
Context-Sensitive Access Control for Open Mobile Agent Systems

Christine Julien, Jamie Payton, and Gruia-Catalin Roman
Department of Computer Science and Engineering

Washington University in St. Louis
{julien, payton, roman}@wustl.edu

Abstract

The increased pervasiveness of wireless mobile com-
puting devices draws new attention to the need for coor-
dination among small networked components. The very
nature of the environment requires devices to interact
opportunistically when resources are available. Such
interactions occur unpredictably as mobile agents gen-
erally have no advance knowledge of other agents they
will encounter over the lifetime of the application. In
addition, as the ubiquity of communicating mobile de-
vices increases, the number of application agents sup-
ported by the network grows drastically. Managing ac-
cess control is crucial to such systems, and applica-
tion agents must directly manipulate and examine ac-
cess policies because the agents require full control over
their data. However, because these networks are of-
ten decoupled from a fixed infrastructure, reliance on
centralized servers for authentication and access poli-
cies is impractical. In this paper, we explore the essen-
tial features of general access control policies tailored
to the needs of agent coordination in the presence of
physical and logical mobility. This access mechanism
derives much of its flexibility and expressiveness from
its ability to take into account context information. We
propose and evaluate novel constructs to support such
policies, especially in the presence of large numbers of
highly dynamic application agents.

1 Introduction

Ubiquitous computing devices communicate wire-
lessly, opportunistically forming ad hoc networks not
connected to a wired infrastructure. These networks
can include a handful of devices or thousands of het-
erogeneous components, making coordinating and me-
diating their competing needs a massive task. In such
environments, distributed applications exchange infor-
mation or coordinate tasks. These applications are

commonly structured as a logical networks of numer-
ous application agents, and much research focuses on
developing middleware to facilitate interactions among
these highly dynamic application components.

This paper focuses on systems that use tuple spaces
as a basis for coordination among mobile application
agents. The original Linda model [6] provides a cen-
tralized tuple space where application agents exchange
information using content-based matching of patterns
against data. Variations on this theme adapt it to
the mobile environment where a central repository is
not feasible. Instead, applications residing on physi-
cally mobile hosts exchange information via a shared,
distributed variation of the traditional Linda tuple
space. The benefits of using this tuple space model
are twofold. First, the tuple space affords a highly
decoupled manner of communication, eliminating the
need for a priori knowledge of the identities of com-
munication partners. This facilitates flexible coordi-
nation in open environments in which mobile agents
come and go without notice. Second, use of the model
masks the complex communication details associated
with handling the frequent, unannounced disconnec-
tions that characterize ad hoc networks. A number
of mobile agent middleware systems designed for ad
hoc networks realize this style of tuple space coordi-
nation, including Lime [11], EgoSpaces [9], MARS [4],
and TuCSoN [13]. These systems mask the complex
communication details of the mobile ad hoc network
setting and support the rapid development of applica-
tions in such environments.

Due to the open and dynamic nature of such mobile
systems, security concerns of three types arise: pro-
tecting mobile hosts from malicious agents, protecting
agents from tampering hosts, and securing data. Sev-
eral approaches addressing the first two concerns exist
for mobile agent systems. For example, D’Agents [7]
uses public-key cryptography to authenticate incoming
agents to increase host security. Undetachable thresh-
old signatures [1] prevent hosts from tampering with

1



an agent’s data.
Protecting data includes both ensuring data in-

tegrity and controlling access. Much coordination re-
search has addressed the former by encrypting com-
munication within coordination spaces. SAMCat [12]
and Yalta [3] use encryption and authentication to se-
curely transmit tuples into and out of a data space.
Our work focuses on the final issue: controlling data
access. A solution to this problem is complicated by
the fact that, in the mobile environment, disconnec-
tion from a wired infrastructure renders a centralized
solution impossible.

In traditional solutions to access control, mediating
access to objects in a system is the task of a single
administrator who determines what kind of access can
be provided to particular subjects for certain objects.
A common mechanism for addressing access control in
wired networks uses access matrices to describe rights.
The rows of the matrix correspond to users and the
columns to objects; a cell in the matrix contains the
access rights a user has on an object. This approach
generalizes several commonly used approaches, includ-
ing access control lists and capability definitions. In
the mobile environment, the number of possible agents
and the amount of data available over the lifetime of
the system makes directly applying these solutions im-
practical. The access control function introduced in
this paper overcomes the limitations imposed by mo-
bile systems by operating over general descriptions of
interacting parties and dynamically adjusting to the
changing context.

Section 2 introduces a general mobile coordination
model for mobile computing. Section 3 describes our
access control mechanism. Details of a particular im-
plementation of this mechanism appear in Section 4. In
Section 5, we discuss the construct’s expressive power
and overhead. Section 6 overviews related work, and
conclusions appear in Section 7.

2 A Generalized Coordination Model

In this section, we capture the essential features of
the tuple space coordination mechanisms used in mo-
bile agent systems in order to explain access control
requirements for mobile middleware. The result is a
generalization that spans the gamut from tuple defini-
tion to sophisticated operations. In the original Linda
model, processes generate tuples in a centralized repos-
itory and retrieve them using content-based operations
in which the retrieving process specifies a pattern that
the returned tuple must match. These operations are
synchronous in that they “block” the issuing process
until a tuple satisfies the operation and is returned.

The Tuple Space. Some mobile systems (e.g.,
MARS [4]) focus on logically mobile agents in a net-
work of physically stationary hosts, while other systems
(e.g., Lime [11] and EgoSpaces [9]) integrate physical
and logical mobility. All such systems facilitate the
interactions of large numbers of application agents by
associating a tuple space with a network component
that allows other components to access the data. Tuple
spaces can be permanently bound to hosts, to agents,
or distributed among a combination of the two. The
distribution of the tuples is irrelevant with respect to
access control; the key aspect of the representation is
how application agents access data. In this paper, we
assume a tuple space bound to each mobile agent. Us-
ing this model, we can simulate other approaches, e.g.,
to simulate tuple spaces bound to a host, we perma-
nently associate an agent to each host and use its tuple
space as the host’s tuple space.

Tuples and Patterns. We generalize a tuple to
one in which a field is identified by a name. A tuple is
an unordered set of triples: 〈(name, type, value), . . .〉.
For each field, type is the data type of value. In a
tuple, each field name must be unique. Users access
tuple spaces by matching patterns against tuples. A
pattern has the form: 〈(name, type, constraint), . . .〉. A
constraint is a function that provides requirements a
field’s value must match for the tuple’s field to match
the pattern’s field. Specifically, the matching function
M is defined over a tuple θ and a pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p :: 〈∃f : f ∈ θ ∧ f .name = c.name
∧ f .type instanceof c.type

:: c.constraint(f .value)〉〉. 1

M requires that, for every constraint c in the pattern,
there is a field f in the tuple with the same name, the
same type or a derived type, and a value that satisfies
c. While the function requires that each constraint is
satisfied, it does not require that every field in the tuple
is constrained, i.e., a tuple must contain all the fields
in the pattern but can contain additional fields.

Basic Operations. Next, we classify the available
operations, regardless of the tuple space structure.

Tuple Generation. Agents create tuples using out
operations. Tuple generation generally places a tuple
(t) in a specific tuple space: out(T , t), where T is a
tuple space with a particular name located at a partic-
ular agent. In EgoSpaces, an out places the tuple in
a local tuple space controlled by the generating agent.

1In the notation 〈op quantified vars : range :: exp〉, the vari-
ables from quantified vars take on all values permitted by range.
Each instantiation of the variables is substituted in exp, produc-
ing a multiset of values to which op is applied, yielding the value
of the three-part expression. If no instantiation of the variables
satisfies range, the value of the expression is the identity element
for op, e.g., true when op is ∀.

2



In Lime an out can place a tuple in any tuple space
owned by any agent on a connected host. In MARS
the tuple is created in the local host’s tuple space.

Tuple Retrieval. To read and remove tuples, agents
use rd and in operations respectively, which assume
three forms: blocking, atomic probing, and scattered
probing. The blocking form, rd(T , p), returns a tuple
matching the pattern p from the tuple space T . The tu-
ple space can be either local to the agent or controlled
by another network component. Atomic probing oper-
ations, rdp and inp, guarantee, if a matching tuple ex-
ists, it is returned, but they can return ε if no match im-
mediately exists. Like the blocking operations, they are
atomic with respect to the tuple space on which they
are issued; in some cases in the mobile environment,
guaranteeing this atomicity can be expensive. Scat-
tered probing operations, rdsp and insp offer weaker
guarantees. While all of these access operations en-
tail only single tuples, many extensions to Linda allow
simultaneous access to groups of tuples. These opera-
tions come in all three forms described above and are
referred to as group operations, e.g., rdg refers to a
blocking non-destructive read operation that returns
all matching tuples from the tuple space.

Different models present tuple space operations to
the user in different ways. In Lime, application agents
operate over a federation of connected tuple spaces,
while in EgoSpaces, agents operate over projections,
called views, of all available data. In these cases, the
more complex interactions can be reduced to the tuple
space operations described above.

3 Access Control Function

As dynamic components become increasingly per-
vasive, security concerns become of paramount impor-
tance. Given the coordination model described previ-
ously, an agent assumes responsibility for mediating
access to its data. The ability to control access in
this manner is fundamental because it allows the ac-
cess policies to reflect an agent’s instantaneous needs.
This is especially important in the highly dynamic mo-
bile environment where mobile agents want to con-
stantly adjust their behavior to adapt to a changing
context that can include communicating with unpre-
dictable parties. To achieve flexible access control in
this environment, each agent specifies an individualized
access control function.

We allow an agent to restrict which other agents
access its data and the manner in which the access
occurs. To accomplish the former, a requesting agent
must provide credentials identifying itself. To accom-
plish the latter, the access policy accounts for the oper-

ation being performed. In the end, each agent defines a
single access control function that takes as parameters
a tuple, a set of credentials identifying the requesting
agent, the operation being performed, the pattern used
in the operation, and the owning agent’s profile (de-
fined next). This function returns a boolean indicating
whether the requested access is allowed.

Profiles. Before describing the access control func-
tion in more detail, we introduce a profile to maintain
properties of each agent, which we represent as a tu-
ple. Particular applications or coordination systems
may require specific attributes in this profile. In gen-
eral, we assume a profile contains at least a unique host
id identifying the agent’s host and a unique agent id.

Parameters. An access control function takes five
parameters: the credentials, operation, tuple, pattern,
and the owner’s profile.

Credentials. Credentials allow an agent that is re-
questing access to convey information about itself. In
simple cases, they can be a standard set of attributes,
e.g., the agent’s id or a third-party authentication.
When an agent has a priori knowledge of the access re-
quirements, credentials can be more complicated, e.g.,
a password. When constructing credentials, an agent
must take care not to give away too much information,
e.g., if the agent has multiple passwords, it should send
only the correct one. This identification is especially
necessary in open and dynamic mobile environments,
where it is often not possible to know a priori exactly
which agents can access restricted information. In-
stead, agents must prove they have required privileges.
Credentials are a subset of the agent profile and are
presented as a tuple of attributes, which allows the ac-
cess control function to use pattern matching to evalu-
ate credentials. The credentials and their transmission
with the operation are assumed to be private. This
security is outside the scope of this paper but could
be accomplished using cryptography schemes already
under development.

Operation. The access control function can also ac-
count for the operation requested. Often, some data
should be restricted to read-only access, yet current
systems do not inherently allow this restriction. Con-
sidering the operation when determining access allows
a dynamic application to permit one set of operations
for some agents, but different operations for others.

Requested Tuple. Because we focus on tuple space
models, the access control function can operate over
the tuple to be returned from an operation. Pattern-
matching allows this portion of the access control func-
tion to be easily defined while remaining flexible.

Pattern. A powerful component of the access control
function is its ability to account for the pattern used

3



in the content-based operation. The pattern provides
information about an application’s prior knowledge of
the data. The owning agent may allow access only to
agents that know the “correct” way to access the data
(e.g., providing a wild card pattern that matches any
tuple may not be acceptable). Some knowledge of the
structure of the requested tuple might indicate that the
requesting agent shares common application goals.

Owner’s Profile. The access control function also
considers the owner’s current state. Because the access
policy is determined dynamically, access can be granted
based on context information. In some cases, data may
never be sent wirelessly between devices unless they are
within a secure physical environment where eavesdrop-
ping is known to be impossible.

Access Control Function. The access control
function takes the five parameters described above, and
determines whether or not to allow the requested ac-
cess. Formally, this function can be represented as:
ACF : T × C × O × P × Π → {0, 1}, where T is
the universe of tuples, C is the universe of creden-
tials, O is the finite set of operations, P is the uni-
verse of patterns, and Π is the universe of profiles.
The access control function (ACF) maps the values
of the parameters to a boolean indicating the access
decision. The function can also be represented as:
access = ACF(credentialsr, op, tuple, pattern, profileo);
r is the requesting agent and o is the tuple’s owner.

We will briefly discuss the expressive power of this
construct later. For now we consider what it cannot
easily represent. Access decisions cannot be based on
properties of the requesting agent not included in its
credentials. Therefore the requesting agent must care-
fully construct the credentials it sends with each op-
eration request. Also, the access decision can also not
rely on arbitrary environmental properties. For exam-
ple, an agent cannot base a decision on the number of
copies of a tuple.

The access control function lends itself well to the
mobile environment because it allows access policies to
adapt to the context. Access decisions are transparent
to requesting agents; if access is denied, a requester
does not even know that the matching tuple existed.

4 Implementation

We have integrated the access control function de-
scribed in the previous section with the EgoSpaces co-
ordination model and middleware. As discussed pre-
viously, access control solutions for ad hoc network
settings should be distributed and not require a con-
nection between a controller and an agent to evalu-
ate access rights. In this section we first highlight the

novel features of the EgoSpaces system that make it
amenable to coordination in ad hoc networks. We then
discuss the components of the access control implemen-
tation as they relate to EgoSpaces.

4.1 EgoSpaces Overview

EgoSpaces addresses the needs of agents in large-
scale heterogeneous environments. An agent operates
over a context that can include, in principle, all data
in an entire network. EgoSpaces’ unique model of co-
ordination, however, structures data in terms of views,
or projections of the maximal set of data. Each agent
defines its own views; these individualized views ab-
stract the dynamic environment by constraining prop-
erties of the network, hosts, agents, and data. To fur-
ther reduce programming costs, EgoSpaces transpar-
ently maintains views; as hosts and agents move, the
view’s content automatically reflects context changes
without the agent’s explicit intervention. EgoSpaces
employs the agent-specified access control function on
a per-view basis. When an agent defines a view, it at-
taches a set of credentials and a list of operations it
intends to perform on the view. The EgoSpaces mid-
dleware can then use each contributing agent’s access
control function to determine which tuples belong in
the view. In the end, the view contains only tuples that
qualify via their owning agent’s access control function.

4.2 A Model Perspective

In providing the previously described access controls
in EgoSpaces, we add to the middleware both creden-
tials and access control functions and use the content-
based retrieval and pattern matching mechanisms al-
ready present in the system. The view of an EgoSpaces
agent contains a subset of the tuples present in the log-
ically shared tuple space spanning all transitively con-
nected agents. The contents of the view are determined
by a view specification, described in [9]. Specifically,
an agent’s view includes only those tuples stored in its
local tuple space or the local tuple spaces of connected
agents that satisfy a set of constraints provided in the
view specification. Upon integrating the access con-
trol function, a set of credentials is now also included
as part of the view definition. These credentials are
simply properties that convey information about the
agent. The agent’s credentials can be altered at any
time during the agent’s lifetime. To provide the abil-
ity to restrict the agent’s perspective according to the
credentials, an agent also provides a dynamically mod-
ifiable access control function. The agent’s credentials
are compared to the access control functions of agents

4



who contribute data to the view to further restrict the
view according to the appropriate agents’ access re-
strictions.

4.3 An Implementation Perspective

An agent defines a view as a set of constraints: net-
work constraints, host constraints, agent constraints,
data constraints, and, in this access control extension
of the system, credentials. The first four components of
the view definition are outside the scope of this work;
instead we focus on the components crucial to the pro-
vision of flexible and context-sensitive access controls.
Each agent also defines an access control function. The
view is managed on behalf of an agent by a component
in the EgoSpaces infrastructure, the EgoManager. Each
host is associated with a single EgoManager, and all the
agents residing on a host register with the EgoManager
before coordinating with other agents. When register-
ing, an agent’s local tuple space contents become the
responsibility of the EgoManager, who mediates com-
munications between connected agents. The applica-
tion agents use the EgoManager to define and interact
with their views. An agent issues content-based re-
trieval operations on its views. These operations are
actually serviced by the EgoManager with which the
agent is registered. The EgoManager uses the pat-
tern provided to select tuples that match the pattern
provided with the operation and evaluates each tu-
ple individually to determine whether or not the tu-
ple satisfies the view and is a viable candidate for re-
turn to the requesting agent. In evaluating each tuple,
the EgoManager extracts information about the agent
(properties of the host the agent resides on, properties
of the agent, and the agent’s access control function)
that is providing the tuple and compares this infor-
mation with the constraints defined in the requesting
agent’s view, including the credentials. The latter is
key to the access control function’s integration into the
EgoSpaces middleware. If the tuple satisfies the view’s
constraints and the requesting agent’s credentials sat-
isfy the tuple owner’s access control function, then the
tuple can be returned to the requesting agent.

An important aspect of the integration of the ac-
cess control mechanism described in Section 3 into
EgoSpaces revolved around the fact that it relies on
the mechanisms inherent to tuple space based systems
to mediate access. Tuples are used to describe creden-
tials, and access control functions can be described by a
set of access policies defined as patterns, or templates,
over tuples. Implementing credentials and access con-
trol functions in this way provides a number of benefits.
First, the pattern matching mechanisms already pro-

vided by the tuple space system can be used to check
the credentials against an access control function. Sec-
ond, we allow the programmer to construct credentials
and access control functions in a way that he is al-
ready familiar with. Third, using tuples and templates
allows for flexibility and adaptation, since adding and
removing fields from tuples and patterns is relatively
simple. Finally, the use of tuples and patterns allows
for expressive access control functions and credentials.
Access control may be expressed according to any prop-
erty of the interacting agents, as long as the properties
can be captured in tuple and template form.

4.4 A Music Sharing Application

A music sharing application for mobile users imple-
mented on top of EgoSpaces serves as the vehicle for
testing the access control implementation. The appli-
cation provides users with access to a music service
with sharing, search, and download capabilities.

To determine which music a user sees, the user pro-
vides properties that define the music sharing applica-
tion’s view. This includes a network constraint that
includes only data residing on hosts within a certain
number of network hops, a host constraint that requires
the data to reside on hosts which are traveling in the
same direction as the user, and a data constraint that
restricts the returned items according to a file size limit.
A screen shot of the resulting application is shown in
Figure 1.

Figure 1. The subscription music service

The data is also restricted according to the creden-

5



tials provided by the agent, which includes a unique
agent id and a known phrase encrypted with a shared
password provided in the user’s official registration
from the music service. This password encrypted
phrase authenticates the user as a subscriber. Since
users share music only with others subscribed to the
service, the agent also provides an access control pol-
icy which specifies that a requesting agent must have
an agent id and must have the correct phrase encrypted
with the subscription password. Successful decryption
of the phrase by the receiving agent implies that the
requesting agent holds the correct password. The code
to define the credentials within the application is:

Credentials c =

new Credentials(getAgentID());

c.addProperty(‘‘Passphrase’’, encryptedPhrase);

To build the access control policy, the agent defines the
policy and adds it to the access control function:

AccessControlPolicy policy =

new AccessControlPolicy();

policy.addPropertyConstraint(‘‘Passphrase’’,

String.class,

new EquivalencyConstraintFn(encryptedPhrase));

policy.addPermittedOperation(Operations.RDP);

acf.addPolicy(policy)

This example indicates that the code needed for an
agent to perform access control using the implementa-
tion presented in this paper is relatively simplistic and
minimal. However, this example is limited in that some
centralized authority is in fact needed to distribute the
passwords and phrases required to access the music
sharing service and to update them as needed. Not only
is this solution centralized, but it does not highlight
the dynamic capabilities of the access control mech-
anism described in this paper. This does not mean
that our access control implementation is limited in
the same way. In fact, many additional application do-
mains, including administrative domains, illustrate the
distributed and dynamic nature of the credentials and
access control function.

4.5 Administrative Domains

Many applications restrict agent operations to ad-
ministrative domains. Assume nested domains defined
as a university’s computers, a department’s computers,
and a research group’s computers. To provide security
guarantees, applications limit access to certain data to
only computers on the university’s network. Still other
data ought to be restricted to departmental comput-
ers or to research group computers. A user in the re-
search group, working on a mobile computer, wants to

use a software license of which the research group has
n copies. The licenses are stored as tuples in a tu-
ple space. Each computer in the group carries a tuple
space; the available licenses are initially distributed in
some random fashion. A user can take a license if it
is not in use and the user holding the license is within
communication range. The agents controlling the li-
censes restrict access to only group members who have
departmental authentication (retrieved a priori), and
are running on computers in the university domain.
To retrieve a license, a user provides these three prop-
erties as credentials and attempts to in a license from
a connected tuple space. If successful, the number of
available licenses decreases by one. When the user fin-
ishes using the software, it replaces the license in its
local tuple space.

5 Discussion

The access control function provides a flexible mech-
anism for agents to specify privileges dynamically and
adaptively in mobile coordination systems.

Expressiveness. While its expressiveness makes
the access control function more flexible and arguably
more useful in coordination among constantly changing
mobile agents, this flexibility comes with some cost.

Credentials. On one hand, because credentials can
encode arbitrary information about an agent, partic-
ular applications can adapt credentials to their needs.
On the other hand, a requesting agent must be careful
not to reveal too much information since any informa-
tion sent in credentials is no longer secret.

Functions. Because the access control function takes
a number of parameters, an agent can dynamically ad-
just its access policies. Again, flexibility comes with
a cost. While complex access control policies are pos-
sible, constructing the function (from the developer’s
perspective) can become difficult. Fortunately, the de-
sign of the function prevents this complexity from af-
fecting agents that do not require complex policies.

Overhead. Given the model’s expressiveness, it is
useful to evaluate its overhead. The addition of the
access control mechanism introduces some amount of
programming overhead, but this overhead is difficult
to quantify without a case study involving users imple-
menting actual access control policies. While this is a
useful future task, it is outside the scope of this paper.
Instead we focus on the overhead due to the additional
communication and computation needed to provide the
access control function described previously.

Additional Communication. The key aspect of the
communication overhead is the amount of data (in bits)
that must be sent. Before adding the access control

6



mechanism, the number of bits required to send an
operation request is: b = |op|+ |pattern|+ |agent idr|,
where |op| is the number of bits required to identify the
operation. |pattern| is the number of bits required to
represent the pattern, which depends on the number
of fields in the pattern. |agent id | is the number of
bits required to identify the requesting agent so the
response can be returned. It is likely that the pattern,
which encodes the content-based nature of the request,
dominates this expression, as the op and agent idr are
simple data types with small, constant lengths.

We can write a similar term to express the num-
ber of bits needed to be sent when using the access
control function. This includes only the addition of
the number of bits necessary to encode the credentials:
bacf = |op|+ |pattern|+ |agent idr|+ |credentialsr|.

Credentials are a tuple. Because tuples are similar
to patterns the number of bits required to represent
the credentials is likely near the number of bits needed
to represent a pattern. If so, the overhead of using
access control is approximately 2. An application can
directly control the amount of overhead it incurs be-
cause it determines what credentials to send with each
request. In this respect, the use of application intuition
to reduce the credentials transmitted to exactly those
required reduces the overhead of the communication.

Additional Computation. Evaluating the access con-
trol function also requires additional computation in
the form of an additional method invocation. Because
the function can contain arbitrary code, the compu-
tational overhead lies in the hands of the application
programmer. From the programmer’s perspective, the
operating conditions of the application must be a pri-
mary concern. If so desired, a system can include a
mechanism to prevent undesirable access control func-
tions by bounding the time they are allowed to run or
by imposing restrictions on their capabilities. In most
cases, however, the additional computation required is
minimal since the access function may be limited to a
pattern matching function.

6 Related Work

As discussed previously, the use of an access ma-
trix does not directly lend itself to mobile systems. In
one example of attempting to apply such a method,
TuCSoN agents [5] are assigned capabilities defining
tuple space operations for particular patterns in a cer-
tain tuple space. An access control list for the tuple
space stores these capabilities. This approach requires
that all coordinating parties are known in advance and
that a centralized party can determine access policies
statically.

Other systems use encryption for access control. In
SecOS [2], for example, tuples are unordered sequences
of individually encrypted fields, and, to match an en-
crypted field, a pattern must contain a correct key.
Other work [8] associates keys with tuple spaces, and
an agent must provide the key to access the tuple
space. While both of these models provide access con-
trol mechanisms, they require secure key distribution
and management, which affects the scalability of the
system.

Law Governed Interaction (LGI) [10] provides an
expressive approach to access control in which agents
must adhere to a law that imposes context-sensitive
constraints on the execution of tuple space operations.
A law dictates actions an agent performs in response to
tuple space operations. Programming applications in
LGI requires programming specific actions in the access
control policy and adding a controller to mediate tuple
space requests. In contrast, in our model, programming
takes place in the coordination model, and the agent’s
requested operation is checked with the access control
function.

7 Conclusion

In this paper, we first provided a generalized co-
ordination model representative of those used in dy-
namic pervasive computing environments. We then in-
troduced access control functions for mobile coordina-
tion and showed how they could be successfully used
in these systems. Specifically, we described how we in-
clude the access control mechanism in the EgoSpaces
middleware system and discussed its use in implement-
ing an example application. While this construct does
incur some overhead, the expense is not prohibitive
when compared with the benefits it offers. The novel
access control function directly addresses the specific
access control needs of mobile coordination models. In
particular, the construct provides increased scalabil-
ity and decoupling when compared with previous ap-
proaches, without sacrificing flexibility and expressive-
ness.

ACKNOWLEDGEMENTS

This research was supported in part by the Office of
Naval Research under ONR MURI research contract
N00014-02-1-0715. Any opinions, findings, and conclu-
sions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the
views of the Office of Naval Research.

7



References

[1] N. Borselius, C. J. Mitchell, and A. Wilson. Unde-
tachable threshold signatures. In Cryptography and
Coding—Proc. of the 8th IMA Int’l. Conf., volume
2360 of LNCS, pages 239–244, 2001.

[2] C. Bryce, M. Oriol, and J. Vitek. A coordination
model for agents based on secure spaces. In P. Ciancar-
ini and A. Wolf, editors, Proc. of the 3rd Int’l. Conf.
on Coordination Models and Languages, pages 4–20.
Springer-Verlag, 1999.

[3] G. Byrd, F. Gong, C. Sargor, and T. Smith. Yalta: A
secure collaborative space for dynamic coalitions. In
IEEE 2nd SMC Info. Assurance Workshop, 2001.

[4] G. Cabri, L. Leonardi, and F. Zambonelli. MARS:
A programmable coordination architecture for mobile
agents. Internet Computing, 4(4):26–35, 2000.

[5] M. Cremonini, A. Omicini, and F. Zambonelli. Coor-
dination and access control in open distributed agent
systems: the TuCSoN approach. In A. Porto and G.-C.
Roman, editors, Coordination Languages and Models,
volume 1906 of LNCS, pages 99–114. Springer-Verlag,
2000.

[6] D. Gelernter. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[7] R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents:
Security in a multiple-language, mobile-agent system.
In G. Vigna, editor, Mobile Agents and Security, vol-
ume 1419 of LNCS, pages 154–187. Springer-Verlag,
1998.

[8] R. Handorean and G.-C. Roman. Secure servise provi-
sion in ad hoc networks. In Proceedings of the 1st Int’l
Conf. on Service Oriented Computing. (to appear).

[9] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proc.
of the 10th Int’l. Symp. on the Foundations of Software
Engineering, November 2002.

[10] N. Minsky, Y. Minsky, and V. Ungureanu. Safe
tuplespace-based coordination in multi agent systems.
Journal of Applied Artificial Intelligence, 15(1), Jan-
uary 2001.

[11] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime:
A middleware for physical and logical mobility. In
Proc. of the 21st Int’l. Conf. on Distributed Computing
Systems, pages 524–533, 2001.

[12] National Center for Supercomputing Applications, In-
tegrated Decision Technologies Group. SAMCat: A
securable active metadata catalogue. 2002.

[13] A. Omicini and F. Zambonelli. TuCSoN: A coordina-
tion model for mobile information agents. In Proc. of
the 1st Int’l. Workshop on Innovative Internet Info.
Systems, pages 177–187, 1998.

8


