
Active Coordination in Ad Hoc Networks

Christine Julien and Gruia-Catalin Roman
Department of Computer Science and Engineering

Washington University
Saint Louis, MO 63130

{julien, roman}@cse.wustl.edu

ABSTRACT
The increasing ubiquity of mobile devices has led to an ex-
plosion in the development of applications tailored to the
particular needs of individual users. As the research com-
munity gains experience in the development of these appli-
cations, the need for middleware to simplify such software
development is rapidly expanding. Vastly different needs of
these various applications, however, have led to the emer-
gence of many different middleware models, each of which
approaches the dissemination of contextual information in
a distinct way. The EgoSpaces model consists of logically
mobile agents that operate over physically mobile hosts.
EgoSpaces addresses the specific needs of individual agents,
allowing them to define what data is to be included in their
operating context by means of declarative specifications con-
straining properties of the data items, the agents that own
the data, the hosts on which those agents are running, and
attributes of the ad hoc network. In the resulting coordi-
nation model, agents interact with a dynamically changing
environment through a set of views, custom defined projec-
tions of the set of data objects present in the surrounding ad
hoc network. This paper builds on EgoSpaces by allowing
agents to assign automatic behaviors to the agent-defined
views. Behaviors consist of actions which are automatically
performed in response to specified changes in the view. Be-
haviors discussed in this paper encompass reactive program-
ming, transparent data migration, automatic data duplica-
tion, and event capture. Formal semantic definitions and
programming examples are given for each behavior.

1. INTRODUCTION
The mobile ad hoc environment is an extreme among

networks where the lack of an infrastructure necessitates
a reinvestigation of network protocols and communication
paradigms. These opportunistically formed networks change
rapidly in response to nodes entering and leaving commu-
nication range. Roving robots on an uninhabited planet
may explore the terrain, collect information, and coordinate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

to assimilate this information and perform tasks. Automo-
biles on a highway communicate to gather traffic information
about the road ahead or to distribute digital coupons for
nearby restaurants. Rescue workers in a disaster recovery
scenario must communicate to perform their tasks quickly
and safely, but the communication infrastructure is often
crippled or even destroyed. Units in a military situation
must remain aware of the current status of other units, but
the communication infrastructure may belong to the enemy.
These domains share the potential for a wealth of applica-
tions requiring coordination among mobile components.

Much research in the area has focused on developing a va-
riety of protocols tailored to the specialized needs of these
constrained networks. Ad hoc routing protocols [2, 9, 11, 15]
have made great strides to bridge the communication gaps
that exist among groups of connected hosts. These proto-
cols have transformed the ad hoc network domain and have
brought the possibility of large scale ad hoc networks ever
closer to reality. In such environments, however, the mas-
sive amounts of available information quickly overwhelms
applications. This information serves as the context for an
application operating in the network, and the application
may need to adapt to changes in this context over time.

An application’s desire for adaptability manifests itself in
the diversity of context-aware applications for traditional
networks [6, 18]. FieldNote [16] allows researchers to im-
plicitly attach context information to field notes, while tour
guides [1, 4] display information based on the user’s lo-
cation. The radically different properties of ad hoc net-
works, however, require new context-awareness models tai-
lored to the environment’s specific complexities. The Con-
text Toolkit [17] and Context Fabric [7] take steps to gen-
eralize context in various environments, but they do not
address the need for a distributed coordination model.

Applications running in this information-rich environment
benefit from coordination mechanisms that assist in man-
aging, operating over, and reacting to contextual informa-
tion. As the demand for new context-aware applications
tailored to the ad hoc environment grows, producing these
applications places an increasingly heavy burden on pro-
grammers. Research in mobile computing middleware has
shown that providing coordination constructs in middleware
can simplify programming. While early middleware solu-
tions focused on localizing reactions to individual hosts [3] or
limiting interactions to symmetric communication [10], the
EgoSpaces model [8] and middleware introduced the novel
notion of asymmetric coordination, giving each application
direct control over the size and scope of its personalized

context. This approach is essential to accommodating pro-
gramming for large, dense ad hoc networks.

Given the large amounts of context data and the coordi-
nation constructs that have proven historically useful, how-
ever, the basic operations provided by EgoSpaces fall short
of the abstractions programmers require for rapid applica-
tion development. This paper extends EgoSpaces to provide
a variety of these high-level coordination constructs, includ-
ing reactive programming, data migration, data duplication,
and event capture. Of particular interest is our ability to re-
duce the specialized behaviors to a single construct, the re-
action, giving promise for an efficient implementation that
maximizes application responsiveness and minimizes com-
munication overhead without sacrificing simplicity.

The next section reviews EgoSpaces. Section 3 presents
the extensions. Section 4 addresses performance consider-
ations in presenting the constructs’ implementations. Con-
clusions appear in Section 5.

2. THE EGOSPACES COORDINATION
MODEL

EgoSpaces introduced an agent-centered notion of context
whose scope extends beyond the local host to contain data
and resources associated with hosts and agents surrounding
the agent of interest. This asymmetric relation among par-
ticipants is new to coordination research and is motivated by
our desire to accommodate high-density and wide-coverage
ad hoc networks. This section reviews EgoSpaces and high-
lights its key components.

2.1 Computational Model
EgoSpaces considers systems entailing both logically mo-

bile agents (units of modularity and execution) executing
over physically mobile hosts (simple containers for agents).
Communication among agents and agent migration can oc-
cur whenever the hosts involved are connected. A closed set
of these connected hosts defines an ad hoc network.

EgoSpaces bases its coordination on the notion of a Global
Virtual Data Structure (GVDS) [12]. In this model, all data
available in the entire network appears, to the programmer,
to be stored in a single, common data structure, even though
the data items themselves are distributed among the partic-
ipating agents. The programmer interacts with the data
structure via the standard operations for that structure. At
any given time, the available data depends on connectivity.

Each agent manages its own data items, stored in a local
data repository. When agents move within communication
range of each other, their data structures logically merge to
form a single “global” structure. The structures over which
agents ultimately operate are projections of this global data
structure called views.

2.2 View Concept
In principle, an agent’s context includes all data avail-

able in the entire ad hoc network. As discussed previously,
providing access to this vast amount of information proves
costly. For this and other reasons, EgoSpaces structures
data access in terms of views, projections of the GVDS.
Since one’s context is relative, we use the term reference
agent to denote the agent whose context we are consider-
ing. Each agent defines individualized views by providing
declarative specifications constraining properties of the net-
work, hosts, agents, and data. As an example, imagine a

Figure 1: Example view definition.

building with a fixed infrastructure of sensors and informa-
tion appliances providing contextual information. Sensors
provide information regarding the building’s structural in-
tegrity, the frequency of sounds, the movement of occupants,
etc. Engineers and inspectors carry PDAs or laptops that
provide additional context and assimilate context informa-
tion. Different people have specific tasks and will therefore
use information from different sensors. As an engineer moves
through the building, he wishes to see structural informa-
tion not for the whole building, but for the floors adjacent
to his current floor. An agent running on his PDA might
declare the following view:

Data from the past hour (reference to data) gath-
ered by structural agents (reference to agents) on
sensors (reference to hosts) within one floor of
my current location (property of reference host).

Figure 1 depicts this example, where the shaded area repre-
sents the view of the engineer (in the hard hat). As shown,
this view contains sensors embedded in the building and the
PDA of an inspector on the adjacent floor.

EgoSpaces transparently maintains views. As hosts and
agents move, the view’s contents automatically reflect these
changes without the reference agent’s explicit action. As the
engineer changes floors, his view is automatically updated
to include data from a different set of sensors and devices.

EgoSpaces employs agent-specified access control func-
tions to limit the ability of other agents to access an agent’s
local data. When a reference agent defines a view, it at-
taches a list of operations it intends to perform over the view
and a set of credentials verifying itself to other agents. When
determining the contents of a view, EgoSpaces evaluates, for
each tuple meeting the view specification, the contributing
agent’s access control function with respect to the provided
operations and credentials. The view contains only tuples
that have qualified via the access control function. More de-
tails on view specifications, transparent maintenance, and
access control can be found in [8] and [14].

2.3 Basic Data Access Operations
For the remainder of this paper, we focus on using a tu-

ple space based data structure underlying our views. Each

agent, therefore, carries its own local tuple space. The op-
erations provided over views are variations of the standard
Linda [5] tuple space operations for tuple creation (out),
tuple reading (rd), and tuple removal (in). In EgoSpaces,
however, the scope of the former is restricted to the local
tuple space, while the scope of the latter two operations is
constrained to a single view.

The EgoSpaces model introduces a new tuple structure in
which a tuple is a set of unordered triples of the form:

〈(name, type, value), (name, type, value), . . .〉.

where the names of the fields must be unique within the
tuple. The Linda retrieval operations (rd and in) oper-
ate by matching a pattern against data in the tuple space.
EgoSpaces patterns contain constraints over the fields in a
tuple. To match a tuple, every constraint in the pattern
must be satisfied by a corresponding field in the tuple.

Agents create tuples using out operations. A new tuple is
placed in the creating agent’s local tuple space and is avail-
able in any view whose constraints it satisfies. To read and
remove tuples, agents use variations of rd and in operations
restricted to individual views. Because in operations remove
tuples from the tuple space, they may affect other views if
the tuple removed is contained in multiple views. The rd
and in operations block until a matching tuple exists and
then return the match. If more than one tuple matches, the
one returned is chosen non-deterministically.

Variations of these operations include aggregate opera-
tions (rdg and ing) that block until a match exists and then
return all matches, and probing versions of both single (rdp
and inp) and aggregate operations (rdgp and ingp) which re-
turn ε if no match immediately exists. All operations listed
thus far act over the view atomically, requiring a transaction
over all view participants. Because this can become costly,
EgoSpaces offers scattered probes for both single (rdsp and
insp) and aggregate (rdgsp and ingsp) operations. They
provide a weaker consistency because they check the tuple
spaces one at a time without locking the entire view, thus
they may miss a matching tuple. All operations and their
semantics are provided in [8] with a formal description of
tuples, patterns, and the associated matching function.

Programming Example. To operate in EgoSpaces, a
programmer defines views and issues operations over them.
The building engineer might retrieve structural information
about a single floor, perform some local processing to assim-
ilate that data, and then output a tuple indicating whether
the structural integrity of the current floor is sound. In this
case, the engineer’s agent does not want to consume the data
items, because they might be useful to the operation of other
application agents. The following code accomplishes this in
EgoSpaces:

ν = [data from structural agents on the current floor]
p = 〈(strain,number , any),

(acoustic emission,number , any),
. . . ,
(timestamp, time, [within 10 minutes])〉

data[] = ν.rdgp(p)
[local processing using data]
result = [tuple containing result]
out(result)

The first line creates a view that contains only data from
structural agents on this floor. The details of view specifi-
cation are outside the scope of this paper; for more informa-
tion see [8]. In the definition of the pattern p, the constraint

any indicates that the tuple must contain a field with the
indicated name and type but the value is unrestricted.

3. EXTENDING EGOSPACES
For some applications, these basic operations suffice, but

in many cases, the application requires more sophisticated
coordination mechanisms. For example, a built-in reactive
construct has been shown to be extremely useful in program-
ming for ad hoc networks. This section presents several
such constructs, including a powerful reactive mechanism,
data migration, data duplication, and event capture. We
show how using these sophisticated constructs decreases the
amount of code the programmer must write, increases the
encapsulation of this code, and increases code reusability.

3.1 Advanced Constructs
All the constructs previously described involve explicit

data access. If a mobile component needs to wait for a
piece of data before performing additional actions, it must
poll. This costly and inefficient mechanism prevents the
component from performing other work in the meantime.
Furthermore, the EgoSpaces primitives provide no mecha-
nism for grouping operations in a transactional fashion. We
introduce reactions to address the former concern and trans-
actions to address the latter. We then combine the two con-
structs to build an even more powerful reactive construct.

3.1.1 Reactions
EgoSpaces provides reactive programming constructs that

allow agents to adapt their behavior in response to the pres-
ence of particular tuples. Similar abstractions have proven
useful in other mobile systems [10, 3]. An EgoSpaces reac-
tion associates a trigger (i.e., a pattern) with a set of possible
simple actions to perform when a tuple in the view matches
the pattern. A reaction is registered on all agents contribut-
ing to the view and fires once for every tuple in the view
matching its pattern. Disabling and re-enabling a reaction
causes it to fire again for all matching tuples. Similarly,
disconnection followed by reconnection causes reactions to
re-fire. The burden of handling these cases falls on the appli-
cation programmer. A reaction can remove its trigger from
the tuple space and/or output the trigger modified in some
way. This modification is achieved through a tuple modifiers
subroutine the user defines that can add, remove, or change
fields before outputting the trigger tuple. For example, if an
agent with unique id ID1 has retrieved the tuple:

〈(ID ,TupleID , 5)(destination,AgentID , ID1),
(timestamp, time, 8:41), temperature, celsius, 28)〉

and wants to change the timestamp field, remove the
destination field, and add an owner field, it defines the
following tuple modifiers:

tuple modifiers(t) =
{t.changeField(timestamp, currentTime),
t.removeField(destination),
t.addField(owner, AgentID, ID1)
t.newID()}

where currentTime is a local variable containing the current
time. The newID method allows the tuple’s new owner to
give it a new, unique ID. If the new tuple ID generated was
12 and the new time 9:36, the resulting tuple would be:

〈(ID ,TupleID , 12)(timestamp, time, 9:36),
(temperature, celsius, 28), (owner ,AgentID , ID1)〉

If the tuple modifiers attempt to add a field that already
exists in the tuple, the current value of the field is replaced
with the value being added. The key to using the tuple modifiers
is that the tuple output to the tuple space will have the same
ID (unless it is changed by the tuple modifiers), and there-
fore the reactive construct will not fire repeatedly on the
same tuple.

A reaction has one of two scheduling modalities, eager
or lazy, indicating when it should fire. Reactions with ea-
ger modalities occur immediately following the insertion of a
matching tuple into the view. Only other eager reactions can
preempt them. Therefore, an eager reaction is guaranteed to
fire for every matching tuple present in the view while the
reaction is enabled, except under one condition discussed
below. A lazy modality brings a much weaker guarantee—
eventual triggering of the reaction is guaranteed if the tuple
remains in the view long enough. Other operations (includ-
ing both reactions and basic EgoSpaces operations) may oc-
cur in the meantime, possibly removing the tuple before the
lazy reaction fires. Finally, reactions have a priority that
arranges a hierarchy of firing within each scheduling modal-
ity. Priorities are integers; within each modality, reactions
with higher priorities fire before reactions with lower prior-
ities (the highest priority being 1). When more than one
reaction with the same modality and same priority can be
triggered by the same tuple, the reaction fired first is chosen
non-deterministically. If the first reaction removes the trig-
ger, then the second reaction will not be fired. Reactions
take the form:

ρ = react to p [remove] [and out(tuple modifiers(τ))]

where the local name τ is bound to the trigger tuple; p is
the reactive pattern; the keyword remove causes tuple re-
moval; and the optional out(tuple modifiers(τ)) places the
trigger tuple with the tuple modifiers applied into the ref-
erence agent’s tuple space. A reference agent enables and
disables a reaction using:

enable ρ with sched modality, priority over ν
disable ρ over ν

where sched modality is either eager or lazy, and priority
is an integer. As with other operations, reactions affect
the contributing agents’ access controls. When specifying
a view, the reference agent must indicate if it intends to
register reactions on it.

Triggering the reaction and executing the associated ac-
tions occur as a single atomic step. If used, the out places a
tuple in the reference agent’s local tuple space at the com-
pletion of the reaction’s execution. This tuple can trigger
other reactions registered on the same view or different ones.

The next section discusses EgoSpaces transactions, which
we will use later to add flexibility to this reactive construct.
First, however, we give an example of how programming
with this reactive construct compares to programming us-
ing only the EgoSpaces primitives.

Programming Example. To achieve this behavior us-
ing only the primitives, a programmer must write the en-
tire reactive behavior by hand. Consider the application
scenario in which the original temperature sensors placed
in the building generate Fahrenheit temperatures. Most of
these sensors have been replaced by sensors that generate
Celsius temperatures. To provide a standard system, the
Celsius sensors contain an agent that reacts to the presence
of Fahrenheit readings, converts the values to Celsius, and
replaces the readings in the tuple space. If using only the
basic EgoSpaces operations, the programmer must write the
following code:

ν = [temperature data on this floor and adjacent ones]
p = 〈(tempType, string, = “Fahrenheit”)〉
seenTuples = new Vector()
while(true)

data[] = ν.rdgp(p)
if data 6= null

for i=1 to data.length
if !seenTuples.contains(data[i])

ν.inp(data[i])
data[i].changeField(tempType, “Celsius”)
data[i].changeField(tempValue,

convert(oldT))
out(data[i])
seenTuples.add(data[i])

else
sleep(time)

This code is slightly simplified because it refers to the Fahren-
heit temperature as “oldT”, but this value must really be
retrieved from the tuple (data[i]). The programmer must
manage this code in an extra thread independent of the
agent’s other operations. The agent creates and executes
the thread whenever it wants to “enable” the reaction, and
stops it when it wants to “disable” the reaction. In this
programming by hand example, the thread awakens peri-
odically to check the reactive condition. To check this, the
thread first must read all tuples matching p from the tuple
space and check if they have been processed before. If not,
the actions execute for the tuple, and the tuple is added to
the list of processed tuples.

With the built-in reactive construct, the code becomes:

ν = [temperature data on this floor and adjacent ones]
p = 〈(tempType, string, =“Fahrenheit”)〉
t m(t) = {t.changeField(tempType, “Celsius”),

t.changeField(tempValue, convert(oldT))}
ρ = react to p remove and out t m(τ)
enable ρ with eager, 1 over ν

The definition of the view and the pattern is the same, but,
from the programmer’s perspective, this is a simpler, more
straightforward way to code the reactive behavior. In this
example, the programmer is enabling a high priority, eager
reaction. Not only does this reactive construct simplify the
programmer’s task, it adds subtle, useful semantics. Instead
of achieving a polling behavior as in the first example, if the
reaction is eager, the application is guaranteed that it will
fire immediately following the insertion of a tuple matching
p into the tuple space unless another eager reaction fires and
removes the tuple. In the first example, however, this is not
the case. Because the “reactive” thread is periodically sleep-
ing, it is possible that tuples will be inserted and removed
before the thread awakens to check for matches. Because
this behavior is built into the EgoSpaces system, its actions
can be optimized. For example, instead of having to gather
all of the possible matches at the reference agent each time
before determining if the tuples have previously been pro-
cessed, EgoSpaces can perform this check at each remote
host, before returning the tuples as triggers to the reference
host. Finally, the application programmer has encapsulated
the reaction and can reuse it on other views if desired.

3.1.2 Transactions
From an agent’s perspective, performing several opera-

tions sequentially is not an atomic action because other
agents’ operations can interleave with its operations. For
example, if an agent performs a successful rdp operation
and then immediately attempts to in the same tuple, the

in operation might be unsuccessful if another agent has, in
the meantime, removed the tuple from the tuple space. At
times, an application agent may want to guarantee that a
sequence of operations is atomic with respect to all other
operations on the involved views. For example, if an appli-
cation wants to replace a piece of data with an update, but
does not want it to ever appear to the world that the data is
unavailable, it needs to group the removal and the replace-
ment operation into a single atomic step. To accomplish
this, we introduce the notion of transactions to EgoSpaces.

A transaction is a named sequence of simple actions that
can include plain code, atomic or scattered probing opera-
tions, and tuple creation. Transaction code can access lo-
cal state variables to save information retrieved from the
tuple space inside the transaction. Because transactions
must complete, they cannot include blocking operations that
could halt the transaction indefinitely. Transactions are in-
dividual atomic actions; their intermediate results are not
visible from the outside.

When creating a transaction, the reference agent provides
a view restriction listing the involved views and serving as
a contract between the reference agent and EgoSpaces. Any
attempt inside the transaction to perform operations outside
the view restriction generates an exception. The view re-
striction makes a deadlock-free implementation of the trans-
action mechanism possible (see Section 5).

A transaction takes the form:

T = transaction over v1, v2, . . .
begin op1, op2, . . . end

where T is the transaction’s name; v1, v2 . . . is the view re-
striction; and op1, op2, . . . is the sequence of operations. An
agent executes a transaction using:

execute T

3.1.3 Augmenting Reactions
The reactive construct introduced previously was limited

because the only actions that an agent could perform in
response to a trigger tuple were the removal of the tuple
and the output of an augmented version of the trigger tu-
ple. More powerful reactive constructs that allow applica-
tion agents to perform arbitrary actions in response to the
trigger provide a more useful and flexible programming con-
struct. Next, we introduce an extension of a reaction to a
local trigger using a transaction. After that, we show how
the semantics change if the trigger is a non-local tuple.

Transactions can extend reactions to allow them to per-
form a varied set of operations over any of the reference
agents’ views. The reaction’s triggering, optional trigger re-
moval, optional out, and transaction are performed as a sin-
gle atomic action. For the first case we consider, the trigger
must be located in the reference agent’s tuple space so that
the agents involved in the transaction can be locked in or-
der (thus preventing deadlock in the system). An extended
reaction has the form:

ρ = react to p [remove] [and out(tuple modifiers(τ))]
extended by T (τ)

where T is the transaction that executes in response to the
trigger, and τ is a local variable bound to the trigger tuple.
An agent enables an extended transaction using:

enable ρ with sched modality, priority over νl

Upon enabling, EgoSpaces verifies that νl is a local view,
restricted in scope to only the reference agent.

An agent may desire the same style of interaction in re-
sponse to remote agents’ tuples. In this case, however, trig-
ger, removal, and notification are a single atomic action,
while the execution of the associated transaction is a sepa-
rate atomic action. The most important ramification of this
subtle difference is that the trigger might not be available to
the transaction when it executes because other operations
can interleave with the reaction’s triggering and the trans-
action. The transaction does, however, receive a copy (τ)
of the trigger tuple. This more generalized reaction has the
form:

ρ = react to p [remove] [and out(tuple modifiers(τ))]
followed by T (τ)

The use of the word followed in place of extended indi-
cates the separation of the triggering of the reaction and the
execution of the transaction. The enabling mechanism for
generalized reactions is identical to basic reactions.

Programming Example. Imagine an agent that aver-
ages temperatures generated by sensors on the current floor
over the past hour and replaces all of the old temperature
readings with an average reading. Assume that tempera-
ture readings are generated once a minute. To implement
this behavior without reactions, a programmer writes some-
thing like:

ν = [Celsius temperature data on current floor]
p = 〈(timestamp, time, minutes = :00)〉
seenTuples = new Vector()
while(true)

data = ν.rdp(p)
if data 6= null

if !seenTuples.contains(data)
p1 = 〈(tempValue, any, any),

(timestamp, time, [within past hour])〉
temps[] = ν.inpg(p1)
avg = average(temps[])
average = [tuple with average information]
out(average)
seenTuples.add(data)

else
sleep(time)

With the built-in construct, however, the code consists of
defining and enabling the reaction:

ν = [Celsius temperature data on current floor]
p = 〈(timestamp, time, minutes = :00)〉
T (τ) = transaction over ν

begin
p1 = 〈(tempValue, any, any),

(timestamp, time, [within past hour])〉
temps[] = ν.inpg(p1)
avg = average(temps[])
average = [tuple with average information]
out(average)

end
ρ = react to p followed by T (τ)
enable ρ with eager, 1 over ν

In this code, the programmer explicitly declares the views
over which its operations will act. If the operations do not
hold to this contract, the system generates an exception.
This contract, however, allows the system to provide atom-
icity guarantees associated with the execution of the opera-
tions; in the latter case, all n operations of the transaction
are executed as a single atomic step, while in the hand-coded
case, each operation may be interleaved with other opera-
tions issued by this agent or other agents in the system.

3.2 Behavioral Extensions
The reactive constructs make programming within the

EgoSpaces system a more flexible task. They also provide
more powerful semantics and guarantees. Most importantly,
they allow agents to define general-purpose responses to trig-
ger tuples in a view, because any code can appear inside the
reaction’s transaction component. In some cases, the types
of actions an application performs in response to a trigger
tuple will be common with other applications. For example,
an application may want to duplicate certain data it encoun-
ters. This section classifies three such behaviors and shows
how the semantics of these new constructs can be expressed
in terms of the previously defined reactive construct.

Building these types of behaviors into the system reduces
the programming burden in common cases. In this section,
we describe data migration, data duplication, and event cap-
ture. We also leave the system open to extension as addi-
tional useful coordination mechanisms arise in the future.

A reference agent attaches behaviors to views, and, as long
as the behavior is enabled, encountering certain conditions
triggers an automatic action. In general, behaviors share
several key components. First, a behavior responds to a
trigger, identified via a pattern. Once enabled, EgoSpaces
compares the behavior’s pattern to tuples in the view and
triggers the behavior whenever the pattern is matched. Like
reactions, behaviors respond once to each matching tuple.
Again, if tuples leave the view and return or the behavior is
disabled and re-enabled, the behavior executes again.

Like reactions, behaviors can be either eager or lazy indi-
cating when the behaviors occur. Eager behaviors execute
as soon as the trigger is matched, and only other eager con-
structs can preempt them. Lazy behaviors will eventually
execute if the behavior remains enabled and the trigger stays
present. Behaviors can also include tuple modifiers, which
allow the reference agent to insert, change, or remove fields
in resulting local tuples. How this is used will become ap-
parent as we present the different behaviors. Finally, behav-
iors have an optional transaction executed at the behavior’s
completion. In general, behaviors take the form:

β = act(p) [tuple modifiers(τ)] [followed by T (τ)]

where act is the name of the behavior (e.g., “migrate” or
“duplicate”). Names must be agreed upon to allow access
control implementation. A reference agent must identify
which behaviors it might attach to a view. Contributing
agents consider this set when evaluating access control func-
tions. Reference agents enable and disable behaviors using:

enable β with sched modality over ν
disable β over ν

We discuss each behavior individually, providing a brief
description and syntax. We then show the behaviors’ se-
mantics by reducing them to reactions and transactions. For
each behavior, we also include a programming example to
show how the behavior is used.

3.2.1 Data Migration
Mobile agents encounter a lot of data, but both data and

agents are constantly moving. A particular agent may want
to collect certain data without having to explicitly read each
piece immediately. When the consistency of data is impor-
tant agents cannot make duplicates of data items and oper-
ate on them because other agents might operate on the origi-
nals. A common solution is replica management, where mul-
tiple copies of data are kept consistent, but this solution is

undesirable in ad hoc environments because agents carrying
originals and duplicates meet sporadically and may never be
in contact again. Transparent data migration, which avoids
replicating the data, offers a solution. In this scheme, only
one copy of the data item exists, and the migration behavior
allows an agent to collect data matching a particular pat-
tern. For example, building engineers might respond to work
orders generated by distributed components sensing partic-
ular needs. A single engineer should take responsibility for
each work order because if multiple engineers pick up the
same job, work will be wasted. When an engineer encoun-
ters a work order he should perform, the work order should
move from the component generating it to the engineer.

When a migration is enabled, all tuples in the view match-
ing the pattern automatically move from their current lo-
cation to the reference agent’s local tuple space. Because
EgoSpaces evaluates contributing agents’ access control func-
tions before determining which tuples belong to the view,
contributing agents implicitly allow tuple transfer. Once mi-
grated, the tuples become subject to the reference agent’s
access controls. This may affect the contents of other views
defined by the reference agent or other agents. If desired,
a migration uses tuple modifiers to change migrated tuples.
For example, an engineer’s agent that collects work orders
might want to mark the migrated tuples as “assigned” to the
engineer so that when others are encountered in the system,
the work orders are not migrated again.

Semantics. A migration reduces to a reaction that re-
moves the trigger and generates a new tuple in the reference
agent’s tuple space:

M = migrate p [tuple modifiers(τ)]

, ρm = react to p remove and out(tuple modifiers(τ)))

If the programmer supplies the optional tuple modifiers, the
tuple placed in the local tuple space is the trigger tuple with
the tuple modifiers applied. Otherwise, the tuple is exactly
the trigger tuple. Even though the migrated tuple is the
same tuple (unless the tuple modifiers change the ID), tuple
migration may trigger reactions in the new location that
have already fired for the tuple in the previous location.
As described in Section 4, this is because bookkeeping for
reactions is done on a per-agent basis.

Enabling a migration with a particular scheduling modal-
ity reduces to enabling the above reaction using the same
scheduling modality and a low priority (e.g., 10):

enableMwith sched modality over ν

, enable ρm with sched modality, 10 over νr

where νr is the same view as ν with an added agent con-
straint that eliminates the reference agent from the view.
An example of this view definition is seen below in the pro-
gramming example. This prevents the EgoSpaces system
from “migrating” tuples that are already local. In providing
behaviors, EgoSpaces uses a scheduling scheme that maxi-
mizes the number of behaviors that execute, e.g., the system
ensures that duplicates are made before tuples migrate. A
migration’s low priority allows other reactions and behaviors
of the same modality to trigger first. If any of these actions
remove the tuple, however, the migration will not occur.

Programming Example. The following code shows
how a programmer would accomplish migration using only
the basic EgoSpaces constructs. This code implements the
work order collection application described above.

ν = [work orders on this floor and adjacent ones]
νr = [data in ν not owned by this agent]
p = 〈(taken, boolean, =false)〉
while(true)

data[] = νr.rdgp(p)
if data 6= null

for i=1 to data.length
ν.inp(data[i])
data[i].changeField(taken, true);
out(data[i])

else
sleep(time)

The tuple output to the tuple space has the same id as
the one read in, but the “taken” field has been set to true.
This code shows just one possible implementation; the ac-
tual code depends on the application’s real-world needs and
desired behavior. As with the reactive constructs, it is pos-
sible that this implementation will miss matching tuples if
they happen to appear and disappear while the thread is
sleeping. To ensure that local tuples are not infinitely mi-
grated, the programmer must explicitly define νr, or the
remote portion of a view ν. In this example, the definition
of νr prevents tuples in the local tuple space (e.g., work
orders created by this engineer that other engineers should
perform) from being “migrated” to their current host.

To accomplish a similar thing using the migration behav-
ior, a programmer must create and enable the behavior over
the view. In this process, the declaration of νr is hidden
from the programmer.

ν = [work orders on this floor and adjacent ones]
p = 〈(taken, boolean, =false)〉
t m(t) = {t.changeField(taken, true)}
M = migrate p t m(t)
enable M with eager over ν

As before, the semantics of this operation differ from that
of the hand-coded migration. Because this behavior is inte-
grated with the system, we can guarantee, for eager migra-
tions, that tuples are migrated if they appear in the refer-
ence agent’s view. Again, this guarantee is conditional on
no other reactive constructs removing the tuple first.

3.2.2 Data Duplication
Under different circumstances than the above, data avail-

ability is more important than data consistency, and an
application would rather duplicate the data items to make
them available upon disconnection, with the knowledge that
duplicates will not remain consistent with the originals. A
duplication behavior copies tuples matching some pattern,
and places the copies in the reference agent’s local tuple
space, leaving the originals unaffected. In our example ap-
plication, the building engineer may collect sensor data for
processing off-site. The engineer does not, however, want to
remove the data because others may need it.

Duplicated tuples may match the original view specifi-
cation and be infinitely duplicated. An agent can prevent
this using tuple modifiers, e.g., by tagging all duplicates
with a new field. Also, duplicated tuples may satisfy view
specifications of other agents. As was the case with the mi-
gration behavior, applications can deal with these concerns
individually using the tuple modifiers. Copies become the

responsibility of the owning agent. Before these tuples ap-
pear in any views, EgoSpaces evaluates the owning agent’s
access control function. Again, because replica management
proves too costly, duplicates do not remain consistent with
originals, even if both persist in the view.

In some application instances, an agent may want to re-
spond to the appearance of a particular tuple and generate
an entirely new tuple in response, a process known as data
generation. The data duplication behavior can accomplish
this behavior by using the tuple modifiers to remove all of
the fields and add all new fields.

Semantics. Duplication reduces to a reaction that does
not remove the trigger and generates a new tuple in the
reference agent’s tuple space. This new tuple must have a
new, unique ID, which is generated by the reference agent.

D = duplicate p tuple modifiers(τ)

, tuple modifiers′(τ) = {τ.newID()}
ρd = react to p and

out(tuple modifiers(τ) ∪ tuple modifiers′(τ))

A duplication which specifies no tuple modifiers creates an
exact copy (with a new tuple id), while one that adds a field
“copied” marks all duplicates.

Enabling a duplication reduces to enabling the above re-
action with the provided scheduling modality and a high
priority (e.g., 1):

enableDwith sched modality over ν

, enable ρd with sched modality, 1 over ν

We use a high priority to ensure that duplication, which
does not affect the original tuple, occurs before other ac-
tions, e.g., migration.

Programming Example. Programming the duplica-
tion behavior using only the basic EgoSpaces operations is
similar to programming the migration behavior except that
the tuple is not removed from its remote location, and the
new tuple created in the reference agent’s tuple space should
have a new unique ID. Imagine an engineer that wants to
duplicate the structural integrity data it encounters on the
current floor and the adjacent floors and then return to his
office to process it. His agent would have code similar to:

ν = [structural agent data on this floor and adjacent ones]
p = 〈(strain,number , any), (acoustic emission,number , any),. . .〉
seenTuples = new Vector()
while(true)

data[] = ν.rdgp(p)
if data 6= null

for i=1 to data.length
data[i].newID()
out(data[i])
seenTuples.add(data[i])

else
sleep(time)

Again, accomplishing a similar functionality using the built-
in EgoSpaces duplication behavior requires much less code
and reduces to defining a view, creating a duplication be-
havior, and enabling it on the view.

ν = [structural agent data on this floor and adjacent ones]
p = 〈(strain,number , any), (acoustic emission,number , any),. . .〉
D = duplicate p
enable D with eager over ν

As in the previous examples, this behavior is enabled as an
eager one over the view. In this case, it is guaranteed that

the behavior will duplicate all matching tuples that appear
in the view without missing any, while the hand-coded ex-
ample may miss some matching tuples. If this duplication
behavior is enabled as a lazy behavior, the semantics become
identical to those of the hand-coded example.

3.2.3 Event Capture
The EgoSpaces primitives, reactions, and behaviors all

operate over the state of the system by interacting with the
available data. Many applications also benefit from the abil-
ity to react to events raised in the system. For example,
an agent might want to be notified when another agent ac-
cesses a particular piece of its data. In our system, examples
of events include the arrival of a new view contributer and
another agent’s data access operations. As an example, the
engineer might adapt his behavior in response to the arrival
of a building inspector.

EgoSpaces events are special tuples. An agent registers its
interest in an event via a pattern over such tuples, and these
interests are propagated to view participants. Once regis-
tered, event notifications for events matching the pattern
propagate from the location of the event to the reference
agent. To prevent superfluous event generation, EgoSpaces
raises event tuples only for specific registrations, and the
event’s callback execution consumes the event tuple created
for it. This allows multiple registrations for the same event,
even by multiple agents such that when a matching event
occurs, all parties registered for it receive notification. A
reference agent uses a transaction to specify the event’s call-
back, which executes after the reference agent receives the
notification. Section 4 covers the details of event tuples and
the mechanism for raising them.

Semantics. The event behavior reduces to a pair of re-
actions. The first generates a copy of the event tuple aug-
mented with the id of this event registration and places it
in the reference agent’s local tuple space. The second reacts
to the generated tuple and executes the callback:

E = event(p) followed by Te(τ)

, eid = newevent id
ρe1 = react to p and out(τ ⊕ {(eID, event id , eid)})
ρe2 = react to (p⊕ {(eID, event id , = eid)}remove

extended by Te(τ)

The ⊕ indicates that the provided field, in this case the new
event id, is added to the tuple or template. The genera-
tion of the event copy and the callback execution are not an
atomic action. However, as long as the reference agent pre-
vents other agents from stealing its event tuples (by using
its access control function), this should not pose a problem.

Enabling an event behavior reduces to enabling the two
reactions defined above:

enable E with sched modality over ν

, enable ρe1 with eager, 1 over ν
enable ρe2 with sched modality, 1 over νl

The first reaction (generating a personal copy of the event)
is enabled with eager modality and high priority, guaran-
teeing the reference agent receives notification of the event
regardless of the behavior’s modality. The second reaction’s
scheduling modality corresponds to the behavior’s modality
and also executes at high priority. This reaction is enabled
on a local view (νl) defined specifically for this behavior

whose constraints cause it to contain only event tuples local
to the reference agent matching p.

Ths behavior’s semantics differ slightly from the others.
Every event behavior, eager or lazy, is guaranteed to be
triggered because a trigger event tuple is created specifically
for each registration. In the lazy case, however, by the time
the agent’s callback executes, the agent or other entity that
caused the event may be no longer connected.

This reduction assumes mechanisms exist to generate
events and clean up event tuples. The former is discussed in
Section 4, and the latter is accomplished by a reaction that
removes event tuples:

ρgc = react to p remove

where p matches any event tuple, for example, p =
〈(eventType, string , any)〉. This reaction is enabled with ea-
ger modality and a priority of at least 2, guaranteeing all
event copies have been generated (at priority 1):

enable ρgc with sched modality, 2 over νe

Every agent automatically has this reaction defined and
enabled on its event view, so it is not necessary for an agent
to redefine this reaction each time it enables an event be-
havior.

Programming Example. Because the event capture
behavior requires the addition of an event generation mecha-
nism, there is no way to accomplish this same behavior using
the initial EgoSpaces operations. In this section, therefore,
we show only an example use of the event capture behavior.
Assume that a tuple indicating the arrival of a new host is
represented with an event tuple similar to the following:

〈(eventType, string, hostArrival), (ID ,HostID ,newHost), . . .〉
Then if the building engineer wants to receive a notification
of the arrival of an inspector on adjacent floors, his appli-
cation agent would have to implement something like the
following code:

ν = [this floor and adjacent ones]
p = 〈(eventType, string, =hostArrival)〉
Te(τ) = transaction over null

begin
[display message to user]

end
E = event(p) followed by Te(τ)
enable E with eager over ν

The null view restriction indicates that the operations in the
transaction do not affect any views.

4. DESIGN STRATEGIES
The design and implementation of the EgoSpaces exten-

sions discussed previously build on the current EgoSpaces
prototype. In some cases (e.g., event generation, reaction
registration), the new features are integrated into the core
system, while others build on top of this integrated system.

4.1 View Construction and Maintenance
View construction and maintenance protocols directly in-

fluence the operations’ implementations. Inefficient view
building limits performance. Our initial efforts led to the
development of a network abstractions protocol that, given
neighborhood restrictions requested by the reference agent,
provides a list of qualifying agents, represented as a tree.
For details of this protocol, see [14]. In short, the protocol
builds the tree and maintains it in the face of mobility. Other
view maintenance protocols under development may provide
some uncertainty regarding the view participants, allowing
similar implementations with slightly weaker semantics.

4.2 Blocking Operations
An efficient implementation of blocking operations takes

advantage of reactions to prevent expensive polling. For
example, an ing operation entails a (low priority) eager re-
action that does not remove its trigger. When this reaction
fires, a transaction follows and attempts an inpg. If this
operation returns anything other than ε, the operation re-
turns and disables its associated reaction. If the operation
is unsuccessful, another operation removed the tuple first.
Because these operations are serializable with respect to the
view, this is within the operation’s semantics.

4.3 Atomic Probe Operations
Atomic probes equate to transactions performed over a

single view. They require locking all view participants, per-
forming the operation, and unlocking the participants. This
locking mechanism is discussed below in the description of
the transaction implementation. Once the agents are locked,
the query is sent to all participants, who return copies of
all matches. For single operations, a tuple is chosen non-
deterministically and returned; in operations also remove
the tuple from the tuple space. Group operations return
all matches found. Agents benefit from intelligent view def-
inition, as this type of operation becomes costly on views
involving large numbers of agents.

4.4 Scattered Probe Operations
A variety of possible implementations for scattered probes

exist because they perform a best effort search for a match.
The simplest implementation polls the view’s participants in
order (by id). When a match is found, it is removed if the
operation is an in and returned. If all participants have been
queried and no match found, the operation returns ε. Group
operations query all participants and return all matches.
More sophisticated implementations of the single operations
can take advantage of the environment; one might query
the physically closest agents or the agents with the highest
bandwidth connections first.

4.5 Transactions
A transaction must operate over several views with

explicit guarantees that its internal state is not visible
from outside. As such, transactions are inherently costly.
EgoSpaces reduces this cost by requiring a reference agent
to explicitly declare what other agents need to be blocked for
the duration of the transaction by providing a list of views
over which to execute the transaction. Because of the un-
derlying view maintenance, the agents contributing to each
view are known, and EgoSpaces can create an ordered list
of them (ordered by id). EgoSpaces then locks the transac-
tion’s participants (including the reference agent) in order.
If any other agent also performs a transaction, it will lock
agents in the same order, avoiding deadlock. If a contribut-
ing agent moves out of the view while a transaction is locking
agents, it must be unlocked before departing. If the trans-
action’s operations are already executing, the agent’s de-
parture must be delayed until the transaction’s completion.
We assume enough time to complete the transaction be-
fore the agent disappears from communication range. Such
a guarantee can be provided using safe distance [13]. If a
new agent moves into the view while the reference agent
is performing a transaction, its arrival is delayed until the
transaction completes.

BA

lower priority
reaction

reaction that
removes trigger

extended by

followed by

t n
(only possible if A=B)

(always possible)

transaction 2

transaction 1

C

Figure 2: The Reaction Mechanism

4.6 Reactions
Because the reactive mechanism lies at the core of the

EgoSpaces extensions, an efficient reaction implementation
is essential to a successful system. This includes the propa-
gation of registrations and the return of notifications.

Each agent keeps a reaction registry (containing all re-
actions it has registered) and a reaction list (containing all
reactions this agent should fire on behalf of other agents,
including itself). A reaction registry entry contains a reac-
tion’s id, the tuple to insert in the tuple space when the re-
action fires (if any), and the transaction that extends or fol-
lows this reaction (if any). A reaction list entry contains the
reaction’s id, the reaction issuer’s id, the reaction’s pattern,
the view’s data pattern, and a boolean indicating whether
or not to remove the trigger. Upon reaction registration, the
message propagates to all view participants (discussed be-
low) and is inserted in each participant’s reaction list. Upon
registration, all tuples in the view are checked against the
pattern. For all tuples that match, the reaction fires. This
firing sends a notification (containing a copy of the trigger)
to the registering agent. If specified, the tuple is removed
from the tuple space. While the reaction remains enabled,
new tuples that satisfy the view specification are checked
against the pattern. For each match, the registering agent
receives a notification and locates the reaction in the reac-
tion registry. If necessary, it performs the appropriate out
operation and either executes or schedules any associated
transaction.

Figure 2 shows the reaction mechanism. Agents B and
C register reactions on agent A, which both match t. The
reaction with the highest priority (B’s reaction) fires first,
generating notification n for B. Because this reaction re-
moves the trigger, C’s lower priority reaction will not fire.
B’s reaction can be extended or followed by a transaction.
The former is only allowed when the trigger is a local tuple
(i.e., A=B).

Reactions are treated as persistent operations by the view
maintenance protocol. During the view’s construction, new
agents receive the reaction registration and add it to their
reaction list. As new agents move into the view’s scope,
they receive any registered reactions. As agents move out of
the view, they remove information regarding the reference
agent’s registered reactions. If these agents return, they
receive the registrations and fire the associated reactions
again if matching tuples exist.

Because reactions should only fire once per registration
per matching tuple, we introduce a bookkeeping mechanism
to maintain the ids tuples that have already been processed.
Each reaction contains one data structure per agent to mon-
itor this. When the reaction fires for a trigger tuple, the id
of that tuple is stored. Before firing for a trigger, the system
checks this data structure. If the reference agent deregisters

the reaction, this data structure is deleted and recreated if
the reaction is reregistered. In this case, the reaction will
refire for duplicate tuples. The behaviors also affect reaction
triggering; e.g., if a tuple triggers a registered reaction and
then migrates to another agent where the reaction is also
registered, the reaction will fire again.

4.7 Behaviors
Because the semantics of behaviors are written as reac-

tions, their implementation relies on the reaction’s imple-
mentation. Again, the key reason for building these behav-
iors into the system is to provide common actions as simple
operations and to allow for code encapsulation and reuse.

4.8 Event Generation
To successfully implement the event capture behavior, we

must add an event raising mechanism to EgoSpaces. In this
scheme, event tuples define system level events. Recall the
example in which the building engineer responded to the
event generated when an inspector arrived. Some example
event types include host arrival and departure, agent arrival
and departure, and data access operations. Each type of
operation has a defined type string (e.g., hostArrival) and
some secondary information (e.g., the HostID for a host ar-
rival or departure event).

The event generation mechanism we add to EgoSpaces
raises events only if some reference agent has registered for
the event. Upon generation, special event tuples are created
for each registered agent, and these tuples are transmitted
to the agent. The event’s callback then executes according
to the registration’s modality (eager or lazy).

5. CONCLUSION
The success of a coordination middleware for ad hoc mo-

bile environments lies in its ability to address the key issues
of this constrained environment. First, the vast amount of
information available necessitates mechanisms to easily and
abstractly limit one’s operating context. Second, the va-
riety of applications forces the middleware to provide pro-
gramming abstractions tailored to specific application do-
mains while remaining general enough to maintain a small
footprint on devices with constrained memory requirements.
Finally, the communication restrictions and responsiveness
requirements inherent in wireless applications directs design.
The original EgoSpaces model began to address the first of
these three concerns. The additional constructs and behav-
ioral extensions introduced in this paper complete this task
and provide the needed high-level coordination mechanisms.
The reduction of the behaviors into a unifying construct,
the reaction, decreases the required middleware support.
Finally, our approach to protocol development and imple-
mentation focuses on limiting communication overhead and
increasing the operations’ responsiveness. With such a di-
rect attack on complexities specific to ad hoc mobile net-
works, EgoSpaces and its extensions promise to transform
application development in this environment. Additionally,
this paper shows how these behavioral extensions can serve
as a powerful abstraction for practical systems. An equally
interesting domain treats these behavioral extensions as a
computational model for investigating well known problems
like routing and self-stabilization in novel ways.

ACKNOWLEDGEMENTS
This research was supported in part by the National Sci-
ence Foundation under Grant No. CCR-9970939 and by
the Office of Naval Research MURI Research Contract No.
N00014-02-1-0715. Any opinions, findings, and conclusions
or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation or the Office of Naval Research.

6. REFERENCES
[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and

M. Pinkerton. Cyberguide: A mobile context-aware tour
guide. ACM Wireless Networks, 3:421–433, 1997.

[2] J. Broch, D. B. Johnson, and D. A. Maltz. The dynamic
source routing protocol for mobile ad hoc networks.
Internet Draft, March 1998. IETF Mobile Ad Hoc
Networking Working Group.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A
programmable coordination architecture for mobile agents.
Internet Computing, 4(4):26–35, 2000.

[4] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and
C. Efstratiou. Experiences of developing and deploying a
context-aware tourist guide: The GUIDE project. In
Proceedings of MobiCom, pages 20–31. ACM Press, 2000.

[5] D. Gelernter. Generative communication in Linda. ACM
Trans. on Prog. Lang. and Systems, 7(1):80–112, 1985.

[6] A. Harter and A. Hopper. A distributed location system
for the active office. IEEE Networks, 8(1):62–70, 1994.

[7] J. Hong and J. Landay. An infrastructure approach to
context-aware computing. Human Computer Interaction,
16, 2001.

[8] C. Julien and G.-C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In Proc. of
the 10th Int’l. Symp. on the Foundations of Software
Engineering, pages 21–30, 2002.

[9] Y. Ko and N. Vaidya. Location-aided routing (LAR) in
mobile ad hoc networks. In Proc. of MobiCom, pages
66–75, 1998.

[10] A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A
middleware for physical and logical mobility. In Proc. of
the 21st Int’l. Conf. on Dist. Comp. Systems, pages
524–533, 2001.

[11] V. Park. and M. S. Corson. Temporally-ordered routing
algorithm (TORA) version 1: functional specification.
Internet Draft, August 1998. IETF Mobile Ad Hoc
Networking Working Group.

[12] G. P. Picco, A. L. Murphy, and G.-C. Roman. On global
virtual data structures. In D. Marinescu and C. Lee,
editors, Process Coordination and Ubiquitous Computing,
pages 11–29, 2002.

[13] G.-C. Roman, Q. Huang, and A. Hazemi. Consistent group
membership in ad hoc networks. In Proc. of the 23rd Int’l.
Conf. on Software Engineering, 2001.

[14] G.-C. Roman, C. Julien, and Q. Huang. Network
abstractions for context-aware mobile computing. In Proc.
of the 24th Int’l. Conf. on Software Engineering, pages
363–373, 2002.

[15] E. Royer and C.-K. Toh. A review of current routing
protocols for ad hoc mobile wireless networks. IEEE
Personal Communications, pages 46–55, 1999.

[16] N. Ryan, J. Pascoe, and D. Morse. Fieldnote: A handhelod
information system for the field. In 1st International
Workshop on TeloGeoProcessing, 1999.

[17] D. Salber, A. Dey, and G. Abowd. The Context Toolkit:
Aiding the development of context-enabled applications. In
Proc. of CHI’99, pages 434–441, 1999.

[18] R. Want et al. An overview of the PARCTab ubiquitous
computing environment. IEEE Personal Communications,
2(6):28–33, 1995.

