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ABSTRACT

The design of ad hoc mobile applications often requires
the availability of a consistent view of the application
state among the participating hosts. Such views are
important because they simplify both the programming
and verification tasks. We argue that preventing the
occurrence of unannounced disconnection is essential to
constructing and maintaining a consistent view in the
ad hoc mobile environment. In this light, we provide
the specification for a partitionable group membership
service supporting ad hoc mobile applications and pro-
pose a protocol for implementing the service. A unique
property of this partitionable group membership is that
messages sent between group members are guaranteed
to be delivered successfully, given appropriate system
assumptions. This property is preserved over time de-
spite movement and frequent disconnections. The pro-
tocol splits and merges groups and maintains a logical
connectivity graph based on a notion of safe-distance.
An implementation of the protocol in Java is available
for testing. The implementation is used to implement
Lime 1, a middleware for mobility that supports trans-
parent sharing of data in both wired and ad hoc wireless
environments.

Keywords

Mobility, ad hoc network, group membership, consis-
tency.

1 INTRODUCTION

Group membership has been an important problem in
the area of fault-tolerant distributed computing and has
been the subject of extensive investigation [9, 1, 6, 21,
2, 16, 19, 23, 20, 5, 8]. Solving the problem requires
the provision of a protocol/service that establishes and
maintains some kind of agreement over time among par-
ticipating processes/servers about who is currently in
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the group, despite the presence of failures in the cor-
responding distributed system. Such a group member-
ship service simplifies the development of many fault-
tolerant distributed applications [9] and is widely used
for supporting reliable group communications.

We encountered a group membership problem in our at-
tempt to support group computation in ad hoc mobile
environments. Peer-to-peer or group cooperation are
common scenarios for ad hoc mobile applications. When
two or more mobile hosts come together to form a group
working on the same problem, it is sometimes essential
for all of them to have the same view of the joint com-
putation state when they start working or when some
of the members leave the group. One important piece
of group state information is membership in the group,
i.e., who is and who is not in the working group. To see
why the same view about membership and the order
of membership changes are important, consider a com-
putation scenario that involves four hosts, Ha, Hb, Hc,
and Hd. Initially Ha and Hb form a group; they agree
that if Hc joins the group, they will execute protocol
C; if Hd joins the group, they will execute protocol
D; if Hc and Hd join at the same time, they will ex-
ecute protocol CD. If Ha and Hb do not observe the
same order of joins by Hc and Hd, (e.g., Ha observes
Hc joining first, and Hb observes Hd joining first) then
the group will result in a protocol execution confusion:
Ha will execute protocol C while Hb will execute pro-
tocol D. The importance of agreeing on the same view
about membership state introduces the need for group
membership services, which maintain a consistent view
about the membership among group members.

The group membership problem we encountered is new
in the sense that it has special requirements that are
different from all previously studied ones. It not only
requires availability/progress in the presence of network
partitions, as most partitionable group membership ser-
vices do, but also requires consistency when partition
occurs, which none of the previous partitionable group
membership services support [17, 4, 3, 2, 15, 14, 13, 23],
as far as we know. The reason why the previous par-
titionable group membership services do not support



consistency in the presence of partition is fundamental.
Because the assumed system model is asynchronous and
distributed, agreement/consensus is impossible [18, 7].
Furthermore, network partition in a fixed network is
usually infrequent and short-lived. This makes manual
checking a viable option to solve any inconsistencies that
might occur during network partition. Yet in our case,
we emphasize the consistency requirement because net-
work partition is a frequent event in ad hoc mobile envi-
ronments and the cost of “short-term” inconsistency can
be very high in mobile computation scenarios. Mobile
hosts interact over wide spaces, and inconsistency can
propagate indefinitely and cause irreparable damage in
mission critical applications. Similar strict consistency
has been considered by Cristian [12] for the primary
group membership problem in timed-asynchronous sys-
tems, but has not been investigated for the partitionable
group membership problem.

The goal of our group membership service is not only
to create a consistent view of group membership among
participants, but also to help users and application pro-
grammers avoid the complexities introduced by poten-
tial data inconsistencies caused by mobility-induced link
failures. Mobility-induced link failures refer to the com-
munication failures caused by mobile units moving out
of each other’s communication range. The key char-
acteristic of a mobility-induced link failure is that it
is unrecoverable and more damaging than link fail-
ures in fixed networks. For instance, a message sent
while a physical network partition is taking place can
be in a dubious state of delivery. That is, one side
(sender/receiver) thinks it is “delivered”, and the other
side (receiver/sender) thinks it is not. To make mat-
ters worse, no mechanism exists for either party to
disambiguate this situation. The link failures occur-
ring in fixed networks are usually recoverable, in the
sense that the communicating peers can always use
an acknowledgement-retransmission-based protocol like
TCP to ensure a link failure is transient, because in
a fixed network any failed link will “eventually come
back”. The unrecoverbility of mobility-induced link
failure can result in permanent data inconsistency and
poses a great challenge to mobile application program-
mers. Our group membership service tries to help pro-
grammers in this matter by guaranteeing that the com-
munication between group members will not suffer from
mobility-induced failure.

The strong requirements of the new group member-
ship service make it impossible to implement in asyn-
chronous systems. In order to make this strong group
membership problem solvable, we introduce a certain
level of synchrony into our system model. We assume
communication service is reliable in each physical net-
work partition and has a bounded message delivery time

td within the partition. Yet, this alone doesn’t solve the
problem. As we mentioned earlier, a message sent at
time t < td before a physical network partition takes
place can be in a dubious state of delivery. We introduce
a key concept called safe distance to solve the problem
by preventing a group-related message delivery to fall
into the region/duration of network instability caused
by the partitioning process. We rely on location infor-
mation to decide when a host within communication
range is admitted to or eliminated from a group. The
policy is conservative in nature in order to ensure that
the changes in group membership appear to be atomic,
i.e., are serializable transactions. The algorithm accom-
modates both the merging of groups and the partition
of one group into multiple disjoint groups.

We have implemented a version of the strong partition-
able group membership protocol in Java. It supports
Lime, a middleware for rapid development of mobile
applications. The implementation works properly if the
system assumptions of the protocol are met. The valid-
ity of the system assumptions and how they might be
implemented are discussed later in the paper.

In the next section, we formally specify the system re-
quirements and the definition of the group membership
service. In section 3, we introduce the concept of safe
distance and present our solution strategy for the group
membership problem. Section 4 describes an implemen-
tation of our protocol. Section 5 analyzes the relation-
ships between safe distance, network delay, and mobile
host speed. Discussions and conclusions appear in Sec-
tions 6 and 7, respectively.

2 PROBLEM DEFINITION

Our ultimate goal is to provide application developers
with the ability to maintain a consistent global data
structure in a setting in which mobile hosts come and
go as they please and engage in reliable transient collab-
orative activities. Applications that require this level of
consistency are not common today, but with the advent
of wireless communication, the situation is expected to
change dramatically. Any situation that demands (for
legal or technical reasons) the presence of two or more
specific entities to carry out a task may impose the need
for a consistent membership view, as seen from the ex-
ample in the previous section. One can envision the
futuristic notion of an electronic witness to a contrac-
tual transaction or the circumstance in which routine
maintenance of commercial aircraft requires secure log-
ging in the presence of an FAA inspector carrying an
authorized electronic badge.

In this context, the group membership service needs to
provide an accurate snapshot of the membership view
all the time and a message entrusted in a view shall be
guaranteed to be delivered to members in that view, de-
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spite motion and motion-induced disconnections. This
property makes the group membership service useful for
many mobile applications. Next we seek to formally de-
fine the group membership problem.

Membership Specification

The group membership service can be specified by defin-
ing its local state variables and the safety and progress
properties that it satisfies. We use terminology and no-
tation similar to that of Cristian [11] to specify the prop-
erties. Let P be the set of all hosts that exist over time.
We assume each host has a unique identifier denoted by
i and drawn from the integer set Z+, and all groups that
exist over time have identifiers drawn from a partially
ordered set G. Each host in P maintains the following
two state variables: g and π. g is the group identifier,
and π is a subset of P . π is also called the membership
view of P , or “view” for short. Let T = [0,∞) be the
range of time. Two functions are introduced to simplify
the phrasing of the specification:

group : P × T −→ G

mem : P × T −→ 2P

group(p, t) yields the group identifier for host p at local
time t;mem(p, t) yields p’s local view of the membership
π at time t.We call a group g if its identifier is g. We call
g′ a successor of group g if there exists a member p of
g such that the next group p joins after leaving g is g′.
Like in [11], succ(g, p) is used to denote the successor
of group g relative to host p; pred(g, p) is used to to
denote the predecessor of group g relative to p. Given
these terms, the group membership service is specified
in the following manner:

• Self inclusion: a host is always a part of its mem-
bership view, i.e., p ∈ mem(p, t) 2

• Local monotonicity: group identifiers installed on
each host are in increasing order, i.e., pred(g, p) <
g < succ(g, p).

• Initial membership view: a host always installs it-
self as the only member in its view when it starts,
i.e., mem(p, tinit) = {p}.

• Membership Agreement: If hosts p and q have
the same group id, then they have the same views,
i.e., group(p, tp) = group(q, tq) ⇒ mem(p, tp) =
mem(q, tq).

• Membership change justification: The successor
of group g w.r.t p is either a proper superset or a
proper subset of the group g.

2To simplify notation, we assume unrestricted variables are
universally quantified

• Same view message delivery: If host p sends a mes-
sage mpq to host q at time t, and q is in mem(p, t),
then mpq is guaranteed to be delivered to q at time
t′, and mem(q, t′) = mem(p, t).

• Conditional eventual integration: If two groups sat-
isfy the merging criteria and do so for long enough,
they will merge into one group.

• Conditional group split: A group splits only if it
is necessary, i.e., when a split condition is met.

The first two safety requirements are common to most
partitionable group membership specifications [15, 16,
17, 5, 8]. Our initial membership property differs from
most of those in the literature [15, 16, 17, 5, 8] and is
relatively unique, catering to the reality of ad hoc mo-
bile environments: a mobile host may start up with no
knowledge of other hosts in the world. The member-
ship change justification is introduced to ensure some
continuity in view change properties.3

The same view message delivery guarantee is introduced
to add more predictability to the group membership ser-
vice for some applications. With this unique property,
application developers using the service are assured that
message delivery is reliable within the scope of the view.
In other words, within the membership view, program-
mers no longer need to worry about the complexity of
potential inconsistency caused by message loss due to
mobility.

The conditional eventual integration and the condi-
tional group split are introduced to avoid the classical
problem of “capricious split” [15]. Without requiring
eventual integration, a group membership implementa-
tion can simply not perform any merging of groups and
still satisfy the specification by keeping all the groups
singletons. The merging and split criteria in general
are application dependent. In this paper, we try to use
weakest merging and split criteria. The merging cri-
terion is weakest in the sense that it only requires the
group membership properties to be satisfied for the new
group. The split criteria is weakest in the sense that the
group splits only if the group membership property can-
not be guaranteed without doing so. No other condition
outside of the membership specification is forced.

System Model

Our system model assumes that there are no host crash
failures and no omission/performance failures caused
by network congestion. The only failure in our sys-
tem model is the communication failure caused by hosts
moving out of each other’s communication range. This

3Note that this requirement is very different from the addition
justification and the deletion justification combined in Cristian’s
work [11].
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model is a reasonable starting model for ad hoc mobile
systems for two reasons. First, mobility-induced discon-
nection is much more frequent than host crash failure
given current hardware and software technology. Sec-
ond, a mobile network in theory can always be equipped
with enough bandwidth for communications needed by
the applications on top of it, such that congestion can
be made a rare event compared to the occurrence of
partitions.

Our system model also assumes that the underlying
communication service is reliable and timely [10], in the
sense that a message entrusted to it is guaranteed to
be delivered within a time bound td if the sender and
the recipient are physically connected during that time.
By physically connected we mean two hosts are either
within each other’s communication range or transitively
connected through other hosts.

For simplicity, we assume that all hosts have the same
communication radii and the communication links are
bi-directional. We also assume that we have no knowl-
edge of the mobility patterns of the mobile hosts except
that the movement is continuous in space and has some
upper bound Vmax on speed. We purposely choose this
extreme case in order to explore the limits imposed on
the membership problem by ad hoc mobility. The basic
ideas behind our solution strategy are explained in the
next section.

3 SOLUTION STRATEGY

Key to our strategy to implement the strong group
membership is the notion of safe distance among hosts
and groups, i.e., the idea that if hosts are “close
enough”, disconnection is not possible for some time
and that if they are “just far enough” there is plenty of
time to carry out a configuration change before discon-
nection occurs. In other words, we define a logical con-
nectivity graph over the physical connectivity such that
an edge appears in the logical graph if and only if two
hosts represented by corresponding vertices are within
safe distance. Group membership reflects partitions in
the logical connectivity graph rather than partitions in
the physical connectivity graph. In the remainder of
this section we explain the safe distance concept and
present the discovery and reconfiguration protocols.

Key Concept: Safe Distance

Given two mobile hosts equipped with compatible wire-
less transmitters of equal range R, we state that the
distance between them is a safe distance if it does not
exceed a threshold r(v, t, t′), defined as the maximum
distance at which one can guarantee that any commu-
nication task that takes at most t time units can be
completed with certainty, assuming the two hosts move
randomly at a speed that does not exceed v, and the
upper bound for a single atomic configuration change is

t′. Clearly, safe distance cannot be defined in absolute
terms but must be considered relative to a context hav-
ing certain mobility and application characteristics. For
example, in Figure 1(a) mobile hosts a and b are within
communication range (R), i.e., they are able to talk to
each other directly. They may want to be in the same
group and start coordination or resource sharing imme-
diately. Yet, they cannot do so at this point if they
wish to guarantee message delivery within the group.
This is because a and b can move out of each other’s
range immediately after acknowledging membership in
the same group, with the result being that messages
between them could not be delivered successfully. The
problem arises from the mobile nature of the hosts and
the asynchronous nature of message passing. Our so-
lution is to require a and b to agree on membership
in the same group only when they are “close enough”
(Figure 1(b)), i.e., they are at a distance

r ≤ R− 2v ∗ (t+ t′) (1)

In this context, t is the upper bound for network la-
tency (because the consistency requirement is reliable
message delivery) and t′ is the time needed for a group
level operation (merge or split) already in progress to
complete. The factor 2v accounts for the worst case
movement pattern, i.e., a situation in which a and b are
moving in opposite directions at maximum speed. One
can readily see that with this restriction, the reliable
message delivery between group members is guaranteed
because it takes more than t+ t′ time for the two group
members to become physically disconnected, no matter
how they move. Within this time any message delivery
completes even if a configuration change is in progress.

b

a
R

R

a

(b)(a)

r

R

b

Figure 1: An example of safe distance

We call a group safe if any two members of the group
are connected via a path along which all consecutive
hosts are at a safe distance. We extend the notion of
safe distance from pairs of hosts to pairs of (safe) groups
by requiring that at least two hosts, one in each of the
two groups, are at a safe distance. While this definition
seems to assume that the safe distance is independent of
group size, this assumption is generally not true because
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both simple message delivery and reconfiguration actu-
ally depend on the number of hops that messages must
traverse en route. Because the time bound on message-
passing depends on the group size, our approach works
only when the group size is limited by the nature of
the application or is constrained by the reconfiguration
protocol.

The concept of safe distance is used to determine when
two groups can be merged and when a group must be
split in order to maintain the requirements for group
membership. To find out whether two groups are within
safe distance, one must know the location of all hosts
in the region. Since it is too expensive for everyone
to keep track of the location of others all the time, we
designate a leader for each group to do the job. All hosts
in a group constantly report their location to the leader,
and the leader keeps the map (Π) of the group, checking
constantly to see if the group members are still within
safe distance of each other and whether new hosts are
present in the region. The map of a group records the
spatial location of group members.

Group Discovery Protocol

As defined in the membership specification, each mobile
host is given a unique host identifier id, and starts as a
singleton group containing itself as the only member.

For a group to merge with another group, it must be
able to find out which other groups are present in its
vicinity. The discovery protocol carries out this func-
tion and serves as a supporting layer for the group mem-
bership maintenance protocol, i.e., the reconfiguration
protocol. In our discovery protocol, hosts in each group
use safe distance as a criteria for finding out who is close
enough to be a merge candidate, and they report any
positive discoveries to their respective leader. As men-
tioned previously, every group has an assigned leader.
For simplicity, the host with the smallest identifer in a
group is chosen as the leader of the group. For con-
venience, we also choose the host identifier (id) of the
leader to serve as the name for its group (gid). Note that
gid is not the same as the partially ordered group iden-
tifier g used in the membership specification. Rather,
gid combined with a group change sequence number τ
(discussed in more detail later in the paper) yields the
partially ordered group identifier g.

Our discovery mechanism requires every host to peri-
odically broadcast a hello message which contains its
location information (xy) and its group identifier (gid).
When two groups move close, several members of one
group may receive hello messages from members of the
other group. When a host u receives a hello message,
it checks the sender’s group identifier and location. If u
finds the sender, say v, to be a member of another group
located within safe distance, u passes on the information

to its group leader that, in turn, will use it for merge re-
lated operations. As all group members are involved in
discovery, it is possible for the group leader to receive
multiple copies of the same notification regarding the
appearance of one host. Duplicates are discarded.

There are several things one can do to reduce discov-
ery costs. First, each host may attach discovery infor-
mation to its periodic location updates to the leader
rather than send them separately. This pushes the dis-
covery information towards the leader almost for free,
since the location and new neighbor information repre-
sent only a few bytes that fit easily in a single packet.
The cost associated with this piggy-backing method is
the need for each host to keep a short-term memory
(ξ) of newly discovered neighbors. Second, by utilizing
neighborhood information already available at the MAC
layer, a host may send neighbor greetings only when the
MAC layer discovers a new neighbor. This reduces the
discovery cost significantly in the case when the net-
work topology changes infrequently. The drawback for
this method is its dependence on the implementation
of the MAC layer on the specific host supporting the
application. We chose not to do so in our prototype.
The group discovery protocol allows the group leader to
maintain a list of groups which are close enough to be
considered for merging. We present the group merging
protocol in the next section.

Reconfiguration Protocol

The reconfiguration protocol is the key layer in our
group membership service. It seeks to merge groups in
contact and to split groups that can no longer stay to-
gether. From the information collected in group discov-
ery, a leader may find that there are one or more poten-
tial candidate groups in its vicinity suitable for merging.
If so, it will initiate merging negotiations with the set
(Θ) of candidates. Once an agreement is reached regard-
ing who is to participate and who is responsible for co-
ordinating the merger, all affected hosts receive a formal
notification about the configuration change from the co-
ordinator. Furthermore, after a host receives a group
change notification, in order to prevent messages sent
in one configuration from being processed in a different
configuration, it must perform a barrier synchroniza-
tion. One way of accomplishing this is to flush the mes-
sages in transit before doing anything in the new config-
uration. In addition, the participants need to delay the
processing of messages arriving from “future” configu-
rations until the synchronization is completed. Message
delaying can be accomplished by tagging each message
with a configuration sequence number (τ). Flushing re-
quires the participating hosts to send extra messages
whose arrivals guarantee that no more messages orig-
inating from a prior configuration are in transit. The
result is an atomic configuration change. Another way
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Figure 2: Merging Process

of creating the synchronization boundary is by using
a time-out delay, if message delivery has a time bound.
Partitioning works in the same way but without any ne-
gotiation because it involves only one group at a time.
Next, we use several simple examples to illustrate the
merging and partition processes.

An example of merging
Figure 2 depicts the merging process between two
groups, G1 and G2. G1 contains hosts a and b, the
latter being the leader. G2 contains hosts u, v, w, and
has u as its leader. Assume u finds G1 to be in its
vicinity through the discovery data sent in by v, and
G1 is safe for merging. Next, u initiates the merger
by sending a merge-request message to b, the leader of
G1. If willing to participate in the merger, b sends
back an acknowledgment (ACK) along with its group
membership list and its configuration sequence num-
ber; otherwise, it sends back a disagreement message
(NACK), which forces u to abort the merger with G1.
If u gets back an ACK, as in Figure 2, it generates a
new configuration number by adding one to the larger
of the current configuration numbers of the two groups.
Next, it sends a merge-commit to b and a merge-order to
its own members. Both the merge-commit and merge-
order messages contain the new group membership list,
the new configuration number, and the new leader iden-
tity. Upon receiving the merge-commit message, b sends
a merge-order to its own members. A host enters the
flushing phase after it gets a merge-order message. It
sends a flush-message to all other members of its origi-
nal group and stops sending any other messages until it
has received all the expected flush-message(s) from its

group members in the old configuration.4 After receiv-
ing all the expected flush-message(s), a host enters the
new configuration and all new messages it sends will
have the new configuration number in their headers.5

Clearly, hosts may enter the new configuration at dif-
ferent times. It is possible for a host that is still in the
old configuration to receive a message from a host that
has already reached the new configuration, as shown in
Figure 3. In such cases, the recipient must postpone
the processing of this “future” message until the new
configuration is established, thus pretending that the
message is “received” in the new configuration. Other-
wise, the consistency requirement that messages must
be sent and received in the same configuration would
be violated. Obviously, implementation of this requires
a host to check each received message for the configura-
tion in which it was sent before it is processed.

It is possible for u and b to initiate the merging at the
same time. In this case, a tie-breaking mechanism de-
cides who is to coordinate the merger. We use the id
as the tie-breaker. The host with the lower id aborts
its merger request when the collision happens. Addi-
tional complications may appear when more than two
groups are involved. For example, u might have entered
a merging process with other groups when it receives b’s
merge-request message, or it may no longer be a leader
because of a merge with other groups or due to a parti-

4The dashed arrows in Figures 2, 3 and 4 represent flush mes-
sages

5While the flush mechanism is a straightforward way to achieve
the desired synchronization, it is expensive for large groups. In
such cases we can replace it with a time-out mechanism, i.e., every
host stops sending messages for the duration of one round trip in
the network.
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Support Functions

update(ξ, gid); Add gid to the list of newly discovered leaders.
update(Θ, ξ′); Update merge contact list Θ with newly discovered leaders from a member’s report.
update(Π, v, xy′); Update group map Π with group member v’s new location, xy′.
MergeSafe(Π,Π′, P ); Verify that the merger of Π with Π′ is safe, according to policy P.

P includes safe distance information and the merging status of this group member.
For example, if a host is in the process of merging, it is not safe to start a merger.

ClearOldChannels(); Clear all group communication channels.
GeneratePartitions(Π, P ); Generate partitions for Π, subject to policy P.

This function generates a set of triples of the form 〈Πnew, πnew, gidnew〉.

Figure 5: Support Functions
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tion process. In all such cases, u replies with a NACK.

An example of partitioning
Figure 4 illustrates the partition process. Assume that
two subgroups of the group G, Z1 and Z2, are moving
away from each other. By constantly checking the lo-
cations of its group members, the leader u is able to
identify if its group is in a safe spatial configuration,
given predefined distance-based safety criteria. Once
the leader u deems the configuration to be no longer
safe, it immediately issues a split-order message to all
the group members. A split-order contains three pieces
of information: (1) the new leader (gid) for the recip-
ient, (2) the new group membership list for the recipi-
ent, and (3) the new configuration number, which is the
old configuration number incremented by one. u always
chooses the host with the lowest id in each subgroup to
be the new leader for that subgroup. Upon receiving
a split-order message, a host enters a message flushing
phase, similar to the third phase in the merge process.
Each host waits until it is sure that all messages sent
to it by group members in the previous configuration
are received, either by receiving all the expected flush
messages or by employing a time-out delay. Each newly
assigned leader assumes its leadership role after the syn-
chronization.

The group leader must check its group configuration
frequently enough in order to discover any unsafe situ-
ation in a timely fashion. As we will see in the analysis
section, the threshold for safe distance does depend on
the checking frequency, in addition to factors discussed
earlier. The example above shows a process in which a
group partitions itself into two other groups. In general,
a leader might find it necessary to split its group into
more than two subgroups in order to preserve the safe
distance property. The partition process is the same.
Next we explain how the leader determines when the
group configuration is not safe and how to split it into
safe sub groups.

The split algorithm
To determine if its group configuration is safe, the leader
maintains a logical connectivity graph. In the logical
connectivity graph, two nodes have an edge of weight
one between them if the physical distance between them
is less than a partition safe distance (dp) and no edge
between them otherwise. Whenever a new location is
reported, the graph is updated by recomputing all the
edges to the reporting node. This takes O(N) steps
per update, where N is the number of nodes in the
group. Given the logical connectivity graph, the depth
first search (DFS) algorithm can be used by the leader
to determine connected clusters in O(N) steps. So the
total time complexity for our splitting algorithm is lin-
ear.

Figure 6 summarizes the state variables a node needs to
keep for the execution of the protocol. Figure 5 shows
the support functions used in the protocol presentation
that follows. A brief description of each function is in-
cluded.

The protocol is presented in Figure 7. The table lists
each action taken by host u, the action’s precondition,
and the action’s effect, given the satisfaction of the pre-
condition. There are two types of actions in the system.
The first column of the figure shows actions that are
triggered by a change in the local state at host u. The
second column lists actions that are triggered by the ar-
rival of the message at host u. Each of the actions in
the latter group have the form Get Message. For each
of these, there is a corresponding Send Message. For
example, Get NeighborHello at host u is coupled
with a Send NeighborHello at another host. The
figure shows only the protocol executed at a single host,
u, in the system. Each host in the network has its own
instance of the actions shown.

Our implementation of the group membership mainte-
nance protocol is discussed in the next section.

4 IMPLEMENTATION

The implementation of the protocol is written en-
tirely in Java. The package’s main component is the
GroupMember object, which contains several threads
that control communication between the hosts in the
network. Each different type of communication is han-
dled by a different Java thread. These threads co-
ordinate with each other through their owner object,
the GroupMember. As required by the algorithm, this
communication includes beaconing (using a multicast)
a hello message, listening for other hosts’ hello mes-

State Variables

id :node identifier
gid :group identifier
xy :node location constantly updated by

some external mechanism
τ :group transaction sequence number
π :group member list
ξ :the set of newly discovered leaders
Π :group map containing all members’ locations

(empty except for the leader)
Θ :the set of merging contacts, all of which

are leaders of other groups
(empty except for leaders)

UPdateT imer:timer for periodic location update
GreetingT imer:timer for periodic neighbor discovery

Figure 6: State Variables
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Actions triggered by changes in the local state

NeighborGreetings(u)
Precondition:

GreetingT imer expires
Effect:

reset GreetingT imer;
NeighborBroadcast NeighborHello(u, gid);

LocationUpdate(u)
Precondition:

UpdateT imer expires or ξ changes;
Effect:

reset UpdateT imer;
Send InformLeader(u,xy,ξ) to gid;

Merge(u)
Precondition:

u is the leader;
Θ is not empty;

Effect:
add u’s members to a new map (Πnew = Π);
add u’s members to a new list (πnew = π);
for each v in Θ

Send MergingRequest(u,Π) to v

endfor

for each v in Θ
if Get MergingACK(v, τv,Πv)

update group map (Πnew = Πnew +Πv);
update group member list (πnew = πnew ∪ {Πv});
store τv;

endif

else if Get MergingNACK(v)
remove v from Θ;

endif

endfor

if Θ is not empty
set τ to the max of all τv received;
for each v in Θ

Send MCommit(πnew, gid, τv, τnew) to v;
endfor

for each w in π

Send Merge(πnew, gid, τnew) to w;
endfor

empty Θ;
endif

update group member list (π = πnew);
update group map (Π = Πnew);

Partition(u)
Precondition:

u is the leader;
partition predicted based on location updates;

Effect:
Ψ = GeneratePartitions(Π, P );
for each 〈Πnew, πnew, gidnew〉 in Ψ

for each w in πnew

Send Partition(Πnew, πnew, gidnew, τ) to w;
endfor

endfor

empty Ψ;

Actions triggered by the arrival of a message

Get NeighborHello(v, gid)
Precondition:

true;
Effect:

update(ξ, gid);

Get InformLeader(v, xy′, ξ′)
Precondition:

u is the leader;
Effect:

update(Θ, ξ′);
update(Π, v, xy′);

Get MergingRequest(v,Π′)
Precondition:

true;
Effect:

if MergeSafe(Π,Π′, P )
Send MergingACK(u, τ,Π) to v

empty Θ;
update safety condition P;

else

Send MergingNACK(u) to v;
endif

Get MCommit(πnew, gidnew, τu, τnew)
Precondition:

u is the leader;
transaction numbers match (τ == τu);

Effect:
ClearOldChannels();
for each w in π

Send Merge(πnew, gidnew, τnew) to w;
endfor

update group id (gid = gid′);
update transaction sequence (τ = τnew);
update group member list (π = πnew);
empty Π;

Get Merge(πnew, gidnew, τnew)
Precondition:

true
Effect:

ClearOldChannels();
update group id (gid = gidnew);
update transaction sequence (τ = τnew);
update group member list (π = πnew);

Get Partition(Πnew, πnew, gidnew, τnew)
Precondition:

true;
Effect:

ClearOldChannels();
update group id (gid = gidnew);
update transaction sequence (τ = τnew);
update group list (π = πnew);
if u == gid

update group map (Π = Πnew);
endif

Figure 7: Protocol specification for host u
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sages, forwarding discovery information to the group
leader, responding to merging and partitioning instruc-
tions, and updating the group leader with current loca-
tion information. Group leaders carry the additional re-
sponsibilities of listening to their group members, com-
municating with other nearby group leaders, and peri-
odically calculating the group’s safety.

The group membership package presupposes ad hoc
routing with multicast support to be running on every
host participating in the network. Therefore many of
the messages discussed above are routed through other
hosts in the network. As such, the leader of a group
need not be directly connected to every member of the
group.

The interface to the group membership protocol builds
on the EventObject and EventListener classes in
the Java language. An application running on a
host that uses the group membership package to par-
ticipate in groups in the network simply creates a
GroupMember object. It then registers as a listener to
GroupChangedEvents generated by its GroupMember ob-
ject. When a new group configuration arises, the group
membership package generates a GroupChangedEvent

that is passed to all registered listeners. The application
can take further actions, based on the implementation
of this listener.

The GroupMember interface allows the user to spec-
ify the parameters needed for safe distance calculation.
For example, the creator of the GroupMember can spec-
ify the host’s maximum speed and its communication
range. In addition to parameters for safe distance, the
GroupMember creator also specifies the frequency of the
hello beacon and the frequency of the group update mes-
sages to be sent to the leader.

While the implementation of the algorithm was a
straightforward exercise in the use of Java threads
and socket programming, some differences worth noting
cause the implementation to vary from the examples
presented in the previous sections. As presented, the
protocol assumes that application level messages and
the group membership protocol messages are sent on
the same channel. As indicated in the discussion on
merging and partitioning, ensuring that messages are
received in a FIFO order and that application messages
are sent and received in the same group configuration
requires some additional work. The example presented
in the previous section used flush messages and config-
uration numbers to accomplish this. The implementa-
tion, however, attempts to separate as much as possible
the group discovery and maintenance from the applica-
tion level and therefore leaves the flush messages and
configuration numbers presented as part of the example
protocol to the particular application. This separation

allows each application to choose its own mechanism for
ensuring atomicity. Applications with weak consistency
requirements may use the group membership package
without any atomicity guarantees.

Another concern addressed in the design was the clean
separation between the group membership package and
the application. By building on a model already in-
tegral to the Java language, the simple interface re-
quires only that the application programmer under-
stand the Java event model to successfully use the pack-
age. The simple interface composed of a single type
of listener and a single type of event provides the de-
sired ease of understanding. Figure 8 shows the pub-
lic interface of the GroupMember object. The construc-
tor accepts parameters for the safe distance calcula-
tion. With a handle to the GroupMember object, the
programmer can start, stop, pause, and resume the
GroupMember object. These methods affect the run-
ning of the threads that the GroupMember object uses
for communication. The programmer can also add and
remove a GroupChangedListener. The two final meth-
ods are not used often by the application programmer
as they are used by other packages necessary for the
group membership protocol to function properly. The
first method allows a location generating package (e.g.,
a GPS monitor) to update the physical location of the
host. The second method allows the GroupMember to
respond to beacon events that are generated by a sep-
arate beaconing package. These beacons are the multi-
cast hello messages discussed previously. Figure 9 shows
an example usage of the group membership package.

As indicated in the previous sections, this protocol was
developed because the Lime middleware requires the
ability to transparently and consistently reconstruct the
shared tuple space to reflect the physical mobility inher-
ent in ad hoc networks. The Lime middleware as origi-
nally released requires a mobile agent or host to explic-
itly announce its intention to engage or disengage from
a group. The integration of this protocol with the Lime

middleware transforms the processes of engagement and
disengagement into transparent reconciliations of Lime

information when agents or hosts move in the network
thereby changing their status with respect to the pro-
tocol’s safety requirements. In such a way, we are able
to implement a mobility-aware version of Lime.

Because the group membership package is completely
independent of Lime or any other application that may
use it, changes to the package do not affect Lime, as
long as the changes to the package do not affect its in-
terface. This allows for future ‘pluggable’ versions of
the group membership package to replace the current
version. One can envision an implementation in which
the safe distance is based on something more complex
than physical location.
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public class GroupMember implements GroupBeaconListener {
public GroupMember(InetAddress leaderAdd, Location loc,

int period, int range, int maxSpeed,

int updatePeriod, int networkDelay);

public void start();

public void stop();

public void pause();

public void resume();

public synchronized void addGroupChangedListener(GroupChangedListener gcl);

public synchronized void removeGroupChangedListener(GroupChangedListener gcl);

public void setLocation(Location newLocation);

public void newGroupBeacon(GroupBeaconEvent gbe);

}

Figure 8: The Public Interface of the Group Membership Package

// The test class monitors the changes to a particular group member’s group

// An instance of this class runs on each participating host

public class Test implements GroupChangedListener {
// keep a handle to the group member object

private GroupMember g;

// integer count of the number of changes that have occurred

private int changes = 0;

public Test(GroupMember g) {
this.g = g;

// make this object a listener for events generated by the package

g.addGroupChangedListener(this);

}
// this method is required by the GroupChangedListener interface

// it is called when a new GroupChangedEvent occurs

public void groupChanged(GroupChangedEvent gce) {
// log the receipt of the change

changes++;

System.out.println(‘‘Change: ‘‘ + changes);

}
public static void main(String[] args) {

// create a new GroupMember object for this host

GroupMember g = new GroupMember(InetAddress.getLocalHost(),

new Location(0,0), 1000, 3, 0, 100, 0);

// create an instance of the Test class to monitor the GroupMember

Test t = new Test(g);

// start the GroupMember

g.start();

}
}

Figure 9: An Example Use of the Group Membembersip Package

5 SAFE DISTANCE ANALYSIS

The key feature of our algorithm is the use of location
information and safe distance in the group membership
management. The leader of a group frequently checks
the members’ locations to make sure that only those
that are guaranteed to stay connected with the group
for at least t+t′ more units of time remain in the group,
where t is the time specified by the application layer
and t′ is the time bound for configuration changes. The
combination of t and t′ determines the safe distance for
a specific operation, which could be the merging oper-
ation, the partitioning operation, or any other group
operations specified by the application. Let’s assume
that td is the maximum delay between the time a con-

trol message is issued and the time it is received and
processed, i.e., the sum of the maximum network delay
and the maximum process queuing delays both at the
sender and the receiver. For convenience, we refer to
td as the network delay. In the case of splitting, the
maximum time it takes for a group to be partitioned
successfully is twice the network delay.

If the leader continuously monitors the group con-
figuration and all member locations are up to date,
then mobility-induced unannounced disconnection can
be caught in advance and dealt with successfully by re-
quiring t′ > 2 ∗ td. Yet, the leader’s information about
members’ locations is always a little bit out of date.
If members sample and report their locations every tu
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units of time, the location information the leader has
about a member could be outdated by time tu+td. Tak-
ing this into consideration, the reserved time T must be
greater than tu + td +2 ∗ td = tu +3td. Whether or not
we can use dr = R−2Vmax(tu+3td) as the safe distance
for partitioning depends on the requirement for merg-
ing. Because we do not allow a merging process to be
aborted once committed, the computation of safe dis-
tance for partitioning also needs to account for the time
associated with the merging process. Consider the fol-
lowing scenario: right before a commit in a merging pro-
cess, the group configuration is safe using safe distance
dr; right after the commit, a leader might discover that
its group is no longer safe, and a partion process needs
to be carried out immediately. However, the merging
process hasn’t finished. This is not acceptable. Taking
into account that the two-phase merging process needs
at most an execution time of 4td (4 messages), and the
configuration needs to be safe right after merging, the
total reserved time for both merging and partitioning
needs to be tu + 3td + 4td = tu + 7td. In other words,
the safe distance for both merging and partitioning is

ds = R− 2Vmax(tu + 7td) (2)

Using the same distance for merging and partitioning
introduces the problem of ‘shuttle nodes’, i.e., if a node
is moving in and out the safe boundary, merges and par-
titions occur repeatedly. To avoid this, one can further
tighten the safe distance for merging, creating a ‘buffer
zone’, and thus reducing the probability of shuttling.

Our algorithm also requires Vmax to be no greater than
Vadm, i.e., the maximum admissible speed for the spe-
cific wireless network system the mobile hosts are using.
Most wireless network systems (e.g. DECT, GSM, PCS,
ETACS) have a maximum admissible speed [20]. When
a mobile node is moving too fast, it simply becomes
invisible to the network. For GSM and PCS, Vadm is
about 50m/s; for DECT microcellular system, Vadm is
about 11m/s. Without the condition for Vmax ≤ Vadm,
a speed change from V ≤ Vadm to V > Vadm creates an
unannounced disconnection. Speed monitoring would
be needed to prevent this kind of unannounced discon-
nection from happening.

Figure 10 illustrates the relation between the safe dis-
tance r and the maximum admissible network delay td
with reasonable values of R = 150m, Vmax = 10m/s
and location reporting frequency of 1 Hz (tu = 1s). It
shows that as the delay bound increases, the safe dis-
tance decreases.

Figure 11 shows the relation between the safe distance
threshold, the upper bound on speed, and the network
delay bound. The region above the top curve corre-
sponds to ds < 0. In this parameter space we cannot
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Figure 10: Safe distance vs. network delay

provide any consistency guarantees for a group contain-
ing more than one member. On the other hand, if a mo-
bile system’s network delay bound and maximum speed
bound fall into the region below the (ds = 90m) curve,
we could provide the group view consistency guarantee
by using 90m as maximum safe distance.
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Figure 11: Relation between safe distance, speed bound
and delay bound

Choosing the proper safe-distance is key to the protocol.
A choice that is not conservative enough might endan-
ger the correctness of the group membership service. A
choice that is too conservative might cause the groups
to be too small to be useful for some applications, or
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smaller than necessary. One must strike a delicate bal-
ance between these conflicting choices to make the group
membership service as useful as it can be.

6 DISCUSSION

Our partitionable group membership specification is
stronger than traditional ones in that it not only re-
quires availability during partition, but also emphasize
consistency during partition. Previous work in group
membership either admits inconsistency during the par-
tition, or reduces availability during partition.

On the other hand, the strong properties required by
our partitionable group membership specification make
it impossible to implement in traditional asynchronous
system models. Key to our solution to the strong par-
titionable group membership problem is the notion of
safe distance and the corresponding notion of a logical
connectivity graph. Given information about physical
properties of the mobile system, we are able to predi-
cate certain behavior of the system. In turn, we are able
to achieve the strong consistency required by the group
membership service.

At present, our algorithm makes the assumption that
all mobile nodes in the system have a known maximum
speed. Unbounded speed is another possible source of
unannounced disconnection. Low speed is a require-
ment for most wireless networks. In systems involving
mobile nodes that can control their own velocity, e.g.,
cars and planes, a safe relative velocity threshold can
be used in the decision of merging and splitting. Of
course, in such cases we would have to assume a maxi-
mum acceleration for the mobile nodes in order to make
disconnection predictions possible.
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Figure 12: Contribution of velocity information

Our membership service can be further refined when ve-
locity information about each mobile host is available.
For example, let’s consider cases (a) and (b) of Figure
12. In case (a), hosts x and y are moving away from
each other, while in (b), they are moving in the same
direction. Clearly, x and y are less likely to disconnect
in the latter case than in the former. Translating this
into the language of safe distance, the maximum safe
distance between x and y is greater in case (b) than in

case (a). In the current algorithm, as we assume the
velocity information is not available. Since we cannot
differentiate cases (a) and (b), we have to consider the
worst case movement scenario for each pair of hosts,
i.e., they may be moving away from each other at the
maximum relative speed at any point of time. When ve-
locity information is available, the safe distance thresh-
old between hosts x and y (in Figure 12) can change
dynamically according to the formula:

R− |~vx − ~vy| · t− |~amax · t
2| (3)

where ~amax is the maximum acceleration for all hosts
and t is the time needed for a group operation already
in progress to finish. Simple changes to our algorithm
allow us to use the velocity information: (1) each host
includes its velocity information in hello messages and
location-update messages, and (2) the safe distance is
computed using Equation (3) with t = tu + 7td. The
rest of the algorithm remains unchanged.

Although only safe physical distance is employed in
our protocol to avoid unannounced disconnection, other
physical attributes can also be used to determine safety.
For instance, if link failure is predictable through moni-
toring the bandwidth or transmission power change be-
tween two nodes, a similar group membership protocol
can be built by exploiting similar concepts, e.g., ‘safe
bandwidth’ or ‘safe power level’ etc.

We assume each mobile host has knowledge of its own
location. This is made possible by the availability of po-
sitioning systems such as GPS. Yet locationing systems
are not always accurate. For simplicity we did not con-
sider this in our safe distance analysis. One can always
factor data precision and sample frequency of a location
system into the safe distance and make the service more
robust.

The correctness of our algorithm relies on the assump-
tion that the network has a delay bound. At this mo-
ment, we are not aware of any ad hoc routing protocols
which can provide a good delay bound. Yet, it is con-
ceivable that a routing protocol with good delay bound
for prioritized group control messages is possible by re-
stricting group size and using location information. An
alternative approach is to augment the merging crite-
rion with a maximum group size or even some group
spatial configuration condition. By doing this, it may
be possible to have the delay bound assumption met
with high probability.

7 CONCLUSION

The motivation for this work rests with our desire to
provide data consistency in applications that execute
over ad hoc networks. Yet, maintaining a consistent
view of the global state in a distributed network is diffi-
cult in general and essentially impossible in the presence
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of unannounced disconnections. In ad hoc mobile sys-
tems, mobility-induced unannounced disconnection oc-
curs frequently, as part of the normal operation of the
network. This makes the development of fault-tolerant
systems on top of ad hoc networks very challenging.
Our goal of assisting software developers in their ef-
forts to design and build reliable mobile applications
leads us to define a new partitionable group membership
service with strong consistency requirements. We have
also presented a strategy and an algorithm to implement
the service, given appropriate system assumptions. The
novel feature of the algorithm is its ability to create the
illusion of announced disconnection. By using location
and mobility information about the mobile hosts in the
region, the membership service is able to guarantee to
the application layer a reliable message delivery service
to group members in the presence of mobility-induced
unannounced disconnection, given appropriate system
assumptions. This approach represents a new direc-
tion in fault-tolerant distributed computing, one that
factors into protocols information about mobility and
space. This work also provides a practical solution to
masking mobility induced unannounced disconnections
in ad hoc mobile systems.
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