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Abstract—Heating and cooling (HVAC) needs account for a
large percentage of residential energy usage, which has prompted
development of autonomous thermostat control to reduce unnec-
essary HVAC usage, primarily when occupants are away. We
instead consider the balance of the financial burden of HVAC
costs with occupants’ comfort desires while they are at home.
We present BALANCE, an autonomous thermostat management
system that balances a range of user comfort levels with a
user-defined monthly budget for HVAC costs. We provide a
simple agent that accomplishes this task in realistic simulated
environments.

I. INTRODUCTION

According to the US Energy Information Administration,
HVAC systems account for 48% of US residential energy
usage.1 As such, these systems, typically controlled by a
thermostat, are good targets to reduce residential energy con-
sumption. The temperature to which the thermostat is set
(known as the setpoint) affects how much energy the HVAC
system uses, and studies have shown that many users are not
setting their thermostats in energy efficient ways [1]. In this
paper, we present BALANCE, an autonomous tool to help users
reduce HVAC energy usage by balancing cost with comfort to
regularly determine reasonable thermostat setpoints.

One approach to reducing HVAC systems’ energy usage
is to provide users with feedback. A review of studies on
providing residents with feedback on their overall electricity
usage found that feedback is most effective when it: is based
on residents’ actual consumption; is provided at least every
day; includes a breakdown for individual appliances; and is
given over a long period of time [2]. Another review of energy
usage feedback studies found that studies under six months
in duration typically reported greater energy savings than
studies over six months, suggesting that energy savings due to
receiving feedback decrease over time [3]. Both reviews found
that studies involving at least daily feedback typically suffered
from a small sample size, around ten households according
to [2]. Thus, while both reviews report typical energy savings
of 5% to 12%, it is hard to make definitive conclusions about
the potential for feedback to provide reliable energy savings.
Further, when considering HVAC usage, we hypothesize that
daily feedback may be confusing, as the usage when one’s
thermostat is set to the same temperature on different days
may vary, depending on the weather and occupants’ activities.

Perhaps as a result of the challenges to using feedback
to reduce HVAC usage, autonomous thermostat control has
recently become commercially popular, as with Nest and
Opower2, and well-studied in multiple academic disciplines.

1http://www.eia.gov/consumption/residential
2http://nest.com and http://opower.com

These approaches typically reduce HVAC usage by adjusting
the thermostat setting while the house is unoccupied, so as
not to disrupt occupants’ thermal comfort. In the case of heat-
pump heating systems, reinforcement learning techniques have
been employed to control the system’s thermostat during pre-
programmed times when occupants will be away, such that
less energy is used during unoccupied hours and the house
is at the desired comfort level when the occupants return [4].
To help alleviate the problem of peak demand on hot days,
reduced-order modeling has been performed in combination
with model predictive control to aggressively cool a home
before peak hours, so that less energy is needed during peak
hours to maintain user comfort in those hours [5]. With these
solutions, the user’s comfort requirements are assumed to be
fixed and prioritized, and thus energy savings are limited to
what can be accomplished without any user sacrifice, when
the house is unoccupied. However, this approach may not
always be appropriate, since, in approximately half of U.S.
households, someone is at home throughout the day [1].

Therefore, to reduce residential HVAC usage, we consider
alternatives to manual and feedback-based approaches, and
we do not restrict ourselves to reducing HVAC usage only
when the house is unoccupied. Instead, we consider a problem
many households face: balancing the cost of energy bills (e.g.,
keeping one’s energy bill below $100) with the desire for
certain thermal comfort (e.g., keeping one’s house at 70�F
on a hot day). Relaxing indoor temperature requirements can
reduce HVAC usage and in turn lead to more desirable energy
bills. Some previous work has taken this approach. In the
case of real-time dynamic electricity pricing, one approach
uses preference elicitation and active learning to adjust the
thermostat based on the current electricity price and the user’s
thermal comfort desires [10]. We believe that most people
would find providing user input to this system challenging,
because information about how much energy usage a given
thermostat setting will result in (and therefore how much it will
cost the user, given the current price) is not readily available.
Further, the approach assumes that the user’s preferences
remain consistent: given an electricity price and an outdoor
temperature, the user has one desired indoor temperature. In
reality, this decision may be influenced by many factors. Of
primary interest to us is the consideration of other expenses
the user may have. At a time when the user has just paid his
annual taxes, for example, he may want to save more money
(and thus want to have a lower energy bill) than when he has
just received a raise at work. In this case, the user may find a
range of temperatures acceptable as long as his bill at the end
of the month meets his budget. To confirm this hypothesis, we
conducted a survey with 40 low-income families in Austin,
Texas, and we found that nearly three-quarters of participants



are willing to relax their thermal comfort requirements by a
few degrees in order to save money.

In this paper, we present an approach to autonomous
thermostat control that is geared toward households in which
the need to meet a certain heating and cooling cost requirement
sometimes outweighs the occupants’ desire for ideal thermal
comfort levels; in such households, residents must balance
their level of thermal comfort with the costs of heating and
cooling. We hypothesize that such households are more likely
to be low-income than median-income or wealthy. On average,
households across the United States spend 2.7% of their
income on energy bills3, while low-income households spend
25% [11]. We believe that a lower energy bill would be a
motivating factor for reducing HVAC usage in low-income
households, due to the large portion of income that must
be spent on energy usage. Therefore, while our approach
is suitable for all income levels, we design and evaluate it
specifically for low-income household settings.

We propose that households that wish to balance HVAC
costs with thermal comfort need an autonomous tool to ef-
fectively achieve this balance. It is difficult for nearly anyone
to mentally convert his thermostat setting to dollars on his
energy bill. Factors such as the weather, occupant behavior, and
the house’s thermal properties influence HVAC energy usage,
and the energy bill does not display usage by the heating and
cooling system alone. While the user may be aware that setting
his thermostat to 74�F on a hot day will be more expensive
than 77�F , he cannot easily quantify the extra cost. Thus, for
a user that would like to set his thermostat to 74�F if he can
afford it but is willing to set it as high as 77�F if not, he
needs much more information than his thermostat and energy
bill can provide. Even with access to the right information, it
would be cumbersome and unrealistic for a user to constantly
change his thermostat setting over the course of a billing cycle
(typically, one month), in order to meet his budget. To that end,
we present BALANCE, an autonomous system whose goal is
to balance a user’s monthly energy budget with a range of
comfortable thermostat settings.

Our approach to automating thermostat control is inspired
by a framework that manipulates Web content requested by a
mobile phone [13]. This framework receives a website request
from the user, estimates the user’s data budget for the webpage
(based on a monthly data budget and knowledge of how
much has already been spent and how far into the month this
request occurs), and reduces the data content of the webpage as
needed. Similarly, BALANCE requests from the user a monthly
budget and preferences for heating and cooling, then updates
the thermostat settings throughout the month based on the
preferences, usage to-date, and contextual information such as
the weather. Our approach is the first to directly consider a
user’s monetary budget in automating thermostat control.

II. THE BALANCE APPROACH

The goal of our autonomous thermostat management sys-
tem is to meet a user-provided monthly budget for heating
and cooling costs, while staying within the bounds of user-
provided comfort levels. Specifically, there are four comfort
levels: preferred low and high thermostat settings when only

3http://www.eia.gov/todayinenergy/detail.cfm?id=10891

comfort is considered; and absolute low and high settings
when cost is also considered. For example, one might have a
preferred low temperature of 67�F , preferred high temperature
of 74�F , absolute low temperature of 62�F , and absolute high
temperature of 77�F . More specifically, the user would like
the HVAC system, at all costs, to avoid allowing the house to
be colder than 62�F or warmer than 77�F . The user would
prefer, if possible given his monetary budget, to maintain
the house between 67�F and 74�F . We assume that all
indoor temperatures within the preferred range satisfy the user
equally; that temperatures between the preferred and absolute
settings satisfy the user less as they approach the absolute
temperature; and that temperatures outside the absolute range
are unacceptable.

With the budget and temperature preference information,
our general approach is to adjust the house’s thermostat setting
at regular time steps (for example, every hour) throughout the
month, with the goal of meeting the user’s budget. At the
beginning of each time step, BALANCE calculates a budget
for the coming time step. It also collects the current outdoor
and indoor temperatures and the energy used by the HVAC
system in the previous time step. With the information it has
collected over time, it estimates the optimal thermostat setting
for the coming time step, while staying within the bounds of
the absolute range, and it sets the thermostat to that setting. A
thermostat setting consists of a heating setpoint, which is the
indoor temperature at which the heating system should turn
on, and a cooling set point, which is the indoor temperature
at which the cooling system should turn on.

Each implementation of this general approach will define
the length of a time step, but a time step should generally be
less than one day. While BALANCE makes a prediction for
how much energy will be used by a given thermostat setpoint,
its prediction is unlikely to be perfect, due to the significant
impacts that weather and occupant behavior can have on the
indoor temperature. Thus, for any time step length, there is a
risk of the actual cost of the time step exceeding or being less
than the time step’s budget. With a time step greater than a day,
this difference could become quite large, and BALANCE has to
wait until a given time step is over before it can “recover” by
updating the thermostat setpoint. However, with a very short
time step (under two minutes, for example), the HVAC system
may not have the opportunity to bring the house’s indoor
temperature to the desired temperature before the thermostat
setpoint is updated again. In this case, the energy usage
recorded would reflect much more significantly on the current
indoor temperature than on the thermostat setpoint, making
prediction more challenging. Therefore, the time step length
should balance the computational costs of determining the
appropriate thermostat setting with the expected frequency
of changes in weather and occupant behavior and with the
expected HVAC operation time.

A. Algorithm

Given the above generic description of our BALANCE
approach, there are two calculations that must be made at every
time step, the details of which we have not yet covered: the
time step’s budget and an estimate for the optimal thermostat
setting. There are many ways these calculations could be made,
and we now present our specific implementation, which we



Fig. 1. Depiction of BalancingAgent in a real-world setting

call BalancingAgent. We recognize that the HVAC energy cost
any agent can effect is upper-bounded by the cost of using
the preferred temperatures for the whole month and lower-
bounded by the cost of using the absolute temperatures for
the whole month. Therefore, we use the BalancingAgent to
evaluate the general idea of autonomous energy budgeting.

We depict the real-world setting of the BalancingAgent
in Figure 1. The user directly provides the thermostat with
his budget and temperature preferences. When the system is
first set up and any time the user updates his preferences, the
thermostat relays the user’s preferences to the BalancingAgent.
The weather and the occupants’ behaviors impact the indoor
temperature, which is detected by a thermometer on the
thermostat. The weather also impacts the outdoor temperature,
which is detected by the thermostat either via a connection
to an outdoor thermometer or by querying a nearby weather
station via the internet. At every time step, the thermostat
relays the current indoor and outdoor temperatures to the
BalancingAgent. The HVAC system is outfitted with a Wi-Fi
enabled smart meter that measures its energy usage. At every
time step, the smart meter relays (via a Wi-Fi connection to
the thermostat) the energy used in the last time step to the
BalancingAgent. Thus, at every time step, the BalancingAgent
receives the current indoor and outdoor temperatures and the
energy used by the HVAC system in the previous time step.
It uses the energy used in the previous time step to calculate
the next time step’s budget and searches for the budget and
temperatures in a lookup table to determine the appropriate
thermostat setting. The budget calculation and the lookup
table are described in detail below. In the case that the given
budget and temperatures are not present in the lookup table,
the BalancingAgent uses a simulator, also described below,
to determine the thermostat setting. Once the BalancingAgent
has determined the setting, it relays the decision back to the
thermostat, which updates the setting accordingly.

The most basic and novel aspect of our autonomous
thermostat agent is its calculation of the monetary budget for
the coming time step. We do this hierarchically. First, at the
beginning of each day the BalancingAgent calculates a budget
(in dollars) for that day, b

day

. The day’s budget is simply the
ratio of the user’s monthly budget (b

month

) that has not been
used to the number of days left in the month:

b
day

=
b
month

� b
month,used

N
days,month

�N
day

(1)

Key Tuple Value Tuple
outdoor indoor heating cooling

temp temp energy setpoint setpoint
(�F ) (�F ) (kWh) (�F ) (�F )

85 76 1.25 67 74
85 76 0.75 67 76
77 74.2 1.13 67 75

TABLE I. SAMPLE LOOKUP TABLE

Key Tuple Value Tuple
outdoor indoor heating cooling

temp temp energy setpoint setpoint
(�F ) (�F ) (kWh) (�F ) (�F )

85 76 1.31 67 74
85 76 0.75 67 76
77 74 1.13 67 75

TABLE II. SAMPLE LOOKUP TABLE, UPDATED

The portion of the month’s budget that has been used
(b

month,used

) is easily calculated by multiplying the energy
used (in kilowatt-hours, kWh) at each time step by the
electricity price (p, in $

kWh

), which is available from the utility
company. Second, the time step’s budget (b

t

, in dollars) is
calculated as the ratio of the day’s budget that has not been
used to the number of time steps left in the day. Given the
time step’s budget in dollars, the BalancingAgent calculates
the time step’s “energy budget” by dividing the daily budget
by the electricity price.

To calculate the thermostat setting for a particular time step,
the BalancingAgent first assesses if the energy budget is nega-
tive, as when the daily or monthly budget has been exceeded.
If it is, the BalancingAgent returns the absolute low and high
temperatures as the heating and cooling setpoints, respectively.
Otherwise, the BalancingAgent employs a lookup table that
maps the key tuple (outdoor temp, indoor temp, energy budget)
to a value tuple (heating setpoint, cooling setpoint). This table
begins empty when the system is first set up for the house,
and it is populated as the BalancingAgent experiences different
temperature-energy-setpoint combinations. A sample lookup
table is shown in Table I. If the key tuple is in the lookup
table, the BalancingAgent uses the corresponding value tuple
as the setting. For example, if the current outdoor temperature
is 85�F , the current indoor temperature is 75�F , and the time
step’s energy budget is 1.25 kWh, the BalancingAgent would
select 67�F and 74�F as the heating and cooling setpoints,
respectively. If the key tuple is not in the lookup table,
the BalancingAgent runs simulations (described below) for
multiple potential thermostat settings to find one that matches
the budget. At the end of each time step, the BalancingAgent
updates the table with the key tuple (outdoor temp at start
of time step, indoor temp at start of time step, actual energy
used during time step) and value tuple (heating setpoint used,
cooling setpoint used). Continuing with our example, assume
that at the end of the time step, the HVAC smart meter reported
that the HVAC system actually used 1.31 kWh in the previous
time step. The first row in the lookup table would be updated
as displayed in Table II.

B. Prediction Through Simulation

To estimate an optimal thermostat setting when the current
key tuple is not present in the lookup table, we use the



GridLAB-D4 simulator. This simulator models the response of
a single-family house over time to many parameters. Constant
parameters include the size of the house, type of heating and
cooling system, and thermal efficiency, among many others.
GridLAB-D takes as input a Typical Meteorological Year
(TMY2)5 file that specifies typical weather behavior for a
particular US city. Each TMY2 file contains meteorological
data collected in the given city over the course of several years,
and from this data the simulator approximates typical climate
conditions over the course of one year.

We use the GridLAB-D simulator within our BalancingA-
gent as a predictive tool. For any time step that the Balancin-
gAgent must simulate for prediction, we use the same constant
parameters, which approximate the actual house in question.
Using the current indoor and outdoor temperatures as input,
the BalancingAgent runs a series of “predictive simulations”
for the time step and varies the thermostat settings within the
range of temperatures that fall between the user’s preferred
and absolute temperatures. Each simulation is run for the
duration of the time step, and the BalancingAgent compares
the energy used by the HVAC system for each simulation to the
energy budget. We select the thermostat setting whose energy
usage most closely matches the time step’s energy budget
without exceeding it. For example, assuming the lookup table
in Table II, when we encounter a situation in which the current
outdoor temperature is 89�F , the current indoor temperature
is 76�F , and the time step’s energy budget is 1.28 kWh, we
find that this key tuple is not in the table. In this situation,
the BalancingAgent runs a predictive simulation, specifying
the given current outdoor and indoor temperatures, and using
67�F (the user’s preferred low temperature) as the heating
setpoint and 74�F (the user’s preferred high temperature) as
the cooling setpoint. After this predictive simulation completes,
the BalancingAgent records the energy used by the HVAC
system and compares it to the energy budget of 1.28 kWh.
Assume the HVAC system used 1.45 kWh in this predictive
simulation. This energy usage is greater than the budget, so
the BalancingAgent must adjust the setpoints and run another
predictive simulation. Because the house must be cooled, the
BalancingAgent increases the cooling setpoint by a degree,
to 75�F , and runs another predictive simulation. This process
continues until the BalancingAgent finds a setpoint that results
in less energy use than the energy budget or reaches the user’s
absolute high temperature of 77�F .

In this situation, one alternative to running predictive
simulations would be simply to use the “cheapest” option that
is acceptable to the user: set the heating and cooling setpoints
to the user’s absolute low and high temperatures. However,
this approach would overemphasize the user’s budget, instead
of balancing it against comfort, as BALANCE aims to do.

In the predictive simulations, we specify an outdoor tem-
perature that matches the outdoor temperature at the start of the
time step, but, within the simulation, the change in the outdoor
temperature over the course of the time step is governed by
data in the TMY2 file for the city in our simulation. Therefore,
the change in temperature over the course of the time step
is typical for the particular time step being simulated but

4http://www.gridlabd.org
5http://www.nrel.gov/rredc

Fig. 2. Depiction of BalancingAgent in a simulated setting

may not be an exact representation of what happens for this
specific instance. This potential discrepancy motivates the use
of reasonably small time steps for the predictive algorithm.

III. EVALUATION

Because evaluating our approach in a real-world setting
would take a full year to gather results on our agent’s perfor-
mance in all four seasons, we use a simulator instead, and we
leave a real-world deployment to future work.

A. Experimental Setup

To evaluate the BalancingAgent, we use the GridLAB-D
simulator. The constant simulation parameters we use are a
floor area of 1000 square feet and an electric central heating
and cooling system. Other parameters that would affect the
home’s thermal response are automatically calculated by the
simulator, based on the two we provide. To model realistic
outdoor temperatures, we provide the simulator with the TMY2
file for the desired city in our simulation.

Figure 2 depicts the setting of the BalancingAgent in the
simulation. As compared with Figure 1, there are some differ-
ences to note: the thermostat and HVAC have been replaced
by the simulator; the user has been replaced by an input
file containing realistic user preferences; the house has been
replaced by values of the house parameters; and the weather
has been replaced by a TMY2 file. The BalancingAgent itself
remains the same. Many of these replacements are typical of
simulations, and the simulator itself has been well-developed
and exercised for real-world modeling (e.g. [4], [14], [15]).

At first glance, our use of the simulator for both the
overall simulation and the prediction mechanism poses one
additional challenge: for a given time step, the agent is basing
its prediction on the exact situation that will occur during that
time step in the overall simulation. In a real-world deployment,
the simulated time step used to make predictions would likely
not exactly match the conditions in the real world: the agent
would not be able to specify the weather over the course of
the time step, for example, because the agent will not be able
to perfectly predict the weather. However, we note that we are
using the prediction only to determine the thermostat setting,
which must be rounded to whole numbers for use with a ther-
mostat. In the prediction phase, the agent seeks the (integer-
valued) thermostat setting whose energy use most closely



Name
Min. Pref. Low Pref. High Max.

Temp. Temp. Temp. Temp.
(�F ) (�F ) (�F ) (�F )

PrefersCool 62 67 74 77
PrefersWarm 67 72 79 82

TABLE III. TEMPERATURE PREFERENCES USED IN EVALUATIONS

meets the budget without exceeding it; this rounding introduces
an important level of approximation to the prediction. The
integer-valued thermostat setting will usually not correspond
to energy use matching the exact energy budget, because of the
rounding that must take place. Thus, knowing the exact energy
that will be used in a time step is not a significant advantage
over having an approximation for the predicted energy usage.
Additionally, the agent will have access to a weather forecast,
which – while not a perfect prediction – is fairly reliable for
short periods of time. Therefore, we conclude that our use of
the same simulation for prediction and evaluation is justified.

We run simulations for Austin, Texas, for the months of
January and August. We use $0.08626

kWh

as the electricity price
in Austin during summer months (June through September),
which is the average summer price based on the tiered pricing
that the City of Austin utility uses6. Similarly, we use $0.04580

kWh

for the Austin winter electricity price (October through May).
We evaluate our BalancingAgent with two sets of temperature
preferences, as shown in Table III. These preferences are based
on results from the survey discussed earlier.

To measure the performance of our BalancingAgent, we
developed two baselines for comparison. The LowestCostAgent
favors cost savings by setting the heating setpoint to the tem-
perature used for the BalancingAgent’s minimum temperature
and the cooling setpoint to its maximum temperature. The
HighestComfortAgent favors comfort by using the Balancin-
gAgent’s preferred low and high temperatures for the settings.
We note that the cost of the LowestCostAgent’s energy usage
represents the minimum possible cost any agent could obtain
while staying within the user’s absolute range of temperatures.
Similarly, the cost of the HighestComfortAgent’s energy usage
represents the maximum cost any agent should cause, given
the user’s preferred temperatures. Therefore, we evaluate our
BalancingAgent’s ability to meet various budgets that fall
between these minimum and maximum costs.

We choose a time step of one hour: every hour, we run
the BalancingAgent algorithm and instruct the simulator to set
the thermostat to the resulting setting. At the end of each time
step, we record the energy used by the heating and cooling
system. The current indoor and outdoor temperatures that are
recorded at the beginning of each time step correspond to the
respective temperatures at the end of the previous time step.

B. Results

We measure the success of our algorithm in two ways:
how closely it meets the user’s monthly budget and how little
it deviates from the user’s preferred comfort range, i.e., the
temperatures between his preferred low and high temperatures.
To measure the month’s budget success, we multiply the
month’s total HVAC electricity usage by the electricity price

6http://austinenergy.com/wps/portal/ae/Residential/Rates

Month Temp. Agent Budget Cost % Budget % Mins.
Prefs. ($) ($) Deviation Outside Range

Jan.

LC – 10.86 – 76.74
Prefers B 13.00 13.21 1.63 38.90
Cool B 15.00 13.88 �7.47 21.35

HC – 16.33 – 0.09
LC – 10.33 – 73.81

Prefers B 13.00 12.63 �2.84 33.26
Warm B 15.00 13.32 �11.17 23.12

HC – 17.00 – 0.07

Apr.

LC – 24.02 – 94.39
Prefers B 24.50 25.39 3.61 41.72
Cool B 25.50 25.62 �0.48 33.46

HC – 26.53 – 0.13
LC – 19.96 – 86.95

Prefers B 20.50 21.28 3.82 41.69
Warm B 21.50 21.54 0.20 31.78

HC – 22.41 – 0.10

Aug.

LC – 83.30 – 100
Prefers B 85.00 85.76 0.89 59.08
Cool B 87.00 86.43 �0.65 48.68

HC – 89.39 – 0.15
LC – 73.13 – 100

Prefers B 75.00 75.68 0.90 57.73
Warm B 77.00 76.27 �0.95 48.68

HC – 79.23 – 0.10
TABLE IV. SIMULATION RESULTS. LC = LowestCost, B = Balancing,

HC = HighestComfort

Fig. 3. Comparison of Degree-Minutes spent outside the preferred range

to calculate the total cost of the month and compare it to the
provided budget. To measure the deviation from the comfort
range, for each time step we record the number of minutes
when the indoor temperature is outside of the preferred comfort
range and the highest deviation in degrees between the actual
temperature and closest edge of the range. We multiply these
two factors together to estimate degree-minutes that are in
violation of the preferred comfort range.

Table IV shows the results of our simulations, and Figure 3
displays the difference in comfort that each agent achieves
in the three months. In January, the LowestCostAgents spent
most of the month outside the preferred comfort range, while
the HighestComfortAgents rarely exceeded it. The Balancin-
gAgents spend much less time outside the preferred comfort
range than the HighestComfortAgents while also meeting the
budget. The actual cost used by each BalancingAgent is several
dollars below the cost of the HighestCostAgents. In April, the



difference in cost between the LowestCost and HighestComfort
agents is small, around $2.50, due to the mild climate in
Austin in April. As a result, the BalancingAgent does not
have much opportunity to provide a large reduction in cost
from the HighestComfortAgent, but it is still able to come
close to meeting the budgets while keeping the percentage of
minutes outside the preferred comfort range well under the
94.39% that the LowestCostAgent causes. The results for the
August simulations show that the BalancingAgent is able to
meet the given budget, while providing the user with more
comfort than the LowestCost agent. For all simulations, when
we compare the BalancingAgent’s performance given different
budgets in the same month and with the same temperature
preferences, we find that the user spends more time outside
the preferred temperature range with a lower budget. This is
intuitive, because in order to spend less money, the HVAC
must run less frequently. However, the BalancingAgent is still
able to provide at least 40% more minutes of the month in the
preferred comfort range as compared to the LowestCost agent.

Overall, we find that our BalancingAgent can provide cost
savings within the range of the $6 difference between the
lowest cost and maximum comfort settings, in both winter and
summer months, and it can do so while preserving some of
the user’s desired comfort. The opportunity for cost savings
are diminished during the mild month of April. The potential
for cost savings is limited by user preferences: a greater range
between preferred and absolute settings will result in a greater
opportunity for cost savings, at the expense less comfort.

IV. CONCLUSIONS AND FUTURE WORK

We have presented an agent to control a residential ther-
mostat while balancing user budget and comfort preferences.
While much prior work has been devoted to taking advan-
tage of user schedules to reduce heating and cooling costs
when occupants are away, our approach focuses instead on
users’ common motivations to reduce the monetary cost of
their heating and cooling behavior. Specifically, BALANCE is
useful to those with a strong desire to keep their energy bill
below a certain amount and who are willing to relax their
ideal comfort requirements. We demonstrated that our simple
BalancingAgent can reliably meet a reasonable user-provided
budget7 and provide at least a 40% improvement in comfort
over the lowest-cost approach, given user preferences. There
are also several avenues for improving the performance of the
BALANCE agent that have the potential to meet the budget
with more time spent in the preferred comfort range.

We plan to develop improved agents whose thermostat con-
trol strategies are based on machine learning techniques such
as reinforcement learning and include additional contextual
information such as weather forecasts and user behavior. We
will use the weather forecast when determining the budget for
each time step and day: if the agent knows a mild day will be
followed by a hot day, it can “reserve” a higher budget for the
upcoming hotter day. For more aggressive budgeting, we can
incorporate the tiered pricing structures used by many utilities.
We can also incorporate user schedules to reduce heating and
cooling when homes are unoccupied. This is a nontrivial task

7The budget must be between the costs of keeping the thermostat setting at
the preferred temperatures all month and keeping the thermostat at the absolute
temperatures all month, if the agent is to stay within these temperature ranges.

for occupants who do not have regular schedules that can be
programmed into the thermostat, as the system must have a
way to determine when the home is unoccupied. We can look
to previous work (e.g. [6]) for approaches to this problem.

Finally, we intend to implement our thermostat control
system in a real world setting. A real world setting would
allow us to incorporate additional learning techniques for
user preferences, by monitoring manual adjustments to the
thermostat. For example, if the user provides an absolute
high temperature of 80�F but in practice frequently manually
reduces the setpoint from 80�F to 77�F , the agent could learn
that the user’s true maximum temperature should be 77�F .
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