
Coordination Middleware Supporting Rapid Deployment of Ad Hoc Mobile
Systems

Radu Handorean, Jamie Payton, Christine Julien, and Gruia-Catalin Roman
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{raduh, payton, julien, roman}@cse.wustl.edu

Abstract

This paper addresses the design and implementation of
thin coordination veneers for use in the development of ap-
plications over ad hoc wireless networks. A coordination
veneer is defined as an adaptation layer that customizes a
general-purpose coordination middleware to a particular
domain with minimal development effort. This technique al-
lows developers to build highly-tailored coordination mod-
els while leveraging established models and middleware.
We present three such veneers, the coordination models they
embody, and the manner in which they were implemented.
The L IME middleware, which supplies tuple space based
coordination in the ad hoc environment, serves as the im-
plementation base for our veneers. These veneers cover di-
verse areas in ad hoc mobility: service discovery and pro-
vision, event registration and distribution, and secure tuple
space access.

1 Introduction

The advent of wireless communication has opened a
wide range of new opportunities for staying in touch while
travelling. Significant investments have been made in main-
taining access to the Internet and its resources regardless of
location. At times, access may even be tailored to the cur-
rent location. A related, complementary trend involves the
emergence of ad hoc networks. Even though they rely on
the same wireless technology, ad hoc networks remove the
reliance on base stations and allow devices to communicate
with each other whenever in communication range.

Rapid and dependable deployment of applications over
ad hoc networks proves difficult in the presence of mobil-
ity. While the intrinsic complexity of the task cannot be
avoided, the programmer can be protected from it by em-
ploying appropriately designed middleware. In this paper

we advance the proposition that coordination middleware
can play an important role in simplifying the development
of applications in ad hoc environments.

The key advantages of a coordination-based strategy are
the strong emphasis on decoupling among components and
the delegation of the communication details to the under-
lying middleware. Coordination models (à la Linda [6])
were originally developed to support decoupled interactions
among concurrent processes by offering a small set of prim-
itives (in , rd , andout ) for content-based access to a global,
persistent, shared data structure (a tuple space). More re-
cent work has extended this approach to support inter-agent
communication in fixed networks (e.g., MARS [2], Jini [5],
TSpaces [11], etc.) and even host-to-host coordination in
mobile ad hoc networks (e.g.,L IME [13]). In this paper
we take this technology one step further by considering the
software engineering implications of providing coordina-
tion middleware specialized for a particular class of applica-
tions. Our objective is to demonstrate the feasibility of con-
structing such specialized coordination middleware with a
relatively small investment in new software development.

We begin with the assumption that an application is
structured in terms of code fragments distributed over hosts
which communicate via wireless transmitters. Code frag-
ments can migrate among hosts when connectivity is avail-
able and will be treated as mobile agents. An agent becomes
both a unit of mobility and a unit of modularity. Different
applications targeted to this architecture have diverse coor-
dination needs. We consider three such classes of applica-
tions. In each case, we propose a coordination model tai-
lored to the particular setting. The three models are special-
ized for ad hoc networking and exhibit diverse coordination
styles: service provision, event-based notification, and se-
cure tuple space sharing. Despite diversity, we will show
that they can be constructed with a relatively small amount
of effort as thin adaptation layers (called coordination ve-
neers) over a common coordination middleware supporting



Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Figure 1. Transiently shared tuple spaces encompass
physical and logical mobility.

transient sharing of tuple spaces in ad hoc networks (L IME).
The remainder of this paper is organized as follows. Sec-

tion 2 gives a brief description of theL IME middleware that
the coordination veneers build upon. Sections 3, 4, and 5
detail the models and implementations of the three styles of
interaction. Finally, Section 6 provides conclusions.

2 A Review of Lime

The L IME middleware supports the development of ap-
plications exhibiting physical mobility of hosts, logical mo-
bility of agents, or both.L IME adopts a coordination per-
spective inspired by work on the Linda model.

Transparent Context Maintenance.The model under-
lying L IME breaks the Linda tuple space into many tuple
spaces, each permanently associated to a mobile unit, and
by introducing rules for transient sharing of individual tuple
spaces based on connectivity. Hence, the content perceived
through the tuple space changes dynamically in response to
changes in the set of co-located mobile units. Access to
the tuple space takes place using the Linda primitives (e.g.,
in , rd , out ). L IME offers probe variants of the traditional
blocking operations (e.g.,inp , rdp ), and group operations
(e.g.,outg , ing , rdg , rdgp , andingp ). While the original
calls return a matching tuple (if available) or null otherwise
(if nonblocking), the group operations return all matching
tuples (or null if none available).L IME also allows for poly-
morphic tuple matching, where a field in a template matches
the respective field of a tuple if the latter contains an object
of the same type or of a subtype of the one specified in the
template. Figure 1 depicts theL IME model. Mobile agents
are the only active components; mobile hosts are roaming
containers supporting agents.

Controlling Context-Awareness. L IME provides fine-
grained control over the context perceived by the mobile
unit by extending Linda operations with tuple location pa-
rameters that define projections of the transiently shared tu-
ple space based on agent identities or host identities.

The read-onlyLimeSystemTupleSpace tuple space
provides awareness of the system configuration. It contains
information about the agents, hosts and tuple spaces in the
system. Standard tuple space operations allow access to this

information.
Reacting to Changes. L IME extends the basic Linda

tuple space with a reactionR(s, p), defined by a code
fragments that specifies the actions to be executed when
a tuple matching the patternp is found in the tuple
space. After each operation on the tuple space,L IME non-
deterministically selects a reaction and compares the pattern
p against the tuple space contents. If a matching tuple is
found,s is executed, otherwise the reaction is a skip. This
selection and execution proceeds until no reactions are en-
abled, and normal processing resumes. Blocking operations
are not allowed ins, as they might prevent the program from
reaching fixed point.

Reactions are annotated with locations that restrict the
locality of their execution. These kinds of reactions, called
strong reactions, must always be restricted to the local host
or agent.L IME also provides a notion ofweak reactionin
which the execution ofs does not happen atomically with
the detection of a tuple matchingp; instead, it is guaranteed
to take place eventually if connectivity is preserved.

Maintaining Group Membership in Highly Dynamic
Contexts. L IME protects applications from the complexity
associated with sudden disconnection by using location in-
formation. The concept of safe distance [19] helps preserve
the consistency of the system by predicting disconnections.
When a host approaches a group, it is allowed toengage
with the group only after it comes within safe distance of
some member of the group. Once the safe distance is ex-
ceeded, an automaticdisengagementprotocol is triggered
and the group is split, ensuring that no messages between
group members are lost and that messages are sent and re-
ceived in the same configuration.

Software Distribution. L IME is available under
a GNU’s LGPL open source license. Source code
and development notes may be obtained fromlime.
sourceforge.net .

3 Service Provision

In the client-server model, which continues to dominate
distributed computing, the client knows the name of the
server that supports the service it needs, has the code nec-
essary to access the server, and knows the communication
protocol the server expects. More recent strategies allow
one to advertise services, to lookup services and to access
them without explicit knowledge of the network structure
and communication details.

3.1 Service Provision Models

The service model is composed of three components:
services, clients, and a discovery technology. Services pro-
vide needed functionality that clients use. The discovery



process enables clients to find and use services advertising
particular capabilities. After a successful lookup, a client
receives a piece of code implementing the service or facili-
tating communication to the server offering the service.

In service provision models, clients may discover ser-
vices at runtime and use them through proxies the services
provide. A proxy hides the network from the client by of-
fering a high-level interface, for using the service, while the
proxy’s interaction with the server remains unknown to the
client. Services are advertised by publishing a profile con-
taining attributes and capabilities useful to a client when
searching for a service. Servers aggregate these published
profiles into a service registry that clients can search using
templates generated according to their momentary needs.

Different implementations of the service model currently
exist. Our work is significantly influenced by Sun Mi-
crosystems’s Jini [5, 14] model, which uses service registry
lookup tables managed by special services called lookup
services. A Jini community cannot work without at least
one lookup service, even if services and potential users re-
side on the same physical host. Other approaches include
IETF’s Service Location Protocol [9]; Microsoft’s Univer-
sal Plug’n’Play [12], which uses the Simple Service Dis-
covery Protocol [7]; and the Salutation project [15].

3.2 A Service Provision Veneer

All these models assume a more or less stable network.
Mobile ad hoc networks are opportunistically formed struc-
tures that change in response to the movement of physically
mobile hosts running potentially mobile code. The service
model needs to adapt to the ad hoc environment. For ex-
ample, if the node hosting the service registry suddenly be-
comes unavailable, the advertising and lookup of services
are paralyzed even if the pair of nodes representing a ser-
vice and a potential client remains connected (Figure 2).

service

lookup
cannot

register
cannot

service

server client

communication
range

could use

Figure 2. The client could use the service but not discover
it since the service registry is not accessible.

In our model, described in more detail in [10], services

continue to be advertised by publishing a profile that con-
tains the capabilities of the service and attributes describing
these capabilities. With its profile, a service provides a ser-
vice proxy which represents the service locally to the client.
If a service profile satisfying all client requirements is avail-
able, the service proxy is returned to the client. The client
uses the proxy to interact with the service as if it were local.

In our model, an advertisement for a specific service can
be discovered if and only if the service is available. We
accomplish this by making sure that discovery and accessi-
bility of remote servers is scoped by host connectivity. The
result is a federated service registry containing the union of
all local tuple spaces in the connected ad hoc network and
atomically updated as connectivity changes. Thus, when
the host of the service becomes unreachable (i.e., discon-
nected), the local repository atomically becomes unavail-
able as well, and the service can no longer be discovered.
The approach eliminates the need for a centralized direc-
tory for registration and lookup and it guarantees that two
hosts within communication range can exchange services.
Finally it prevents a client from discovering a service that
is no longer available at the time of the lookup. Figure 3
depicts the typical usage of the distributed service registry.

discovery

Client C
within communication range

federated service registry

Agent1

Local service registry

Service A

Ad for Service A

Agent2

Local service registry

proxy

use

Client C

Agent2

Local service registry

Agent1

disconnected

Local service registry

Service A

Ad for Service A

Client C

Local service registry

Agent2

Ad for Service A

Service A

Local service registry

Agent1

federated service registry

within communication range

Figure 3. Local service registry sharing and proxy service
utilization.

3.3 Implementation

Each service is represented by a profile stored in a tuple
along with the proxy object. When the service is registered,
the system assigns to it a globally unique service id. This
id represents the service as long as it is available and can be
used for rediscovery. Service attributes in the profile quan-
tify the capabilities of the service (e.g., “color” and “laser”
can be attributes for a service advertising the “print” capa-
bility). The client may use attributes when searching for



services to filter the results. The proxy object is a piece of
code that can either fully implement the service or provide
an interface to a remote service provider. The latter situa-
tion is encountered when the service needs a specific piece
of hardware to do the job (e.g., a printer), or some resource
that cannot migrate to the client.

To search for a service, a client calls the method
lookup(ServiceTemplate sTempl), where ServiceTemplate
contains the service id, the list of needed capabilities, and a
list of required attributes of the capabilities. The call returns
the proxy object if a service was found or null otherwise.

While the proxy hides the network from the client, the
proxy must know where the server is located. In the
presence of mobility, the location information may change
upon migration of the service. For example, if the agent
providing the service moves to another host, the IP ad-
dress (physical location) changes, but the port number
(logical location) may not. While mobility causes phys-
ical location to change, this logical address is not likely
to change. Since the physical location is unique for all
servers run by each mobile agent, but the logical address
is specific to each server and does not change, we pub-
lish them separately. The physical location is published
along with the agent’s id in a special tuple space, called
theServiceLocationTupleSpace . This tuple space
contains one location tuple for each agent, and the content
is updated upon agent migration. The tuple space used for
advertisementsLookupServiceTupleSpace contains
tuples that represent services, including their logical ad-
dresses. This way, an agent needs to update only the tuple in
ServiceLocationTupleSpace when it migrates, re-
gardless of the number of services it provides. The logical
address is part of the tuple that contains the advertisement
of the service. Upon migration, these tuples will follow the
agent automatically and remain unchanged.

Using theLookupServiceTupleSpace name for
all local lookup tuple spaces, allows us to take advantage
of L IME ’s transient sharing of tuple spaces. Since host en-
gagement and disengagement are atomic operations, each
agent sees a consistent set of services available across the
ad hoc network.

In the template used to query the federated tuple space,
the client can request a service with a specific id, services
that have certain attributes, services that implement certain
interfaces, or a combination of the above. A tuple is con-
sidered to match the client’s requirements if the service it
advertises has all the properties the client demands. The
attributes and capabilities specified in a template must be
subsets of the attributes and capabilities published for the
matching service. Attributes compared should match as val-
ues, while the capabilities are allowed to match according
to types in a polymorphic fashion.

Mobile agents run the clients and the services. An agent

running a client or an agent providing a service may migrate
to a new host. With tuple space based communication, no
special measures are required to resume collaboration be-
tween the client and the server when migration occurs. The
tuple spaces are automatically transferred to the new loca-
tion, and continue to be uniformly accessed, since the loca-
tion does not influence the process of tuple retrieval.

If the client code migrates, a private socket protocol be-
tween the proxy and its server must reopen the communi-
cation channel with the server, using the same location in-
formation. If the server code migrates, its physical location
tuple must be updated. The clients will need to reconnect to
the server using the new location information.

Agent migration inL IME is supported viaµCode [16].
The implementation preserves the memory state, but not the
control state. This means that at its destination, the agent
restarts execution with the memory initialized to the content
present when the migration was triggered. This initializa-
tion includes the re-registration of the services. Having the
memory content preserved helps implement a resume be-
havior. That is, it can only perform those actions from the
registration that are absolutely needed (e.g., it can only up-
date the location tuple). This also allows the client and the
server to resume the communication from a certain point
without restarting the entire task.

4 Event Distribution

In an event distribution model, a component can generate
(publish) event notifications and can specify the set of event
notifications it receives using subscriptions. A component
may also remove a subscription for an event. Components
subscribe to event notifications and publish event notifica-
tions through an event dispatching service. Recent work
suggests the need to adapt the event distribution model for
use in mobile environments [4, 3] by using each component
as a publisher, a subscriber, and an event dispatcher.

4.1 An Event Distribution Veneer

In our model, agents utilize an event repository to
achieve communication. The event repository is repre-
sented as a tuple space. Each agent in the system is as-
sociated with its own local tuple space, which is transiently
shared. The shared tuple space is used as the event dispatch-
ing service. Agents publish event notifications to a tuple
space and subscriptions are made on the same tuple space.

An agent generates an event notification usingPub-
lish(Tuple notification)wherenotification is a set of fields
that defines an event notification. The event notification is
placed into the tuple space. The notification is made avail-
able to agents connected to the originator of the notification
through transient sharing of local tuple spaces.



An agent registers for an event to receive notifica-
tion of its occurrence usingSubscribe(ITuple template,
LimeEventListener listener). The parametertemplateis a
set of fields that specifies a pattern for event notifications.
This template is used in pattern matching with published
event notifications. Thelistener is a handle to a callback
function that executes if an event notification that matches
the specified template is generated. Multiple subscriptions
may be based on the same event notification pattern, each
specifying a different callback function to be executed.

Unsubscribe operations are used to remove subscrip-
tions for event notifications.Unsubscribe(ITuple template,
LimeEventListener listener)is used to remove a specific
subscription. To ensure the correct subscription is removed,
both the event notification pattern and the handle to code
used in the original subscription are provided as parameters.
TheUnsubscribeAll(ITuple template)operation removesall
subscriptions previously registered upon the event notifica-
tion pattern provided as a parameter.

In unsubscribe operations, the pattern provided must ex-
actly match a pattern in a registered subscription, otherwise
the unsubscription is ignored and the user is notified.

At times it may be beneficial to limit the scope of noti-
fications. We include aSubscribe(location source, ITuple
template, LimeEventListener listener)operation which al-
lows an agent to subscribe for notifications generated by a
specific agent, identified by the parametersource.

4.2 Implementation

Communication is achieved using transiently shared tu-
ple spaces. InL IME, tuple space sharing is possible only
when agents have identically named tuple spaces. There-
fore, each agent is associated with a tuple space called the
EventTupleSpace .

Subscribe(ITuple template, LimeEventListener listener)
is implemented usingL IME reactions. A reaction is de-
fined by a pattern that describes a tuple, and a callback
function. We use the weak reaction provided inL IME, in
which atomicity requirements of reactions are relaxed. This
guarantees that upon appearance of a notification in the
EventTupleSpace matching the provided pattern, the
code specified bylistenerwill be eventually be executed, as
long as connectivity between the publishing agent and the
subscribing agent is preserved. These reactions (subscrip-
tions) are stored in a hash table, usingtemplateas a key.

To allow a reaction to fire for every new occurrence of
an event notification tuple, we define a reaction as occur-
ring once per tuple. A once per tuple reaction inL IME fires
only for tuples that match the pattern specified by the reac-
tion and that have not previously triggered the reaction. To
support such reactions, agents perform bookkeeping opera-
tions as reactions are fired to record the id of the tuple that

triggered the reaction. Each time a tuple is placed into the
tuple space, the bookkeeping information is checked before
a reaction is actually fired.

The unsubscribe operations are realized by deregister-
ing the reactions. In theUnsubscribe(ITuple template,
LimeEventListener listener)operation, the programmer
specifies the exact subscription that should be removed by
providing the same parameters used to register the subscrip-
tion. The subscription hash table is searched to determine
if such an entry exists. If so, then it is removed using
the L IME removeWeakReactionoperation. In theUnsub-
scribeAll(ITuple template)operation, the programmer spec-
ifies the pattern for which it no longer is interested in receiv-
ing notifications. The subscription hash table is searched to
determine if subscriptions for that event notification pattern
exist. If so, then all reactions in the hash table that were
registered on that event notification pattern are removed.

An agent must explicitly unsubscribe for all related sub-
scriptions. Otherwise, it is possible for an agent to still re-
ceive notifications in which it is no longer interested be-
cause of overlapping subscriptions.

Publish(Tuple notification)uses theL IME out primitive
to place a notification in theEventTupleSpace . To
clean up the tuple space, when publishing an event notifica-
tion, theL IME out operation which places the tuple in the
EventTupleSpace is immediately followed by aL IME

in operation to remove the event notification from the tuple
space. It might seem that removing the notification in this
way could prevent the delivery of the notifications to sub-
scribers. Since reactions are used in subscriptions, this is
not the case. All reactions are guaranteed to fire upon the
appearance of an event notification matching its pattern in
the tuple space.

One issue of interest is unannounced disconnection of
hosts due to physical movement. If a host becomes discon-
nected and is later reconnected, the agents on that host will
only receive event notifications generated since the time of
reconnection. The event distribution veneer currently does
not support queueing of events upon unannounced discon-
nection of hosts for two reasons. First, the underlying model
for this veneer,L IME, limits the firing of reactions to con-
nected agents. Second, in some cases, event notifications
should not be received while a host or agent is disconnected.

Another point of interest is the subscription mechanism.
Our event distribution model provides a form of content
based subscription. However, unlike other comparable
event distribution models [3, 1, 22], our model does not
currently support matching based on predicate evaluation.
While theL IME pattern matching mechanism has recently
been extended to support such evaluation, this method of
pattern matching has not yet been incorporated into use with
the event veneer.



5 Secure Transparent Data
Sharing

Mobile agent systems bring radical changes in applica-
tion design. In particular, security concerns come to the
forefront in highly dynamic mobile environments. When
considering coordination among mobile agents, security
concerns can be grouped into three categories: protecting
hosts from malicious agents, protecting agents from mali-
cious hosts, and protecting the integrity of the data.

5.1 Security in Mobile Agent Systems

Tuple space based infrastructures are well suited for mo-
bile agent coordination and communication. The original
Linda model and many of its successors, however, do not
address security issues. Without protection, applications
developed on top of a tuple space infrastructure remain of
purely academic interest. Several systems attempted to add
security to tuple space coordination of mobile agents (e.g.,
KLAIM [17]). Others address the problem of protecting
hosts from malicious agents. The D’Agents [8] system uses
public-key cryptography to authenticate incoming agents.
The problem of protecting agents from malicious hosts led
to agents computing with encrypted functions [20, 18].

5.2 A Secure Tuple Space Veneer

The L IME model supports multiple tuple spaces but of-
fers no security mechanisms. The secure tuple space veneer
compensates for this by providing password protected tuple
space access. In theL IME implementation, simply know-
ing the name of a tuple space allows an agent to access it
(i.e., read information, remove information, write informa-
tion). SinceL IME allows for sharing tuple spaces with the
same name, accessing a federated tuple space is as easy as
accessing a local one. Moreover, the use of polymorphism
in pattern matching makes tampering with the contents of a
tuple space particularly easy. This veneer overcomes these
problems by requiring password authentication for use of
special secure tuple spaces. The veneer allows for the exis-
tence of both protected and unprotected tuple spaces.

LimeSystemTupleSpace is a specialL IME tuple
space which contains, among other things, the names of
all tuple spaces. Any agent can read from this tuple space,
and therefore, any agent can discover tuple spaces and at-
tempt to access them. Our solution protects the tuple spaces
by granting an agent access only after it provides a correct
password. The real tuple space name results from encrypt-
ing the tuple space name specified by the programmer with
the provided password. Once an agent obtains a handle to
the tuple space, the password does not have to be used any-
more during normal interaction with it.L IME limits the ac-

cess to the tuple space only to those agents that created the
tuple space locally and then shared it with others. Thus, it
is impossible for an agent to use a handle obtained from an-
other agent (even if the latter obtained the handle correctly).

The execution of a method can involve local and/or re-
mote (federated) tuple space access. If the call involves re-
mote execution, the parameters will be sent across the net-
work encrypted with the password provided. If the pass-
word is correct, the parameters will be decrypted correctly,
and the remote host will be able to execute the requested
command. Backward compatibility is preserved by allow-
ing the use of unprotected tuple spaces.

The encrypted names of tuple spaces are still vis-
ible in the LimeSystemTupleSpace . However,
they cannot be used inappropriately. If a tuple space
is password protected, then the encrypted name from
the LimeSystemTupleSpace can only be generated
from the clear name used in conjunction with the cor-
rect password. An attempt to create a tuple space
with a name identical to a mangled name from the
LimeSystemTupleSpace but without a password will
generate an exception. Thus, copying the name of a (pro-
tected) tuple space is no longer useful.

5.3 Implementation

The interface provided by the secure coordination veneer
is almost identical to the interface thatL IME provides for
an agent. The difference is that tuple spaces are now cre-
ated using the SecureLimeTupleSpace class. As mentioned
above once the agent has the handle to the tuple space, it
is free to access it unrestrictedly. Since this handle is not
transferrable, it is not necessary to ask for the password in
every single interaction with the tuple space. Therefore all
other tuple space operations remain unchanged.

Before creating the tuple space, the name (clear if the tu-
ple space is not password protected or encrypted otherwise)
is prefixed with the letter ”U” if unprotected or ”S” if it is a
protected tuple space. This step ensures that names copied
from LimeSystemTupleSpace cannot be used directly.

Whenever a new secure tuple space is created, a new en-
try of the form [encrypted name, password] is added to a
SecurityTable in the L IME server. The system uses this
table to decrypt incoming messages, and to encrypt outgo-
ing messages. Unless otherwise indicated by location pa-
rameters, all calls operate over the entire federated tuple
space, including the local tuple space and tuple spaces with
the same name residing on other hosts.

The implementation is based on the interceptor pat-
tern [21]. When an agent executes a call that leads to a mes-
sage being pass to another host, an interceptor catches it and
performs the encryption/decryption before forwarding it to
the network orL IME system, respectively. The encryption



algorithm used is 3DES. Figure 4 shows how the intercep-
tors function to secure the tuple space communication.

���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������

�������
�������
�������
�������
������� ���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Mobile Host

Tuple

decrypted

Mobile Agent

operation
decrypted

reply

operation
encrypted

reply
encrypted

Interceptors

operation

reply

Space

Local

Figure 4. Interceptors catch messages and encrypt them
before sending and decrypt after receiving.
The distribution of the passwords remains an open issue.

This paper does not address this problem. If two agents
want to interact using a protected tuple space, they need the
name of the tuple space and the password a priori.

6 Conclusions

The paper describes three coordination veneers that sup-
port development of applications over ad hoc networks. Our
veneers can be used both for applications that require spe-
cific types of coordination, and in combination. All veneers
have been implemented and will soon be publicly available.

The idea of creating specialized coordination models and
middleware for particular applications is new. The approach
holds the promise for major simplifications in the develop-
ment of software systems over ad hoc networks. Equally
important is that all these veneers were constructed with
minimal effort over an existing coordination middleware
(L IME). We have been able to demonstrate the feasibility
of employing specialized coordination middleware in soft-
ware development while, also offering additional evidence
regarding the expressive power ofL IME and its model.

Acknowledgements
This research was supported in part by the National Sci-

ence Foundation under Grant No.CCR-9970939. Any opin-
ions, findings, conclusions or recommendations expressed
in this paper are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. InProc. of the
19th Int’l Conf. on Distributed Computing Systems, pages
262–272, 1999.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A pro-
grammable coordination architecture for mobile agents.In-
ternet Computing, 4(4):26–35, 2000.

[3] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and eval-
uation of a wide-area event notification service.ACM Trans.
on Computer Systems, 19(3):332–383, 2001.

[4] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development
of the OPSS WFMS.IEEE Trans. on Software Engineering,
27(9):827–850, September 2001.

[5] K. Edwards.Core JINI. Prentice Hall, 1999.
[6] D. Gelernter. Generative communication in Linda.ACM

Trans. on Programming Languages and Systems, 7(1):80–
112, January 1985.

[7] Y. Goland, T. Cai, P. Leach, Y. Gu, Microsoft Corporation,
S. Albright, and Hewlett-Packard Company. Simple ser-
vice discovery protocol/1.0: Operating without an arbiter.
http://www.upnp.org/download/draftcai ssdpv1 03.txt.

[8] R. Gray, D. Kotz, G. Cybenko, and D. Rus. D’Agents: Secu-
rity in a multiple-language, mobile-agent system. InMobile
Agents and Security, volume 1419 ofLNCS, pages 154–187.
Springer-Verlag, 1998.

[9] E. Guttman. Service location protocol: Automatic discovery
of IP network services.IEEE Internet Computing, 4(3):71–
80, July-August 1999.

[10] R. Handorean and G. C. Roman. Service provision in ad hoc
networks. InCoordination Models and Languages, volume
2315 ofLNCS, pages 207–219. Springer-Verlag, 2002.

[11] IBM. T Spaces. http://www.almaden.ibm.com/cs/TSpaces/.
[12] Microsoft Corporation. Universal plug and play forum.

http://www.upnp.org, 2001.
[13] A. Murphy, G. Picco, and G.-C. Roman.L IME: A middle-

ware for physical and logical mobility. InProc. of the 21st

Int’l Conf. on Distributed Computing Systems, pages 524–
533, April 2001.

[14] J. Newmarch.Guide to Jini Technologies. http://jan. net-
comp.monash.edu.au/java/jini/tutorial/Jini.xml.

[15] B. Pascoe. Salutation architectures and the newly de-
fined service discovery protocols from Microsoft and Sun.
http://www.salutation.org/whitepaper/Jini-UPnP.PDF.

[16] G. Picco. µCode: A lightweight and flexible mobile code
toolkit. In Proc. of the 2nd Int’l Workshop on Mobile Agents,
volume 1477 ofLNCS, pages 160–171. Springer-Verlag,
September 1998.

[17] R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A
kernel language for agents interaction and mobility.Soft-
ware Engineering, 24(5):315–330, 1998.

[18] J. Riordan and B.Schneier. Environmental key generation
towards clueless agents. InMobile Agents and Security, vol-
ume 1419 ofLNCS, pages 15–24. Springer-Verlag, 1998.

[19] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group
membership in ad hoc networks. InProc. of the 23rd Int’l
Conf. in Software Engineering, 2001.

[20] T. Sander and C. F. Tschudin. Protecting mobile agents
against malicious hosts. InMobile Agent Security, LNCS,
pages 44–60. Springer-Verlag, 1998.

[21] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Pattern
Oriented Software Architecture, volume 2. John Wiley &
Sons, Ltd., 1999.

[22] B. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. InProc.
of the Australian UNIX and Open Systems User Group Conf.
(AUUG97), September 1997.


