However, our
design departs from the state of the art in many respects.

Existing approaches focus exclusively on bi-directional discovery
(i.e., nodeA discovers node B and vice versa). While this is intuitive,
we observe that, for many applications, uni-directional discovery,
in which only one node in a pair discovers the other, is su�cient.
For example, when discovery serves as the core mechanism for
recording proximity in the human or animal social studies above,
uni-directional detection is su�cient to demonstrate that A and
B were in range at some point in time. O�ine analysis can later
infer that a bi-directional contact has taken place from a single uni-
directional discovery. Unidirectional detection can also serve as a
cornerstone for triggering communication, with one device detecting
the other then initiating a separate bi-directional communication.

Based on these motivations, and in contrast with the state of the
art, we design the core of BLEnd to support uni-directional discov-
ery. �is application-level choice has deep system-level implica-
tions, as it unlocks opportunities for energy optimization currently
missed by the state of the art. As we discuss in Section 3, the focus
on uni-directional discovery allows us to de�ne a periodic schedule
where each node can be duty-cycled during slightly more than half
of the period and be completely inactive for the remaining portion,
signi�cantly reducing energy consumption. �is is achieved with-
out any assumptions about time synchronization and yet provides
deterministic discovery latency guarantees at low duty cycles. �is
design decision does not a�ect BLEnd’s generality or applicability;
while uni-directional discovery is the fundamental building-block,
it can be e�ciently extended to bi-directional discovery.

We depart from dominant trends in the state of the art in two
other respects. First, we completely remove the concept of slot. �e
primary advantage is in added �exibility for BLEnd to meet appli-
cation requirements with the lowest possible energy consumption.
Second, we directly account for constraints from the BLE stack and
the nature of communication in dense mobile environments. We
create an optimizer (Section 4) that determines the parameter set-
tings that provide optimal continuous neighbor discovery w.r.t. a
node’s ba�ery lifetime, given an application-desired service level
agreement. �is optimizer is built around a novel analytical model
(Section 5) that accounts for i) idiosyncrasies of BLE, including
accurate power consumption of BLE operations derived from lab-
oratory experiments, and ii) packet collisions, which profoundly
a�ect the behavior of neighbor discovery. Alongside this mathe-
matical model, we provide an accurate simulator that we exploit
to show the protocol functionality in a variety of scenarios (Sec-
tion 6) as well as its performance in comparison to two reference
protocols (Section 7). Finally, we describe our implementation of
BLEnd on a standard, unmodi�ed BLE stack (Section 8), and analyze
its performance (Section 9). Our experimental results con�rm not
only that BLEnd is more versatile and e�cient than its competitors,
but also that our model, simulator, and implementation are in good
agreement, enabling the immediate use of BLEnd in applications.
Section 10 ends the paper with brief concluding remarks.
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Figure 1: BLE Discovery.

2 BACKGROUND AND MOTIVATION
One of our motivations for BLEnd is that existing continuous neigh-
bor discovery approaches are incompatible with BLE in various
ways. �is section discusses elements of BLE that are critical when
using it for neighbor discovery. We then describe how neighbor
discovery is commonly done in BLE, notably not in a continuous
manner. We discuss the possibilities of using BLE as the underlying
technology for existing approaches, laying the foundation for our
novel continuous neighbor discovery protocol, BLEnd.
BLE in the Abstract. BLE is an obvious candidate to support
continuous neighbor discovery for commodity applications, due to
its low power and wide availability [8, 15]. We take as a premise
the need to work with and around the BLE standard [2]. Figure 1
overviews key elements of BLE discovery, in which one side acts as
an observer and the other as a broadcaster. �e broadcaster emits an
advertisement event, typically 1-3ms long depending on hardware,
during which it sends a beacon on one of the three advertisement
channels then waits brie�y for a scan response on the same channel.
Each advertisement event may perform this process on one, two,
or all three of BLE’s advertisement channels. Advertisement events
are triggered periodically based on the advertisement interval. BLE
also automatically adds a 0-10ms random slack to the advertisement
interval. �is slack is engineered into BLE to reduce the potential
for simultaneous advertisers to collide many times in a row.

On the receiving side, a BLE observer listens continuously for a
scan duration, repeating this scan event periodically based on a scan
interval. �e scan duration must be shorter than the scan interval;
the advertisement and scan interval must be at least 20ms long; all
three values are parameters from the application layer. Each scan
event listens on exactly one advertisement channel; subsequent
scan events are required to cycle through the three advertising
channels. A scan event detects an advertising event only if the ad-
vertisement is sent on the matching channel; therefore, in mapping
continuous neighbor discovery onto BLE, we send every beacon
on all three advertisement channels to guarantee that it is captured
by any listening device, regardless of the listener’s scan channel.
BLE in the Concrete. Our approach to continuous neighbor dis-
covery is generic to devices supporting the BLE speci�cation [2],
including many modern Android devices. Our evaluation uses
TI SensorTag (www.ti.com/sensortag), an inexpensive sensing de-
vice with a complete BLE radio and networking stack representative
of many realizations of the BLE speci�cation, especially on IoT-
style devices. Here, we highlight elements of the SensorTag BLE
implementation relevant to continuous neighbor discovery.

Basic “o�-the-shelf” BLE discovery expects one or more nodes
to act as broadcasters and another to act as observer. However, the
speci�cation allows a single device to assume both roles, if sup-
ported by the hardware. �e SensorTag does support applications
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Figure 2: Oscilloscope trace showing scanning then advertis-
ing on the SensorTag.

that take on the multiple roles, switching between them without
restarting the BLE stack. �is capability is common in many other
BLE implementations, both on lightweight devices and on Android.

Figure 2 shows an oscilloscope trace of a segment of BLE op-
eration on a CC2650STK SensorTag. Oscilloscope measurements
in this paper were captured with a Picoscope 2204A acquisition
device. Current traces result from measuring the voltage drop
over a 10Ω low side shunt resistor placed in series with the Sen-
sorTag. In this trace, our device begins as an observer, scanning
one advertisement channel. At time 994.84ms, the application in-
structs the device to cease observing and start advertising. Here and
throughout the paper we use non-connectable advertisements, as
the intent is simply to announce presence, not to initiate a connec-
tion for sending data. �e advertisement event starts at 996.26ms
and ends at 999.46ms, sending a single advertisement on each of
BLE’s advertising channels. �is advertisement event lasts for
b = 3.2ms. Using this measurement setup, we recover the in-
stantaneous currents of scanning and advertising, respectively, as
Iscan = 6.329mA and Iadv = 5.725mA. We also measured a stand-
by current Iidle = 80.64µA, although the TI SensorTag datasheet
indicates an expected value of 1µA.

3 BLEnd
We start from the premise that many applications require only one
node of a pair to detect the other’s presence and design support
for uni-directional discovery (U-BLEnd). We then show how this is
easily adapted to bi-directional discovery. In both cases, the goal
is to achieve continuous neighbor discovery without the device’s
radio having to be continuously active.
Uni-directional Discovery: U-BLEnd. Our initial goal is to guar-
antee that one of every pair of devices will discover the other within
a given time, the discovery latency, while simultaneously minimiz-
ing the energy consumed in discovery activities. �e protocol be-
havior is a simple, repeating sequence of listening intervals (scans,
in BLE) and beacon transmissions (advertisement events). We term
the duration of this repeating sequence the epoch, E.

On a node, U-BLEnd exploits the �rst half of every epoch to
a�empt to discover or be discovered, then remains inactive for the
second half, with the radio in stand-by. �e radio is also switched to
stand-by whenever the node is not listening or transmi�ing during
the �rst half epoch, conserving as much energy as possible.

As shown in Figure 3, an epoch always begins with a listening
interval whose length depends on application requirements, most
critically the discovery latency. Immediately following the listen

www.ti.com/sensortag
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Figure 3: U-BLEnd: Uni-directional discovery.

Figure 4: F-BLEnd: Full-epoch bi-directional discovery.

Figure 5: B-BLEnd: E�cient bi-directional discovery.

interval, BLEnd begins a sequence of beacon transmissions that
lasts for the remainder of the �rst half of the epoch, with the last
scheduled beacon falling just inside the second half of the epoch.
�e interval between the beginning of adjacent beacons is at most
the length of the listen interval, thus ensuring that if the listening
interval of another node overlaps with the active portion of this
node, the listener receives at least one beacon and discovery occurs,
as shown with arrows. Further, the active portion of the epoch,
de�ned as the time from the beginning of the listening interval to
the end of the last beacon, is greater than half of the epoch. �is
con�guration guarantees that the active portions of two indepen-
dent nodes overlap, resulting in detection. Interestingly, it may also
result in bi-directional discovery, as shown in Figure 3 for A and C .

A key element of BLEnd relative to existing continuous neighbor
discovery protocols is its direct consideration of the practical con-
straints of BLE. In the context of uni-directional discovery, there
are two important elements. First, to provide guarantees on discov-
ery latency, a node’s beacon must be entirely contained within a
listener’s listening interval, and BLE beacons have non-negligible
duration. Se�ing A = L, i.e., the beaconing interval equal to the
listening interval does not consider the case in which the listener
might receive a partial beacon at either the beginning or the end of
its listening interval, a situation that may prevent discovery.

Second, BLE adds random slack to the application-speci�ed ad-
vertising interval. �erefore, when U-BLEnd speci�es an advertis-
ing interval of A, beacons may be spread as much as A + s apart,
where s is the maximum random slack added. Because this may
makeA greater than L, a listening interval may fall entirely between
two beacons, preventing discovery.

We cater to these observations by de�ning A = L − b − s .
Full-epoch Bi-directional Discovery: F-BLEnd. To naı̈vely im-
plement bi-directional discovery, one can simply continue beacon-
ing throughout the entire epoch; we call this variant full-epoch

BLEnd, F-BLEnd. In Figure 3, B would not discover A in U-BLEnd
as B’s listening interval falls inside the inactive portion ofA’s epoch.
Instead, as shown in Figure 4, discovery happens in F-BLEnd, as
B’s listening interval overlaps one of A’s additional beacons.
E�cient Bi-directional Discovery: B-BLEnd. Adding all of the
beacons in the inactive half of the epoch is unnecessary; a more
e�cient strategy is employed by our last protocol variant, B-BLEnd.
Consider discovery between two nodes A and B. If the U-BLEnd
schedule allows A to detect B in one epoch, the goal of B-BLEnd is
for B to detect A in the next epoch. To this end, any beacon added
by B is unnecessary, as B has already been detected by A. Instead,
it is su�cient that A adds exactly one beacon—the one falling in
B’s listening interval, as shown in Figure 5. �is is possible if
beacons include a small bit of information, i.e., the time between
the start of the epoch and the beacon transmission. Combining this
information with the knowledge about the duration of the epoch
and of the advertisement interval enables a receiving node (A in
our case) to compute the start time of the discovered node’s next
listening interval and selectively schedule only the one beacon, out
of all those that F-BLEnd would add, that lands inside the other
node’s listening interval, thus allowing bi-directional discovery.

In scenarios with more than two nodes, the worst case requires
a node to activate all of the beacons in the inactive half of the
epoch, as in F-BLEnd. However, we observe that a single added
beacon may allow discovery by more than one neighboring node
if the listening intervals of multiple neighbors overlap with the
beacon. Put another way, a new beacon is not necessarily needed
for every neighbor. On the other hand, when a node is among
few neighbors, correspondingly few beacons will be activated by
B-BLEnd—none if the node is alone. It is this observation that makes
BLEnd particularly suitable for continuous operation: to reduce the
energy cost of continuous neighbor discovery, BLEnd e�ectively adapts
to the natural dynamics in the density of neighboring nodes.

4 OPTIMIZING LATENCY VS. LIFETIME
Using BLEnd in real applications requires that trade-o�s between
latency and energy consumption are made explicit. Application
developers o�en expect zero latency and in�nite lifetime, which is
clearly impossible. �e tool we describe next, the BLEnd optimizer,
enables developers to quickly explore these tradeo�s and select a
protocol con�guration most suited to the application requirements.

�e la�er may vary widely. An application that monitors proxim-
ity of visitors to museum exhibits [9] targets a discovery latency of
seconds, which is more expensive in terms of energy but acceptable
since devices can be easily recharged a�er each museum visit. On
the other hand, wildlife monitoring [12] must accept a discovery
latency of up to a minute, as devices are animal-borne and expected
to last months, if not years. In our experience, neither latency
nor lifetime requirements are cast in stone; they are selected as a
compromise between application- and system-level concerns.

In this respect, our work has two assets relative to the state-
of-the-art. First, the con�guration space of existing protocols is
severely limited by the coarse-grained discretization induced by
slots and other constraints (e.g., choosing prime numbers [4, 7]).
In contrast, BLEnd’s slotless operation provides remarkably more
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Table 1: Parameters used in model and optimizer.
Parameter Description

Input parameters: Application requirements
mode uni-directional vs. bi-directional discovery
Λ maximum discovery latency
P minimum discovery probability
N maximum number of nodes in a collision domain

Input parameters: BLE stack
b duration of an advertisement event (beacon)
s maximum random slack for an advertisement event

Output parameters: BLEnd con�guration
E duration of the epoch
A duration of the advertising interval

Derived output parameters
L duration of the scan interval (listening)
nb number of advertisements per epoch

con�guration options. Second, the impact of collisions, which di-
rectly result in missed discoveries, is routinely neglected by models
underlying existing protocols; their latency and lifetime estimates
are therefore deceptive, as they do not match what is possible in
actual implementations. In contrast, the BLEnd model in Section 5
explicitly accounts for collisions, enabling the optimizer to more
realistically determine the best BLEnd con�guration.

Application requirements constitute a service-level agreement of
sorts that must be honored by the BLEnd con�guration generated by
the optimizer. �e requirements input to the optimizer are shown
in Table 1, along with the expected outputs. A developer must
specify the maximum discovery latency Λ and minimum discovery
probability P allowed in the application, along with the maximum
number N of nodes in a collision domain. P is de�ned for B-BLEnd
and F-BLEnd as the probability that each node discovers all of its
neighbors within Λ; for U-BLEnd, instead, P is the probability that
at least one node in a pair discovers the other.

�e inputs also include system-level parameters. �e duration b
of a BLE advertisement event may change depending on the hard-
ware. Herea�er we considerb = 3.2ms as measured on our platform
when using all three channels, which yields lower discovery latency
and be�er resilience to collisions. �e random slack introduced by
the BLE stack is set to s = 10ms as per the speci�cation [2].

�e optimizer returns a con�guration 〈E,A〉, i.e., the advertise-
ment interval and epoch length, that satis�es the application re-
quirements and minimizes energy consumption. For instance, as-
sume the developer requires bi-directional discovery with Λ =
2000ms, P = 0.95, N = 15. �e output con�guration E = 667ms,
A = 71ms guarantees that i) in the worst case where 15 nodes are
all within range of one another, each of them has a 95% probability
of discovering the others within 2s, and ii) this is achieved with the
minimal energy consumption. �e optimizer also outputs derived
parameters: the scan interval L = A + b + s and the number of
advertisements, which is nb = b E2A c − 1 in the uni-directional case
and nb = b

E
A c − 1 in the bi-directional (worst) case.

�e optimizer has two fundamental components. �e �rst is a
model of the drain of electrical charge during one epoch:

Q (E,A) = IscanL + Iadvnbb + Iidle (E − L − nbb) (1)

where Iadv is the (average) instantaneous current consumed by the
radio when advertising, Iscan when scanning, and Iidle when not
engaged in neighbor discovery. �ese values must be measured for
a given hardware, as we did for the SensorTag in Section 2. Iidle is
determined by application speci�cs, e.g., whether the device senses,
computes, or engages in other communication. In Section 6, we
report lifetime values derived with Iidle = 0µA, as we are focused
on the application-independent neighbor discovery functionality,
and Iidle = 80.64µA, as measured on the SensorTag.

�e second component of the optimizer is a model that, for a
given BLEnd con�guration 〈E,A〉, estimates the discovery proba-
bility Pd as a function of all the optimizer inputs, by considering
collisions. �is model is one of the contributions of this paper, and
is presented in detail in Section 5.

Based on these components, the optimizer performs an exhaus-
tive search across all possible 〈E,A〉 con�gurations. We test each
possible epoch value smaller than the target latency, E ≤ Λ; for
each value E, we test all advertisement intervals allowed by the
BLE speci�cation [2], i.e., A ≥ 20ms. Further constraints trivially
rule out degenerate combinations, e.g., E ≤ A or when an epoch
cannot accommodate a complete BLEnd schedule. For each pair
〈E,A〉 the optimizer computes the expected discovery probability
Pd according to the model in Section 5. If Pd ≤ P , i.e., the expected
discovery probability does not satisfy the one targeted by applica-
tion requirements, the 〈E,A〉 con�guration is discarded as invalid.
Otherwise, the current drain Q (E,A) is computed; the optimizer
outputs a valid 〈E,A〉 that minimizes this value.

�e search space determined by the values of E andA is explored
in (con�gurable) increments of 1ms, as this is close to the resolution
of timers commonly found in BLE devices. Along with the other
constraints mentioned above, this limits the computational over-
head; our R implementation of the optimizer computes the optimal
con�gurations for the scenarios considered in this paper in at most
a few minutes on a common laptop.

5 MODELING DISCOVERY PROBABILITY
We next derive a model of the discovery probability Pd using the pa-
rameters in Table 1. Discovery probability is intimately intertwined
with the probability of colliding beacons. Other factors, most no-
tably interference in the crowded 2.4GHz band that BLE uses, can
also cause a beacon to be lost. However, the three channels (37–39)
used for advertising are de�ned by the BLE speci�cation [2] i) to
be di�erent from those used for actual communication, and ii) to
avoid interference with the most commonly used WiFi channels.
Further, to the best of our knowledge, no existing work analyzes
the impact of collisions of the beacons within continuous neighbor
discovery; these collisions are the primary source of beacon loss,
and we analyze these impacts in Section 5.1. �e discovery proba-
bility is also a�ected by speci�cs of the BLE communication stack,
most notably the random slack, as we discuss in Section 5.2.

5.1 Analyzing the BLEnd Schedule
We �rst derive discovery probability by considering the chance that
beacons collide due uniquely to the BLEnd schedule.

In the following, the same model handles uni-directional and
bi-directional discovery; the only di�erence is the number C of
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nodes in the collision domain. In the uni-directional case (U-BLEnd),
C = N

2 on average because a node’s schedule does not have beacons
in the second half of the epoch. In the bi-directional case we assume
C = N . F-BLEnd always schedules beacons throughout the second
epoch, while B-BLEnd schedules beacons on-demand only if and
when needed. However, B-BLEnd intends that all N − 1 nodes that
are not the listener a�empt to “hit” the listen interval with a beacon.
�erefore, our model focuses on F-BLEnd because i) it provides the
worst case for both collisions and energy consumption, and ii) it
yields a more tractable model.

Within an epoch, collisions among beacons are harmful only
when they occur within another node’s listen interval; beacon
collisions not overlapping with the listen interval of some node are
irrelevant. �erefore, we focus on the listen interval and observe
that, due to the structure of a BLEnd schedule, there are at most
C − 1 other nodes that have a beacon scheduled within another
given node’s listen interval.

Consider one of these C − 1 senders, with a beacon start time t
falling in the listen interval. Because successful discovery requires
the listen interval to overlap entirely with the beacon, this sender
is not discovered by the listener if another beacon (from another
sender) overlaps even partially with the �rst one. �is collision
happens if the other sender chooses a beacon start time in the
interval (t − b, t + b). �erefore, 2b of the possible options for
beacon start times cause collisions. Because beacon start times
must be chosen in the interval [0,L − b] to ensure that the entire
beacon is received before the listening interval ends, the probability
that some other sender collides with our selected sender is 2b

L−b .
�e discovery probability can therefore be computed as

Pnc =

(
1 − 2b

L − b

)γ
(2)

where γ = C − 2 is the number of beacons potentially colliding
with the chosen sender within the given listen interval. Since each
sender is expected to send exactly one beacon during the listen
interval, γ is simply the numberC of nodes in the collision domain,
minus the listener and the sender for which we are computing the
discovery probability.

5.2 Accounting for BLE Speci�cs
�e model above assumes that two consecutive beacons are spaced
exactly by the advertisement interval A. However, if this were the
case in BLE, two colliding advertisements would collide forever. To
avoid this, BLE adds a “random slack” r ∈ [0, s] to the start time of
all advertisements in a sequence, except the �rst one [2]. �is slack
has a subtle yet signi�cant impact on discovery probability.
Discovery Is Possible Across Epochs. Arguably, the most impor-
tant e�ect of the slack is that it unlocks the possibility that a beacon
experiencing a collision in the �rst epoch is discovered in a later
epoch, as the random slack moves the colliding beacons slightly rel-
ative to each other. �erefore, we model the discovery probability
across epochs and its interplay with the maximum latency Λ.

In principle, based on (2), the probability of discovering a given
node across k epochs is simply:

Pd,k = 1 − (1 − Pnc )k (3)

Figure 6: Relationship between Λ, E, and the “spillover”.

where (1 − Pnc )
k is the probability that a node is not discovered

across k epochs.
On the other hand, the only constraint relating the maximum

latency and the epoch is that E ≤ Λ, to guarantee that a complete
BLEnd schedule can unfold. As a consequence, Λ is not necessarily
a multiple of E. �is implies that a node not discovered in the �rst k
epochs may be discovered in the “spillover” Λ−kE; Figure 6 shows
the relationship between Λ, E, and this spillover.

We observe that, within a given epoch, the rate at which nodes
discover each other is constant, as the phases between nodes’
epochs are independent. �erefore, the discoveries that occur in
the spillover can be quanti�ed simply by multiplying the discovery
probability Pnc by the fraction of epoch Λ−kE

E corresponding to
the spillover. Moreover, the spillover increases the likelihood of
discovery only if the node was not discovered in the �rst k epochs.
�erefore, the probability that a node is discovered for the �rst time
in the spillover is

Pd,sp = (1 − Pnc )k
(
Λ − kE

E

)
Pnc (4)

and the overall probability of discovery within Λ is
Pd = Pd,k + Pd,sp (5)

We next extend this simple formulation to account for other
subtleties induced by the random slack.

Figure 7: Compensating
for slack.

Extra Beacons. In the presence
of random slack, a listen interval
of L = A+b could miss discoveries
even in the absence of collisions.
Figure 7 shows an example, where
a sender’s beacon scheduled at
the very end of a listen interval
is “pushed out” of it by a slack
r > 0. �is is why BLEnd sets the
listen interval to L = A + b + s , to
guarantee that a beacon always
overlaps a listen interval. On the
other hand, this choice may lead to situations where two beacons
from the same sender fall in the listen interval of the same listener,
as also shown in Figure 7. As a result, the number of beacons
potentially colliding in (2) becomes γ > C − 2.

To quantify the impact of these extra beacons, we observe that
they may occur only when a beacon is within s of the beginning
(or end) of the listen interval. �e sum b +A of the beacon duration
and the advertisement interval leaves enough room for the next (or
previous) beacon to fall within L. Each node has a s

L−b chance of
choosing such a beacon starting time. However, the extra beacon
is generated only in half of the cases, on average. To see why,
consider Figure 7. �e �rst beacon occurs at a start time t = 0
w.r.t. the beginning of the listen interval, and only the choice of the
maximum slack r = s prevents an extra beacon from occurring; in
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the dual case where the �rst beacon is sent at t = s into the listen
interval, only a slack of r = 0 causes an extra beacon.

�is fraction of extra beacons can therefore be modeled as

σ =
1
2

( s

L − b

)
(6)

and must be added to those potentially colliding “naturally”, i.e.,
because of the base BLEnd schedule, as discussed in Section 5.1.
�is is accounted for by modifying the exponent of (2) into

γ = (C − 2) (1 + σ ) (7)

Beacon Start Time Dependence. In Section 5.1, two beacons
colliding in one epoch would collide in all subsequent ones. In
essence, it is as if we modeled the discovery probability in the �rst
epoch, which then remains the same because each node behaves
according to its periodic schedule. �e random slack introduced by
BLE mitigates this situation by randomly “nudging” each beacon;
beacons that collide in an epoch are no longer always colliding in
the subsequent ones, and can be discovered across multiple epochs.
However, the beacons that collided in the �rst epoch are still more
likely to collide also in subsequent epochs, simply because they are
kept close to each other by the random slack. �e model in (3)–(5)
does not account for this dependency across epochs, as it assumes
that colliding beacons may always appear anywhere across the
entire interval L − b.

�e probability Pnc of not colliding in the �rst epoch is the same
as in (2). However, for epochs k > 1, this probability becomes
Pnc,W ≤ Pnc , due to the fact that the starting time of beacons
is constrained by the schedule in the �rst epoch. �e discovery
probability across k epochs in (3) becomes

Pd,k = 1 − (1 − Pnc ) (1 − Pnc,W )k−1 (8)
To derive the expression of Pnc,W , we observe that a beacon

occurring at time ti in the �rst epoch occurs within an interval
W centered on ti in subsequent epochs, due to the presence of
the random slack. W represents the new window of contention for
colliding beacons. IfW ≥ (L−b), then the window is the same size
or larger than the window used when assuming the beacons were
randomly tossed in the interval [0,L−b], and therefore Pnc in (2) still
holds. However, whenW < L, the probability of collisions increases,
i.e., Pnc,W ≤ Pnc , because beacons that collided once are more likely
to collide again as they are somewhat loosely synchronized.

EstimatingW is complicated by the fact that the slack introduced
by BLE is added relative to the start time of the previous beacon, and
therefore the o�set among the same beacons in di�erent epochs
compounds across all beacons within an epoch. Consider the situ-
ation in Figure 8 and recall that, as per the BLE speci�cation, the
�rst beacon has no slack. Assume the extreme case where the value
of the slack for all four remaining beacons is r = 0 for epoch 1 and
r = 10 for epoch 2. Looking at the start time of a given beacon in

Figure 8: Compound slack. In epoch 2, positions of beacons
from epoch 1 are shown with dashed lines.

each epoch, it is clear that the o�set across epochs increases with
the position of the beacon; beacon 2 occurs 10ms later in epoch 2
w.r.t. epoch 1, while beacon 5 occurs 40ms later. �is of course
could go either direction; swapping the choice of r for the two
epochs would result in beacon 5 occurring 40ms earlier in epoch 2
w.r.t. epoch 1.

More generally, assume that a sender’s ith beacon is sent at time
ti in the listener’s �rst epoch. �en the sending time for the same
sender’s ith beacon in the listener’s second epoch (or any epoch
k > 1) falls in the interval:

[ti − (i − 1) × s, ti + (i − 1) × s]

�is expression captures the maximum window of contention for
the same beacon across two consecutive epochs. �e average inter-
val is only half of the above, since it is 0 for the �rst beacon, s for
the second one, 2s for the third, and s (i − 1) for the ith beacon.

Using these insights, and the fact that nb is the total number of
beacons sent in an epoch, we compute the average sizeW of the
window of contention across all beacons in the epoch:

W =
s
∑nb−1
i=1 i

nb − 1 = s
nb
2 (9)

We can then compute the probability of not having a collision in
an epoch k > 1 as

Pnc,W =



(
1 − 2b

W

)ω ifW < (L − b)

Pnc otherwise
(10)

�e �rst expression is similar to (2), with the denominator L − b
replaced byW . �e number of beacons potentially colliding within
the windowW is

ω = 1 + W

L − b
(γ − 1) (11)

Recall that Pnc,W accounts for the discovery probability a�er a
beacon collision in the �rst epoch; the �rst term represents such
a collider, which is bound to fall withinW . �e second term rep-
resents the fraction of the γ beacons from (7) that may fall in the
window W surrounding the sender’s beacon, minus the collider
already considered in the �rst term. �is formulation may underes-
timate the case where multiple beacons collide in the �rst epoch;
in practice, this model already returns good estimates, as shown in
Sections 6 and 9.

�e complete expression of the discovery probability Pd remains
the one in (5). However, its component due to the spillover Pd,sp
in (4) must also be modi�ed along the same reasoning that led to
the modi�ed expression of Pd,k in (8):

Pd,sp = (1 − Pnc ) (1 − Pnc,W )k−1
(
Λ − kE

E

)
Pnc,W (12)

�e �rst two factors account for the probability that the beacon
collides in all the �rst k epochs, and the last captures the probability
that the beacon does not collide in the spillover, accounting for the
loose synchronization due to the slack.

�e �nal expression of discovery probability across k epochs
from (5) can therefore be rewri�en as:

Pd = 1 − (1 − Pnc ) (1 − Pnc,W )k−1
(
1 −

(
Λ − kE

E

)
Pnc,W

)
(13)
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Figure 9: Model-simulator validation for F-BLEnd.

Table 2: Model validation via simulation. Λ is in seconds; E and A are in milliseconds; probabilities P , Psim and duty cycle DC
are in percentage; lifetime is in days, assuming a battery capacity of 320mAh. We show the lifetime for both Iidle = 0µA (LT0)
and Iidle = 80.64µA (LT80).

Con�guration (optimizer) Simulation results
Input Output F-BLEnd B-BLEnd

N Λ P E A Psim Psim−P DC LT0 LT80 Psim Psim−P DC LT0 LT80

3 4 95 3995 111 98.06 +3.06 5.93 37.45 30.61 97.16 +2.16 4.58 47.69 37.12
8 4 95 2430 106 95.25 +0.25 7.89 27.82 23.85 93.56 −1.44 6.74 32.21 27.01
15 4 95 1995 121 95.37 +0.37 9.38 23.19 20.37 93.91 −1.09 8.68 24.91 21.68
20 4 95 1335 91 95.36 +0.36 11.27 19.34 17.34 94.36 −0.64 10.54 20.59 18.34
15 2 95 667 71 95.74 +0.74 17.09 12.70 11.80 95.51 +0.51 16.32 13.25 12.28
15 4 95 1995 121 95.37 +0.37 9.38 23.19 20.37 93.91 −1.09 8.68 24.91 21.68
15 10 95 5363 149 95.11 +0.11 5.14 42.94 34.17 93.02 −1.98 4.36 50.12 38.57
15 30 95 29969 555 95.04 +0.04 2.49 86.93 57.22 93.37 −1.63 2.25 95.35 60.75
15 4 95 1995 121 95.37 +0.37 9.38 23.19 20.37 93.91 −1.09 8.68 24.91 21.68
15 4 90 2309 110 90.58 +0.58 8.22 26.70 23.03 88.28 −1.72 7.30 29.81 25.31
15 4 85 4000 174 85.51 +0.51 6.50 33.43 27.87 82.69 −2.31 5.95 36.30 29.83
15 4 80 3939 128 80.74 +0.74 5.96 37.00 30.30 76.97 −3.03 5.08 42.96 34.19

6 SIMULATING BLEND
To con�rm the correctness of our model, we created a discrete
event simulator in Java that steps through the BLEnd schedules of
multiple nodes, simulating discoveries. �e simulator accounts for
collisions (or optionally ignores them), considers the three BLE ad-
vertisement channels, and implements all three versions of BLEnd.
�e simulator allows us to cross-validate the model underlying the
optimizer with the protocol behavior observed in simulation.
Simulation Setup. We ran our simulations using the same as-
sumptions made in the model. Further, we guarantee that any two
nodes’ epochs do not start within b time of each other, as this as-
pect is currently not captured by our model. Our evaluation tests
the three dimensions of application requirements (i.e., discovery
latency, node density, and discovery probability) by �xing two of
them and varying the other. For each combination, we plot the
cumulative distribution function (CDF) of discovery latencies and
show target probabilities (as horizontal, dashed lines) and target
latencies (as vertical, dashed lines); each curve represents 10,000
independent simulation runs. For lifetime, we assume a ba�ery
capacity of 320mAh—the same of the SensorTag we use in Section 9.

Model-simulator Validation: Bi-directional Discovery. Fig-
ure 9 shows the simulation results for F-BLEnd, which, among the
BLEnd variants, is most accurately represented by the model in Sec-
tion 5. We note a number of in�ection points in each curve, caused
by the fact that the target latency may be composed of multiple
epochs; inside each epoch, BLEnd shows a constant discovery rate
that decreases in each subsequent epoch as fewer nodes remain
to be discovered. In all tested scenarios, our simulator produces
discovery probabilities and latencies in line with the established
targets. �is is seen in Figure 9 by noting the di�erence between
each CDF and the target discovery probability (horizontal line)
at the target latency (vertical line). Table 2 shows the same data
numerically, showing that the simulated F-BLEnd discovery proba-
bility is always higher than the target for the associated latency;
the di�erence is always below 1%, except for the �rst combination.

Table 2 shows also the results for B-BLEnd, whose CDFs are
here omi�ed due to space limitations, con�rming that the model
and the associated optimizer are e�ective at generating realistic
BLEnd con�gurations enabling bi-directional discovery while ac-
counting for BLE constraints and beacon collisions. Further, Table 2
also allows us to quantify the bene�ts brought by the on-demand
beacon scheduling of B-BLEnd w.r.t. the naı̈ve solution provided
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by F-BLEnd. B-BLEnd o�ers 4 to 27% improvement in lifetime
w.r.t F-BLEnd in the con�gurations studied, therefore con�rming
quantitatively that it provides a more e�cient solution.

In the case of B-BLEnd, however, Table 2 shows that the simu-
lator yields a discovery probability slightly lower than the target,
except for two of the combinations. �is is due to the fact that our
model and the associated optimizer are based on F-BLEnd, for the
reasons mentioned in Section 5, and therefore do not completely
capture all intricacies of B-BLEnd.

In particular, a subtle dependence among beacons occurs in
B-BLEnd that does not exist in F-BLEnd. Remember that F-BLEnd
schedules all beacons in all cases and that, in general, when P <
100% the optimization does not require discovery of all nodes. �ere-
fore, a valid con�guration output by the optimizer may allow A to
not detect B due to a collision. While this results in a discovery
loss that is properly accounted in F-BLEnd, in B-BLEnd it may lead
to a secondary loss that the model does not consider. Speci�cally,
bi-directional discovery is achieved in B-BLEnd by the explicit ad-
dition of a beacon, triggered by detection. �erefore, if A does not
detect B due to a collision, the additional beacon is not scheduled
and B does not discover A, thus reducing the discovery rate. �is
motivates future work to improve the accuracy of our model and
optimizer by explicitly considering the subtleties of B-BLEnd.
Model-simulator Validation: Uni-directional Discovery. We
now investigate the relative performance of U-BLEnd. Although the
use cases of uni-directional and bi-directional discovery di�er, the
expectation is that uni-directional discovery will save a signi�cant
amount of energy. �ese measurements also validate the application
of the model to uni-directional U-BLEnd.

Figure 10 and Table 2 show that our simulation results come
very close to the target discovery probability P in most cases. Recall
that P is computed in U-BLEnd as the probability that at least one
of each pair of nodes discovers the other within Λ time. U-BLEnd
does miss the target discovery latency by a small amount in all
but two parameter combinations. �e reason is similar to the one
discussed for B-BLEnd; essentially, the discovery rate in U-BLEnd
is penalized twice for each missed detection. Nevertheless, these
results do indicate that, when bi-directional discovery can be ascer-
tained o�ine, U-BLEnd provides signi�cant bene�ts over B-BLEnd.
Meeting the same application requirements in terms of N , Λ, P
with U-BLEnd and B-BLEnd yields comparable discovery rates, but
U-BLEnd lifetime that is up to 1.8x longer than the one of B-BLEnd.

7 COMPARING TO THE STATE OF THE ART
In our simulator, we also implemented both Searchlight [1] and
Nihao [13] exactly as described in the literature. �is allows us to
compare against these recent protocols that are considered the best
performing state of the art protocols but do not directly support
BLE and whose implementations are not publicly available.

In both protocols, a key parameter is the slot duration, which
is also the “unit of measure” of latency and duty cycle. Recall that
duty cycle is a commonly used proxy for energy consumption; for
clarity we report both duty cycle and ba�ery lifetime for all proto-
cols. Unfortunately, neither paper provides guidance on selecting
an appropriate slot size. However, in Nihao α captures the ratio
between the advertisement event duration and the slot duration;
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Figure 10: Model-simulator validation for U-BLEnd.

Table 3: Model validation via simulation, for U-BLEnd.
Units are the same as in Table 2.

Con�guration (optimizer) Simulation results
Input Output U-BLEnd

N Λ P E A Psim Psim−P DC LT0 LT80

3 4 95 3999 80 98.51 +3.51 4.24 52.27 39.84
8 4 95 3983 83 93.26 −1.74 4.25 51.98 39.66
15 4 95 2197 69 94.36 −0.64 5.98 36.68 30.09
20 4 95 1998 72 94.58 −0.42 6.42 34.07 28.31
15 2 95 1001 51 94.74 −0.26 9.39 23.24 20.40
15 4 95 2197 69 94.36 −0.64 5.98 36.68 30.09
15 10 95 10000 232 94.24 −0.76 3.15 68.71 48.71
15 30 95 29951 234 94.26 −0.74 1.51 146.59 78.15
15 4 95 2197 69 94.36 −0.64 5.98 36.68 30.09
15 4 90 3995 111 88.97 −1.03 4.52 48.30 37.48
15 4 85 3999 80 84.89 −0.11 4.24 52.27 39.84
15 4 80 3999 80 84.89 +4.89 4.24 52.27 39.84

the value α = 0.054 is used in [13]. In our hardware, a BLE adver-
tisement event lasts 3.2ms, yielding a slot duration of 59.26ms. We
use this value for both protocols.

Searchlight builds a schedule around a �xed period of t slots,
which contains one “anchor” active slot at the beginning and a
second “probe” slot somewhere in the �rst half of the period. �e
value of t relates directly to the schedule’s duty cycle ( 2

t ) and target
discovery latency ( t 2

2 ). A (Balanced) Nihao schedule is instead
built around a parameter n; one period of the schedule consists
of n2 active slots. �e node beacons at the beginning of every nth

active slot and then listens for the �rst n slots. �e value of n is
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Figure 11: Comparing BLEnd against the state of the art.

similarly tied to duty cycle ( 1+α
n ) and latency (n2). In the following,

we leverage these relationships to set t and n based on a target
discovery latency (or duty cycle) equivalent to that achieved by
BLEnd in a given con�guration.
Protocol comparison. Since Searchlight and Nihao both pro-
vide bi-directional discovery, we compare only our F-BLEnd and
B-BLEnd variants against them. For all protocols, we use a target
latency Λ = 4s . For BLEnd, we set a target discovery probability of
P = 95% with N = 15 nodes; the other protocols a�empt to reach
100% because, unlike BLEnd, they do not o�er any alternative.

Figure 11a shows the results; notably, neither Searchlight nor
Nihao reach 100% discovery, despite that this is their goal. �e
reason is two-fold: if two nodes choose nearly aligned slot start
times, the nodes are always sending simultaneously and never
discover each other; and the probability of collisions among beacons
is not accounted for in these protocols. Instead, the BLEnd variants
do take these aspects into account, via the model in Section 5;
BLEnd succeeds in meeting a discovery rate around around the 95%
targe. Figure 11a also shows that Searchlight most quickly discovers
nodes at the beginning, though all protocols reach be�er than 92%
discovery probability at or before the target latency. Nihao reaches
its in�ection point before the target discovery because its period
is computed as n2 slots; to hit a target latency, one must divide
the latency into slots then take the square root. We conservatively
choose n to be less than the square root as doing otherwise would
cause Nihao to miss the target. In Figure 11a, Nihao uses n = 8;
with a value of n = 9, Nihao misses the target latency by 850ms.
�is highlights the signi�cant bene�t that BLEnd is not arti�cially
constrained by a rigid slo�ed structure.

Although all protocols, despite their di�erent goals and con�gu-
rations, have roughly the same discovery probability at the target
latency, it is worth analyzing the expended energy. Table 4 shows
the percentage of neighbors discovered, duty cycle, and resulting
lifetime (based on di�erent values of Iidle as in Table 2) when all
protocols are con�gured with a target latency Λ = 4s, as considered
thus far. Both BLEnd variants clearly outperform the competitors,
with an expected lifetime for B-BLEnd that is 1.5x and 2x higher
than Nihao and Searchlight, respectively.

To o�er a dual perspective, we con�gured Searchlight and Nihao
with a target duty cycle instead of a target latency, to observe
their performance when given roughly the same energy budget of
B-BLEnd. �erefore, we con�gured both to achieve a target duty
cycle as close as possible to DC = 8.68%. �e results are shown in
the last two rows of Table 4 and in Figure 11b, and show that BLEnd
clearly outperforms the competition; both Searchlight and Nihao
discover almost half of the nodes when given roughly the same
energy budget as BLEnd. �e duty cycles of Searchlight and Nihao
are actually slightly higher than B-BLEnd; this is because their
slo�ed operation signi�cantly reduces the con�guration options
for these protocols. We chose the closest matching con�guration,
which while having a slightly higher energy usage still perform
signi�cantly worse in terms of discovery probability. �is con�rms
that BLEnd, thanks to its �exible unslo�ed operation and the ability to
take into account collisions, e�ciently uses the available energy budget
to meet the target discovery and latency application requirements.
A Stress-Test for BLEnd. To push the limits of B-BLEnd, we
considered a con�guration inspired by a small conference scenario
(N = 100, Λ = 10s and P = 90%). First, when the con�guration
from the optimizer is fed to the simulator, B-BLEnd reaches 91.94%
discovery by the target latency, exceeding the target discovery
probability. Next, we observe that optimizer output yields an epoch
E = 3334ms and an advertising interval A = 444ms. �is implies
that each epoch contains only 6 advertisements, a surprising result
given the high node density. �is schedule goes against the talk
more, listen less principle driving Nihao, showing that “talking
more” is not required at high density, as the same beacon enables
discovery by multiple nodes. Interestingly, BLEnd is �exible enough
to accommodate the advertising strategy best suited to the node
density at hand, as con�gured via the optimizer.

8 A PRACTICAL IMPLEMENTATION
In this section, we relate the abstract description of the BLEnd
protocols in Section 3 to our speci�c implementation on the TI

Table 4: Discovery probability vs. lifetime for Λ = 4s. BLEnd
variants are con�gured with N = 15, P = 95%. Notation and
units are the same as in Table 2.

Protocol Psim DC LT0 LT80

F-BLEnd 95.37 9.38 23.19 20.37
B-BLEnd 93.91 8.68 24.91 21.68
Searchlight (target: latency) 90.96 18.52 11.53 10.79
Nihao (target: latency) 92.16 13.20 16.12 14.70
Searchlight (target: duty cycle) 56.36 9.66 22.11 19.53
Nihao (target: duty cycle) 44.19 8.81 24.16 21.11
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Table 5: Implementation validation. Λ is in seconds; E and A in milliseconds; P and Peval are percentages.

Con�guration (optimizer) Results
Input Output F-BLEnd B-BLEnd

N Λ P E A Peval Peval − P Peval Peval − P

3 2 95 2000 77 97.70 +2.70 95.98 +0.98
8 2 95 1055 66 95.18 +0.18 95.72 +0.72
3 4 95 3995 108 96.58 +1.58 94.16 −0.83
8 4 95 2430 106 95.48 +0.48 94.39 −0.61
3 10 95 9975 172 97.22 +2.22 93.16 −1.84
8 10 95 9986 253 96.26 +1.26 93.00 −2.00

Con�guration (optimizer) Results
Input Output U-BLEnd

N Λ P E A Psim Peval − P

3 2 95 2000 53 95.90 +0.90
8 2 95 1991 83 92.86 −2.14
3 4 95 4000 77 96.43 +1.43
8 4 95 3983 83 95.28 +0.28
3 10 95 9999 122 98.81 +3.81
8 10 95 9999 122 94.89 −0.11

CC2650STK SensorTag. �e la�er is based on the CC2650 wireless
MCU, which contains a 32-bit ARM Cortex-M3 processor, a 128kB
programmable memory, 20kB of SRAM, and a complete system-on-
chip BLE solution. �e radio module uses a 2.4GHz RF transceiver
fully compatible with BLE 4.2, with a receiver sensitivity of -97dBm
and a range up to 50m/160�.
Uni-directional Discovery. Our implementation of U-BLEnd del-
egates the protocol timing largely to the timers available in the
BLE stack. An epoch always begins with a listening interval, im-
plemented by initiating a BLE scan for the scanDuration estab-
lished by the optimizer, L = A + b + s . As soon as the listening
interval ends (indicated by the GAP DEVICE DISCOVERY EVENT gen-
erated by the BLE stack), the protocol initiates advertising, with
the advertisingInterval from the optimizer, A. A single BLE
advertisement event duplicates the advertisement on BLE’s three
advertising channels (37, 38, and 39).
Bi-directional Discovery. To implement F-BLEnd atop U-BLEnd,
we simply let the BLE advertising continue until the end of the
epoch. However, the more e�cient B-BLEnd requires each ad-
vertisement beacon to include the time until the next listen. �e
receiver uses this to activate the correct additional beacon for bidi-
rectional discovery. Unfortunately, updating advertisement data
inside a BLE beacon is non-trivial. Advertising must be stopped,
the data updated, then advertisement can be restarted. As a result,
in B-BLEnd, all timing between beacons (including BLE’s random
slack) is handled in application space.
Storing Data into Advertisements. A major constraint of imple-
menting continuous neighbor discovery on BLE without pairing
is that all exchanged information must �t inside an advertisement.
In BLE, an entire beacon is always sent, regardless of whether it
contains usable application data. Practically, SensorTag BLE adver-
tisements have 31B of application-writeable data [16]. In BLEnd,
we use 5B to identify packets as belonging to the BLEnd protocol
(though less could conceivably be used) and 2B to carry a unique
node identi�er, enabling other nodes to determine which node
has been discovered. B-BLEnd also needs to include the time to
the next listen interval (2B) to enable receivers of the beacon to
opportunistically schedule their beacons in the second half epoch.

9 REAL-WORLD EVALUATION
In this section, we report results from experiments with the Sen-
sorTag using the implementation described above. Our goal is to
verify that our implementation matches the results from the sim-
ulator and the predictions of the model in terms of meeting the

application requirements concerning discovery probability P within
a given latency Λ and for a given node density N . We setup an
indoor testing environment with 8 SensorTags in a 4 × 2 grid with
inter-node spacings of 30cm/11.8in. We used an additional node
that continually scanned the three BLE advertisement channels.
�is node was connected to a desktop computer for data collection.

In a run, each node �rst performs an initialization (e.g., se�ing
BLEnd parameters, initializing the BLE stack, etc.) then emulates
a random arrival in which it remains inactive for a random time
tr ∈ (0,E) before starting to run the BLEnd protocol. �is process
simulates a real scenario in which participants move into range of
one another at di�erent times. To achieve randomness, we use the
True Random Number Generator (TRNG) from the CC2650 MCU.

In our evaluation, we use the remaining space available in bea-
cons to carry information useful to our experiments. To monitor
energy consumption, we include the SensorTag ba�ery level (2B)
in each beacon. In addition, when a node discovers a new neighbor
for the �rst time, it adds the corresponding timestamp (2B) to the
beacon payload. Given the available space in the beacon, a node can
convey information for up to 10 discovered neighbors. However,
note that this 10-node limitation is only an artifact of data collection
for our experimental setup and is not a restriction on BLEnd itself,
which can support an arbitrarily large number of nodes. In our
experiments, the sink node scans for these beacons and transfers
the results to the desktop using the SimpleLink Debugger DevPack.

Table 5 reports tests for 3- and 8-node experiments with a target
discovery probability P = 95% and di�erent values for the target la-
tency Λ. We used the optimizer to generate the 〈E,A〉 con�guration
for each BLEnd variant. �e results are the average of 30 exper-
iments for each combination of parameters. By considering the
di�erence Peval − P between the measured and target discovery
probability we see that our experiments track the target discovery
rate within a few percentage points and, for all three protocols are
in line with the expectations from the simulation. F-BLEnd always
exceeds the target discovery probability as in simulation, while
B-BLEnd and U-BLEnd narrowly miss the target in some cases,
again similar to the results from simulation. As already discussed,
this stems from the fact that the model in Section 5 does not capture
all the subtleties of these two BLEnd variants.

Figure 12 provides a �ner-grained perspective by showing the
empirical CDFs of all three BLEnd variants for 3- and 8-node experi-
ments with a �xed target latency Λ=4s and discovery probability of
P = 95%. We again show the target latency as a vertical dashed line
and target discovery probability as a horizontal dashed line. Fig-
ure 12a shows that, with N = 3, the discovery rate of all protocols
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Figure 12: Experimental evaluation of BLEnd.

steadily increases up to the target. �is is a consequence of the fact
that the epoch identi�ed by the optimizer is very close (E = 3995ms
for F-BLEnd and B-BLEnd) or equal (U-BLEnd) to the target latency
Λ, as collisions are rare. Increasing the density to N = 8 bears li�le
e�ect on U-BLEnd, whose epoch E = 3983ms remains close to Λ,
and whose discovery rate is only marginally a�ected, as shown in
Figure 12b. On the other hand, the optimal epoch becomes signi�-
cantly smaller (E = 2430ms) for the bi-directional cases, to account
for the increase in number of beacons and therefore collisions.
F-BLEnd shows an in�ection point precisely at that this point; dis-
coveries occurring in the second epoch are due to collisions in the
�rst one. In contrast, the discovery rate in B-BLEnd is smoother
as this protocol sends signi�cantly fewer beacons than F-BLEnd
in the second half of the epoch. However, discoveries occur at a
slower rate, precisely due to the fewer beacons in the �rst epoch
and the need to explicitly schedule beacons in the second epoch
to enable discovery. �is is visualized e�ectively by Figure 12b,
showing that the rate at which nodes are discovered in B-BLEnd
sits between F-BLEnd and U-BLEnd—a consequence of its design
that trades o� the speed at which nodes are discovered for be�er
energy consumption. In any case, for all BLEnd variants, the shape
of the discovery rate curves matches very closely the results from
simulation, as shown, e.g., in Figure 9b and 10b.

10 CONCLUSION
We presented BLEnd, a protocol designed with practical concerns
in mind. On one hand, we choose BLE as a communication platform
and design a protocol that, at its core, takes BLE’s peculiar con-
straints into account. On the other hand, we put application users
at the center and devise a protocol that is easily con�gurable to

meet application requirements. �ese requirements include a target
discovery latency, and consider, for the �rst time in the literature,
the practical impact of collisions on continuous neighbor discovery.

�e cornerstone of BLEnd is the realization that unidirectional
discovery can be accomplished very e�ciently without precluding
its extension to bidirectional discovery, if and when needed. Further,
the resulting protocol is adaptive, in that it automatically adjusts
the amount of beaconing as density increases. Our evaluation in
simulation shows quantitatively that BLEnd is signi�cantly more
performant than state of the art protocols once the la�er are placed
in the context of real practical constraints. Our design is rei�ed in
an implementation on TI SensorTags, but the key element enabling
practical use is the companion optimizer, which enables users to
identify the best con�guration for a given set of application require-
ments. �e optimizer is based on an analytical model of BLEnd,
and we showed that model, simulator, and implementation are in
good agreement, thereby enabling immediate use in applications.

ACKNOWLEDGMENTS
�e authors would like to thank Davide Giovanelli (FBK) for his
help with energy measurements and Ştefan Gună (now at Amazon)
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