
Size Efficient Big Data Sharing Among
Internet of Things Devices

Sungmin Cho and Christine Julien
The Center for Advanced Research in Software Engineering

The University of Texas at Austin
Email: {smcho, c.julien}@utexas.edu

Abstract—The Internet of Things (IoT) connects smart objects
so they can share information in a network to provide context-
sensitive services. The amount of shared information will in-
crease, likely dramatically, as more and more smart objects join
the network and disseminate their contextual information. In
this paper, we explain how smart IoT devices can share a large
amount of context information using much less storage space
and communication bandwidth. We use the versatile and simple
JSON format at the application interface to allow applications to
define their context descriptions, but we convert this JSON format
into size-efficient yet equivalent probabilistic data structures for
storage or communication. The loss of schema information in
the conversion is compensated for by introducing a schema
summary, which incorporates a hierarchical structure, and a
state machine that recovers the schema information from the
relationship among elements in a summary.

I. INTRODUCTION

Through connected smart objects that generate, process,
and share context information, the Internet of Things (IoT)
can provide time- and location-sensitive services. Consider
a situation where smart vehicles enhance safety by sharing
sensed information such as location, speed, and direction with
other nearby vehicles. As another example, sellers and buyers
in an open-air market can share interests or advertisements
to help match sellers with offerings to buyers who are in-
terested in those offerings. In these and similar situations, the
amount of context information shared can increase, sometimes
exponentially, with an increasing the number of participants.
Sharing such massive amounts of context information is pro-
hibitively expensive for battery-powered IoT devices and can
be burdensome even for resource-rich devices.

To address the potential downsides in sharing such large
amounts of context information, one could use a proprietary
format to store the context information. For example, only
values could be stored to reduce the context size. However,
this approach raises two issues: (1) a lack of flexibility due
to the limited ability to store only specific data types and
(2) decreased interoperability due to the limitation that only
devices that can decode the proprietary format can exchange
information. In the IoT, any smart devices may need to share
any kind of information with other devices in the network
network, so these could be critical issues. Compressing context
information could be another solution, but compressing data
does not always result in the needed size reduction.

In this paper, we present an approach that can reduce context
size, sometimes dramatically, when sharing or storing context

information, without degrading the application’s flexibility
and interoperability. Our approach uses the JSON (JavaScript
Object Notation) format to store context information. This
JSON formatted data is, in turn, encoded into a probabilistic
data structure [1] to reduce the context size for communication
or storage. In our previous research, we demonstrated that
such an approach can achieve up to an87.42% reduction in
context size [2]. However the use of the probabilistic data
structure in our prior work comes with two disadvantages:
(1) when encoded schema of the data structure, i.e., the list
of encoded data labels, is not readily available and (2) being
a probabilistic data structure, a retrieved data value may
provide false information, i.e., the value could result from a
false positive that indicates a label is a member of the data
structure when it is not. We address these issues by introducing
(1) a schema summary—a context representation that can also
stores the identity of its contents using its schema entity-
relationship [3] and (2) an Augmented Transition Network
(ATN) [4]—a state machine that recovers the schema and
corresponding values from a probabilistic data structure using
the relationship.

Using our approach, applications can benefit from the JSON
data format—a gateway to various analytic, database, and
visualization tools—as an input context representation. When
users aggregate massive context information to share among
devices within an IoT network or to store locally, they can
convert the JSON representation to probabilistic data structures
that are size-reduced but equivalent representations. These
probabilistic data structures can be recovered back to the
JSON representation anytime with a ATN state machine. Our
contributions are:

• we introduce a technique to recover the schema of a
context, and thus to recover the JSON format data, from
the probabilistic data structure using ATN and a schema
summary (Section III); and

• we calculate and assess the probabilities of false-positives
in recovering the JSON format data from probabilistic
data structures in order to demonstrate that our approach
can reduce the total amount of context size dramatically
without degrading the data quality (Section IV); and

• we augment our ATN approach with a technique to
further enhance data quality, specifically detecting false-
positive values in a floating-point type (Section III-C).



II. CONTEXT SUMMARY REPRESENTATIONS

In this paper, we define context information as the situ-
ational information that can characterize the situation of a
person, place, or objects [5]. Context information represents
knowledge used to reason about a surrounding environment
and to build shared perspectives [6] among smart objects in
an IoT network. Various models can be used to exchange or
store contextual information [7]. We use a “key-value pair”
model wherein a context summary is defined as a set of
attributes; each attribute is a (label, value) pair. A schema of
a context summary is simply the set of labels in the summary.
To represent context information for applications, we use the
JSON data exchange format due to its high performance and
low resource consumption in processing the information [8].
Furthermore, the JSON format is directly supported in many
programming languages, application libraries and tools, web
service interfaces, and protocols [8], [9].

In our previous research [2], we gave examples of how a
context summary is represented in JSON; we explained the
CHITCHAT data type to show how the values in the summary
can be succinctly described; and we showed various additional
context representations that differ in their tradeoffs related to
summary size, data quality, and flexibility. In this section,
we summarize the highlights of this prior work; all of the
examples and tables are from the prior work.

A. Context Summary Examples in the JSON Format
Consider a “market example” wherein people use a hyper-

localized search to share information about the environment
and individual’s interests in order to find the best matches
between buyers and sellers. Below is a JSON example that
captures the situation when a book lover visits an open-air
book fair and shares her interest in modern art books.

{
"latitude": [31, 25, 38, 2],
"longitude": [-17, 42, 11, 0],
"date":[2016, 10, 09],
"time": [10, 21],
"leave time": [15, 21],
"interest category 1": "toys",
"interest item 1": "German Steiff Teddy Bear",
"interest category 2": "paper",
"interest item 2": "Roylco R15286 Antique Paper",

}

The JSON format can be also used for machine-to-machine
or device-to-device type sensor data exchange. This is a
“sensor example” from a building.

{
"latitude": [30, 25, 38, 5],
"longitude": [-17, 47, 11, 0],
"time": [11, 21],
"date":[2016, 10, 11],
"device id": 11,
"number of sensor": 3,
"sensor 1 name": "temperature",
"sensor 1 value": 28,
"sensor 1 unit": "C",
"sensor 2 name": "light",
"sensor 2 value": 121,
"sensor 2 unit": "lux"

}

These context summary examples show how JSON can be
used for high quality and descriptive attributes.

B. CHITCHAT Data Types
JSON uses only a string-type for representing stored values.

In some cases, this can waste storage, particularly for integers,
floating point numbers, and arrays of them. In the example of
the second scenario, the “sensor 2 value” uses three bytes for
storing the value “121” in a string type when one byte is suf-
ficient for storing the integer value. This wasted storage could
be ignored when only a small number of context summaries
is shared, but when huge numbers of context summaries are
exchanged, this overhead cannot be ignored. To reduce the
context summary size, we introduced CHITCHAT data types [2]
tailored to the pervasive computing context; specific examples
are shown in Table I. We support multiple integral types and
assume only single precision (32 bit) floating point numbers
(a higher precision is not commonly required for context). We
use Pascal-style strings, with the length as the first element.
We also define special types to aid in efficiently packing data,
e.g., a “level” type that scales from 1 and 10. Some data types
use multiple bits for the encoding; dates include a year (7 bits),
month (4 bits), and day (5 bits) and times have hours (5 bits)
and minutes (6 bits). Both latitude and longitude are expressed
in degrees (±90 for latitude and ±180 for longitude), minutes,
seconds, and sub-seconds.

TABLE I: Example data types for contexts

Type Bits Bytes Range Encoding
Byte 8 1 (-128, 127)
Float 32 4 IEEE 754
String n× 8 n Pascal
Level 4 1 (1,10)
Date 16 2 (7,4,5)
Time 11 2 (5,6)
Latitude 27 4 (8,6,6,7)
Longitude 28 4 (9,6,6,7)

C. CHITCHAT Context Summary Representations
In our prior work, we analyzed various context representa-

tions for a context summary. Each representation has different
advantages and disadvantages. We summarize the properties
of each context representation in three groups.

1) JSON Summaries: A JSON summary is the CHITCHAT’s
interface for users (humans, applications, and devices). The
JSON summary can be compressed to reduce size; we could
achieve a 29% and 34% size reduction from our market and
sensor examples, respectively.

A labeled summary is a JSON summary that uses
CHITCHAT data types to more compactly store values. The
size reduction compared to the JSON summary is 38% and
48% respectively for the examples. Both the JSON and labeled
summaries keep the schema as part of their representations.

2) Proprietary Summaries: For proprietary summary for-
mats, where the schemas of the summary are already known,
we can reduce the context summary size by not storing
labels; such a complete summary trades off flexibility for
size-efficiency as only the context values that match the
already-shared schema can be stored in the summary. The size
reduction is 67% and 85% for the two examples.



3) Probabilistic Data Structure Summaries: Bloomier Fil-
ters [1] are probabilistic data structures that deal with arbitrary
function mapping from a label (e) to a CHITCHAT type value
(f(e)) in a table that can then be queried by an application
using a target label as the input to the query. Bloomier Filters
have expressiveness limitations because the table width con-
strains the CHITCHAT types that can be stored. For example,
with two bytes in table width, only values of types that require
up to two bytes can be stored. To address this issue, we
introduced an FBF (Folded Bloomier Filter) data structure that
can express any CHITCHAT types by “folding” the value across
multiple entries in the table. A CBF (Complete Bloomier
Filter) is an FBF with enhanced flexibility that allows the
values in a summary to be updated; this results in a larger
context size since the table size must be extended to allow for
the added flexibility.

Table II shows the size reduction from a JSON summary, the
largest but most flexible, and size increase from a complete
summary, the smallest but least flexible, for both FBF and
CBF context summaries. The first two rows demonstrate the
size efficiency of the market and sensor examples. The next
two rows show the results with a context summary that
contains only string values (“strings”) and one with only
numerical values (“stringless”). The size reduction rate is more
pronounced for “strings” than for “stringless”, which matches
the pattern in that the sensor example, which has fewer string
type values, shows an increased size reduction relative to the
market example, which has more string type values.

TABLE II: Size efficiency

Example Reduction (%) vs. JSON Increase (%) vs. complete

FBF CBF FBF CBF

market 76.42 67.45 6.38 46.81
sensor 80.47 74.22 6.38 40.43
strings 46.55 28.16 4.49 40.45

stringless 87.42 84.91 -4.76 14.29

As both FBF and CBF summaries are probabilistic data
structures, there is always the risk of returning false positive
values in response to application queries. A false positive
occurs when querying a context summary returns a “junk”
value for an attribute that was not inserted. To mitigate false
positives, we use filters to constrain reasonable values based
on application semantics [10] by filtering out false-positives
using a pair of filter. First, the innate filter checks the data
range or encoding format to detect impossible values. Second,
the correlated filter uses the relationship among labels in
the summary to identify unlikely values.For example, two
correlated labels—longitude and latitude—establish a location.
The probability that a summary is wrongly identified to contain
both longitude and latitude labels is considerably lower than
the case identified to contain only one of the labels.1 Table III
from our previous experiments [2] shows how these filters can
remove false positives effectively.

1We omit a third situational filter that removes false positives using
situational information, as we do not use this filter in this work.

TABLE III: False positive (fp) probabilities (FBF)

Type fpinnate (%) fpcorrelate (%)

theory exp. theory exp.

Boolean 0.39 0.38
Level 4.29 4.28 0.0037 0.0034
Float 99.99 99.99 0.085 0.082

Latitude 1.5 1.5 0.045 0.051
Time 2.2 1.9 0.12 0.11

III. JSON CONTEXT SUMMARY CONVERSION

A JSON summary is the most versatile representation
from the CHITCHAT context representations. Once contextual
information is captured and saved in a JSON summary, the
summary can be used as an input to various application
tools including database, analytic, and visualization tools. Any
information in the JSON summaries—schemas and values—
can be retrieved, analyzed, combined, and processed to make
new context summaries. However, these benefits are not free;
a JSON summary requires more storage space and com-
munication bandwidth for sharing context information than
other representations. For storage and communication, JSON
summaries can be converted to other context representations
to reduce the summary size, but the conversion can be unidi-
rectional; if a JSON summary is converted into a schema-less
representation, there may be no way to recover it back to a
JSON summary.

In this section, we explain how JSON summaries can
be structured to enable the bidirectional conversion to and
from schema-less representations. Specifically, we describe the
conditions and mechanisms of how the schema of probabilistic
data structures (FBF and CBF summaries) can be retrieved to
build JSON summaries; we also describe the techniques to im-
prove the false-positive detection rate to make the conversion
more accurate and reliable.

A. Schema Summaries

The correlated filter is effective in detecting false positives;
as shown in Table III above, after applying the correlated
filters, the probability of related members being false positive
becomes minuscule. We can use this feature to recover the
schema from probabilistic context summaries. To do this, we
assume a library of schema descriptions that define commonly
used schemas, using relationships among the attributes found
in the schema. Then, recovering a schema becomes equivalent
to finding a match of a received summary against these stored
schema descriptions; if the summary matches one of the stored
schema descriptions, the list of attributes can be recovered.
Specifically, we define a schema summary to be an FBF
or CBF whose correlated filters define a relational structure
constraining the schema members; this relational structure is
the schema description. Associating a schema description with
a context summary is not the same as reserving space for
particular attributes in the structure as in the case of the CBF,
nor is it the same as requiring specific attributes to appear
in every context summary. Instead, the schema description



specifies a network of relationships that are required among
attributes if they are present in the summary.

Consider a market that is adverting a special discount. The
content of the context summary communicating the advertise-
ment may be required to match the following format: Market
M has a special discount event on day D at time T, and
the location is L. Represented pictorially, this summary has
the relatively generic notification structure shown in Fig. 1.
As captured by a CHITCHAT context summary, only the leaf
nodes (shown in gray in Fig. 1) are members of the summary’s
schema. When a context summary has this structure, even
when the application uses an FBF summary for dissemination,
any receiver can recover the schema of the summary, i.e., the
complete list of the attributes that should be represented in the
summary.

Notification

Sender

Name Id

Event Datetime

Date Time

Location

Longitude Latitude

Fig. 1: Notification structure

To make the use of a schema description even more flexible,
some members of the schema description can be tagged as
optional, and some members can have aliases. For instance,
for the notification schema description, we can make the Id
member optional and the Event member to have an alias
Advertisement. In this case, a context summary with a schema
of (name, advertisement, date, time, latitude, longitude) can
also be recovered by matching against the notification schema
description. CHITCHAT’s language for representing a schema
description also supports repetition. For example, consider a
schema description that includes a name attribute followed by
several sensor values, such as (name, sensorName1, sensor-
Value1, sensorName2, sensorValue2, ...), using repetition can
significantly reduce the amount of space needed to represent
the schema description, e.g., (name, (sensorName, sensor-
Value)+); it also enhances the flexibility of this schema de-
scription by enabling it to match against any context summary
of the right structure, regardless of the concrete number of
sensor values represented.

B. Augmented Transition Network

A schema summary is an ordinary FBF or CBF summary
in that it does not explicitly carry its schema information as
part of the summary. Instead, the schema summary adheres to
some previously known schema description (from a library of
such schema descriptions that are known a priori). A schema
description specifies expected relationships among elements
stored in the summary using an Augmented Transition Net-
work (ATN) [4].

An ATN is a state machine with states and registers. It
starts from a starting state and makes a transition on any valid
input; any input and related transition history are recorded in
the register. When all the inputs are consumed, the final state

should be reached to recover the schema of a summary. One
difference from a traditional ATN that passively waits for input
to make a transition is that the ATN actively queries a received
context summary to determine whether the label that causes
the next transition is in the summary.

S1 S2 S4
eventname

time
event
name

advertisement

S3
time

✏

Registers

Fig. 2: ATN example

Fig. 2 shows the ATN for the schema description:

(name, event |advertisement , time?)

The notation event |advertisement indicates that the attribute
label advertisement can be used as an alias for event, while
the ? following time indicates that the time attribute is
optional. In Fig. 2, the initial state (S1) is marked with an
arrow, and the final state (S4) is indicated by a double circle.
As CHITCHAT processes the summary, each transition occurs
and the ATN retrieves a (label, value) pair and records it in a
register. In this particular ATN, the first transition requires
the name attribute, while the second checks for either the
advertisement or event attribute. The ε transition between S3
and S4 accounts for the fact that the time attribute is optional.

C. Enhancing False Positives Detection Rate

The assumption underlying using an ATN to recover a
schema is that the false positive filters detect all false-positives
with high probability. From Table III, we can confirm that
most data types satisfy this assumption (e.g., only 1.5% of
latitude values that pass the innate filter are not actual latitude
values),except for the floating point type. However for the
floating point type, which uses the IEEE 754 standard [11], the
fpinnate (i.e., the number of false positives that remain after
applying the innate filter) is close to 100%, since any random
number can be decoded as a valid floating point number with
rare exception. The IEEE 754 format can represent very small
numbers from 10−38 to very large ones, up to 1038 with
varying precision. To ensure the format’s ability to cover the
very small numbers with high precision, approximately 50%
of the values that can be represented are between -1.0 and 1.0.

This issue can be addressed considering that the floating
point numbers commonly used to describe human context
information are not in this range of extremely small values, we
can enhance the innate filter’s false positive detection rate. For
instance, when encoding a floating point number, we could add
1.0 to any positive value and subtract -1.0 from any negative
value to make ensure that no value between -1.0 and 1.0 is
placed in an FBF or CBF. Upon decoding, we can identify
any floating point values in the range of -1.0 to 1.0 as a false



positive. We can control the amount of the shift to tune the
tradeoff between the false positive detections and the range
of floating point values allowed. We can detect further false
positives by specifying a minimum and/or maximum values.

Obviously, these limits place constraints on the utility of
the floating point type, which we attempt to balance alongside
the space savings and the ability of the false positive filters
to recover. With a shift value of 1.0, and range limit from -
100.0 to 100.0, we can reduce the fpinnate of float values to
approximately 4% in Table III.

IV. EVALUATIONS

In a real world scenario where a receiver attempts to match
a received summary against all of the ATNs corresponding to
stored schema descriptions, it is possible that the receiver will
identify one type of description as another. In this section, we
calculate and evaluate (1) the probability that one type of a
schema description is incorrectly identified as another; (2) the
size reduction rate when JSON summaries are converted into
other summaries; and (3) the recovery rate with which these
summaries can be converted back to JSON summaries.

For experimental purposes, we define three schema de-
scriptions to describe the context sharing situations we could
encounter frequently (Listing 1). We introduce variables to
express the structural nature of these schema descriptions.

Listing 1: CHITCHAT schema structures

1 datetime = (date, time)
2 location = (longitude, latitude)
3
4 news = event | advertisement
5 sender = (name, id?) | ("gchat id")
6
7 notification = (sender news datetime location)
8 dataStream = (sender datetime count value unit

comment)
9 sensors = (count datetime location? (name id value

unit)+)

The notification schema description matches the one
given in Section III-A and depicted in Fig. 1. This schema
description can be used for sharing a context summary that
captures a one-time event such as an advertisement. The
dataStream schema description is for data that is contin-
uously updated. Finally, the sensors schema description is
for aggregating count number of sensor values.

A. False Positive Probabilities

First, we assessed the theoretical and experimental false
positive rates for these schema descriptions; while a schema
summary will always be recovered correctly, it may be
possible that some summary that is in fact not a schema
summary will be recovered as one, by chance. Theoretically,
the probability of detecting a summary as a notification
schema description is 2.95 × 10−13%, as a dataStream
description is 1.21×10−15%, and as a sensor description is

1.21× 10−15%. In practice, we could find no false identifica-
tion with 100,000 randomly generated context samples. This
result shows that in real-world situations, there is practically
no possibility that a non-schema summary is identified as a
schema summary.

TABLE IV: Maximum True or False Positive Probabilities (%)

Notification Data Stream Sensor

Notification 100.0 1.37× 10−8 1.01× 10−12

Data Stream 3.33× 10−6 100.0 1.62× 10−12

Sensor 5.74× 10−7 2.13× 10−8 100.0

We measured the probability that a schema description is
identified correctly (which, as expected, is 100%), and and
the probability that one type of schema summary is wrongly
identified as another type. While the probability of one
schema summary being randomly classified using a different
(incorrect) schema description is higher than the probability
of classifying a randomly generated summary as a schema
summary, the probabilities of incorrect classifications are all
fleetingly small. For these experiments, we used 100,000
randomly generated context summaries that did not adhere to
any schema description and 100,000 schema summaries for
each of the three schema descriptions. Table IV shows the
results; the first column reports the probability that a randomly
generated summary is accepted as a schema summary for each
of the three schema descriptions.

B. Size Reduction and Recovery Rate

In the next evaluation, we assumed a scenario where a user
needs to share a large number of context summaries in an
IoT environment. Depending on the application, the user can
use schema summaries or the summaries with unique schema
structures (non-schema summaries). Likewise, the user can
also choose what context representations the JSON summaries
are converted into. We experimented with three option groups
(six options in total with two types per each group), listed
in Table V. The quality group options favor high quality data
and use only JSON summary representations. The small group
options favor size reduction and uses only the options that
guarantee maximum size reduction: complete summaries or
FBF summaries. Finally, the intelligent option group favors
a maximum recovery rate to JSON summaries with possible
size reduction.

We created 10,000 randomly generated context summaries
to simulate the condition that IoT devices share massive
information; for the first experiment, only schema summaries
(each using one of the three schema descriptions above) were
used. For the second and third experiments, 60% and 0% of the
context summaries were schema summaries, respectively. In
Table VI, we measured (1) the size reduction (Red) achieved,
using the quality type 1 option as a basis and (2) the recovery
(Rec) rate, which measured the percentage of the context
summaries were recovered to JSON summaries. The results
show that the quality group options produced perfect recovery



TABLE V: Experimental options

Option Type Context Representation Usage

quality 1 JSON

2 labeled

small 1 FBF

2 complete

intelligent 1 FBF for schema summary, otherwise JSON.

2 FBF for schema summary, otherwise label.

rates with very little or no size reductions, while the small
group options produced maximum size reductions but, as
expected, had limited recovery rates. The intelligent group
options show size reductions proportional to the percentage
of schema summaries with perfect recovery.

TABLE VI: Reduction & Recovery rate (%)

100% schema 60% schema 0% schema

Red Rec Red Rec Red Rec

quality1 0.0 100.0 0.0 100.0 0.0 100.0
quality2 30.82 100.0 28.19 100.0 23.29 100.0
small1 61.92 100.0 65.79 60.0 73.34 0.0
small2 67.14 0.0 70.96 0.0 78.60 0.0

intelligent1 61.92 100.0 41.26 100.0 0.0 100.0
intelligent2 61.92 100.0 49.04 100.0 23.29 100.0

V. RELATED WORK

Context and context-aware computing, and context repre-
sentations [12] have been extensively surveyed [13]. In our
own prior work, we expressed context as a combination
of local and shared information [6] to build global views
from sharing context information, and we provided a basic
framework for sharing succinct context information in a per-
vasive computing network [2], [14]. In this work we use
the same basic structure but substantially enhance both the
data structure and algorithms to enable significant space gains
without degrading the quality of the context representation.

The schema summary is conceptually similar to database
research related to modeling and describing the business
domain to capture relationships among schema entities [3].
A semantic model [15] also has a similar basis as the schema
summary in that both express a conceptual model by using
specifications of relationships, abstractions, and constraints to
capture meanings among entities. ATN [4] was developed as a
formal description of natural language used to efficiently parse
a grammatically correct structure, but it is used in many other
fields that require simple and fast structure parsing [16].

VI. CONCLUSION

In this paper, we described the benefits (versatility and
simplicity) and an issue (size inefficiency) in using JSON for
sharing a large amount context information among IoT de-
vices. We explained our solutions in addressing the size issue
by converting JSON summaries into size efficient probabilistic

data structures for storage or communication. For recovering
the converted the data structures back to JSON summaries, we
introduced schema summaries, which incorporate pre-defined
relational schema structures, and an ATN state machine order
to recover JSON summaries using the structural relationships.
In our experiments, we demonstrated that schema summaries
can be recovered back to JSON summaries effectively and
without errors in real-world situations to reduce total sum-
maries for storage or communication bandwidth. We expect
this approach is particularly useful in an IoT environment,
where various devices participate in sharing context informa-
tion by allowing context representations with different benefits
and effective and accurate conversion among them.

ACKNOWLEDGEMENTS

This work was funded, in part, by a Samsung GRO and the
NSF (#CNS-1218232). The views and conclusions are those
of the authors and not of the sponsoring agencies.

REFERENCES

[1] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter:
an efficient data structure for static support lookup tables.” in Proc. of
the 15th Annual ACM-SIAM Symp. on Discrete Algorithms, 2004, pp.
30–39.

[2] S. Cho and C. Julien, “CHITCHAT: Navigating tradeoffs in device-
to-device context sharing.” in Proc. of the 2016 IEEE Int’l. Conf. on
Pervasive Computing and Communications, 2016, pp. 1–10.

[3] P. P.-S. Chen, “Entity-Relationship Modeling: Historical Events, Future
Trends, and Lessons Learned,” Louisiana State University, Tech. Rep.,
Feb. 2002.

[4] S. C. Shapiro, “Generalized Augmented Transition Network Grammars
for Generation from Semantic Networks.” American Journal of Compu-
tational Linguistics, 1982.

[5] A. K. Dey, “Understanding and Using Context.” Personal and Ubiqui-
tous Computing, vol. 5, no. 1, pp. 4–7, 2001.

[6] C. Julien, A. Petz, and E. Grim, “Rethinking context for pervasive
computing: Adaptive shared perspectives,” in Proc. of the 12th Int’l.
Symp. on Pervasive Systems, Algorithms and Networks, 2012, pp. 1–8.

[7] T. Strang and C. Linnhoff-Popien, “A context modeling survey,” in Proc.
of the 1st Int’l. Workshop on Advanced Context Modelling, Reasoning
And Management, 2004.

[8] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta, “Comparison of
JSON and XML Data Interchange Format: A Case Study.” in CAINE,
2009.

[9] N. Kobayashi, M. Ishii, S. Takahashi, Y. Mochizuki, A. Matsushima,
and T. Toyoda, “Semantic-JSON: a lightweight web service interface
for Semantic Web contents integrating multiple life science databases,”
Nucleic Acids Research, vol. 39, pp. W533–W540, Jun. 2011.

[10] S. Cho and C. Julien, “The Grapevine Context Processor: Application
support for efficient context sharing,” in Proc. of the 2nd ACM Int’l.
Conf. on Mobile Software, 2015, pp. 68–71.

[11] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp.
1–70, Aug 2008.

[12] M. Perttunen, J. Riekki, and O. Lassila, “Context representation and
reasoning in pervasive computing: A review,” Int’l. J. of Multimedia
and Ubiquitous Computing, vol. 4, no. 4, pp. 1–9, 2009.

[13] A. Dey and G. Abowd, “Towards a better understanding of context and
context-awareness,” in Proc. of CHI Workshop on the What, Who, Where,
When, and How of Context-Awareness, 2000.

[14] C.-L. Fok, E. Grim, and C. Julien, “Grapevine: Efficient situational
awareness in pervasive computing environments,” in Proc. of PerCom
Workshops, Mar. 2012, pp. 475–478.

[15] J. Peckham and F. Maryanski, “Semantic data models,” ACM Comput.
Surv., vol. 20, no. 3, pp. 153–189, Sep. 1988. [Online]. Available:
http://doi.acm.org/10.1145/62061.62062

[16] W. A. Woods, “Transition network grammars for natural language
analysis.” Comm. of the ACM, vol. 13, no. 10, pp. 591–606, 1970.


