
A Declarative Approach to Agent-Centered

Context-Aware Computing in Ad Hoc Wireless

Environments

Gruia-Catalin Roman1, Christine Julien1, and Amy L. Murphy2

1 Department of Computer Science and Engineering
Washington University
Saint Louis, MO 63130

{roman, julien}@cse.wustl.edu
2 Department of Computer Science

University of Rochester
Rochester, NY 14627

murphy@cs.rochester.edu

Abstract. Much of the current work on context-aware computing relies
on information directly available to an application via context sensors
on its local host, e.g., user profile, host location, time of day, resource
availability, and quality of service measurements. We propose a new no-
tion of context which includes in principle any information available in
the ad hoc network infrastructure but is restricted in practice to spe-
cific views of the overall context. The context of each view is defined in
terms of data, objects, or events exhibiting certain properties, associated
with particular application agents, residing on particular hosts, and part
of some restricted subnet. Location, distance, movement profiles, access
rights, and much more can be used in view specifications. The underlying
system infrastructure interprets the view specifications and continuously
updates the contents of user-defined views despite dynamic changes in
the specifications, state transitions at the application level, mobility of
hosts in the physical space, and migration of code among hosts. In sys-
tems that are large-scale in terms of both space and numbers of agents,
this local restriction will prove necessary for providing timely context
information to application agents.

1 Introduction

The foundation of this work is the notion that context-aware computing holds
the key to achieving rapid development of dependable mobile applications in ad
hoc networks. Context-aware computing refers to the explicit ability of a software
system to detect and respond to changes in its environment, e.g., a drop in the
quality of service on a video transmission, a low battery level, or the sudden avail-
ability of much needed access to the Internet. Initial context-aware systems like
Olivetti’s Active Badge [1] and Xerox PARC’s PARCTab [2] focused on user
location to provide context-aware information in an office environment, while

more recent systems use location information for context-aware tour guides [3,
4]. Gradually, other aspects of context have been fed into applications, including
time, weather, and user information, allowing, for example, researchers in the
field to attach varied contextual information to their notes with FieldNotes [5].
With the increase in the variety and complexity of context information, much
needed frameworks and systems for generalizing its treatment are being devel-
oped. The Context Toolkit [6] generalizes interaction among components through
context widgets, while the Context Fabric [7] provides a service infrastructure.
By and large, these systems limit the context to what a component can imme-
diately sense, ignoring what other networked components can sense. While this
need has been hinted at in discussions of context-aware software [8], no wide-
spread system allows such access. When the needs of the application must reach
beyond the basics (e.g., the application requires access to services available at
a remote location), the programmer needs to contend with more complex pro-
cesses that include discovery and communication. While these extra costs may
be acceptable in wired networks where connections persist over extended periods
of time, in ad hoc networks the complexity of managing frequent disconnections
can significantly increase the programming effort. Yet, mobile systems do need
access to a broad range of resources, maybe even more so than traditional dis-
tributed applications.

Of interest to us is the ease with which resources can be acquired and re-
tained in the presence of mobility. Our specific environment consists of logically
mobile agents that operate over a network of physically mobile hosts. These
mobile agents coordinate with each other to accomplish their individual applica-
tion needs. In many scenarios this network may include many agents and span a
large physical space. Our work extends the notion of declarative specifications to
a broad set of resources and provides the mechanisms needed to maintain access
to the specified resources despite rapid changes in the environment caused by
the mobility of hosts, migration of software components, and changes in connec-
tivity. For instance, an application on a palmtop should be able to declare its
need for printer access and, as the owner travels along, a printer should always
appear on the desktop, as long as some printer exists within wireless commu-
nication range. Of course, building such an application with today’s technology
is feasible, but coding it cannot be reduced to the simple act of providing a
declaration in the program. We contend that we can accomplish the latter (and
more) by extending the notion of context-aware computing and by developing a
software infrastructure that continuously secures the resources declared by the
application program. In building these specialized contexts, we also recognize
that different applications interact with available information in different ways.
For these reasons, we introduce four distinct context-aware models that provide
unique styles of interaction.

The remainder of this paper is organized as follows. Section 2 discusses the
nature of declarative specifications. Section 3 provides details about four different
models of context-awareness. Finally, conclusions appear in section 4.

2

2 Declarative Specification of Views

In our computing model, hosts can move in physical space, and the applications
they support are structured as a community of software components called agents
that can migrate from one host to another. Thus, an agent is the unit of modu-
larity, execution, and mobility, while a host is a container characterized, among
other things, by its location in physical space. Communication among agents
and agent migration can take place whenever the hosts involved can physically
communicate with each other, i.e., they are connected. Since the notion of con-
text is always a relative one, we will use the term reference agent to denote the
agent whose context we are about to consider, and we will refer to the host on
which this agent is located as the reference host. An agent’s location is always a
host, while a host’s location is always a point in some physical or logical space.

2.1 Informal View Definition.

A mobile ad hoc network is an opportunistically formed structure that changes
rapidly in response to the movement of the mobile hosts involved. Initially,
communication in such networks was point to point over a physical broadcast
medium, the air waves. However, growth in performance and capabilities has
allowed some mobile units to serve as mobile routers for others in the area.
Through transitivity, routing in ad hoc networks has expanded the connectivity
pattern beyond the limits of an immediately accessible region. In principle, the
context associated with a given agent consists of all the information available
in the ad hoc network. This includes all information stored by all hosts in the
network as well as the context information (e.g., location, temperature, time)
sensed by agents on those hosts. We refer to this as the maximal context of the
reference agent. Of course, such broad access to information is generally costly to
implement. In addition, various parts of the same application may need different
resources at different times during the execution of the program. For this reason,
we believe that it is important to structure the context in terms of fine-grained
units which we call views. A view is a projection of the maximal context together
with an interpretation that defines the rules of engagement between the agent
and the particular view.
The concept of view is agent centric in the sense that every view is defined

relative to a reference agent with respect to its needs for resources from and
knowledge about its environment. An agent sees the world through a set of these
individualized views. The set may be altered at will by defining, redefining, and
deleting views as processing requirements demand. The software engineering
gains derive, to a great extent, from the flexibility and simplicity we can offer
the application programmer. Our strategy focuses on declarative specifications
and employs a rich set of criteria. For instance, one ought to be able to describe
the view contents in terms of phrases such as:

All specials (reference to objects) posted by family restaurants (reference
to agents) within one mile (implicit reference to hosts) of my current
location (property of the reference host).

3

In general, constraints on the attributes of the desired resources (data or ob-
jects) and the agents that own them are an effective way to restrict a view’s
contents. They must be combined, however, with constraints on the attributes
of the hosts on which the agents reside and with properties of the ad hoc network
in the immediate vicinity. Security and network considerations emerge as impor-
tant research issues in any effort to design a language for view specification. At
the network level, for instance, an application may want to limit context to a
connected subnet of the ad hoc network forming a region around the reference
host. The network topology, geometry, physical distribution in space, and secu-
rity enforcement procedures play a role in determining the shape of the region
of interest. These considerations are new to context-aware computing and are
injected by our focus on ad hoc mobility.
The next section provides a more formal treatment of this declarative view

specification. The notation is only illustrative and assumes the underlying data
representation to be that of a tuple space. Tuple space representations based
on the Linda tuple space model [9] enjoy a great deal of popularity due to the
content-based manner in which data is accessed. In mobile computing specifi-
cally, several systems have found success using shared tuple spaces. MARS [10]
focuses on logical mobility, or the movement of agents over physically stationary
hosts, using a tuple space to allow coordination among co-located mobile agents.
Lime [11] combines support for logical mobility with support for physical mobil-
ity and relies on transient sharing of tuple spaces among agents and hosts within
communication range. Each agent carries its own tuple spaces, and tuple spaces
of connected agents logically merge to form a global tuple space as long as the
agents are connected. This work reuses this notion of transient sharing of tuple
spaces, combines it with a more flexible tuple representation, and allows more
general access to the tuple space.

2.2 Formal View Definition.

We assume a tuple to be an unordered set of fields, each with a unique name. An
individual agent owns tuples which it keeps in a local tuple space. Fundamen-
tally, tuple access occurs by matching a provided pattern against the contents of
the tuple. While adhering to the content-based nature of Linda pattern match-
ing, we extend the traditional semantics to allow the provision of more flexible
constraint functions over fields. The matching function, M, described in detail
in [12] requires that, for every constraint provided in a pattern, a field that satis-
fies the constraint exists in the tuple. While the matching function does require
that each constraint be satisfied, it does not require that there be a constraint
to match every field in the tuple.
In our model, the data, the agents owning the data, the hosts where the

agents are located, and the paths to those hosts must all satisfy application-
provided constraints. An agent can provide the view’s data constraints through
a pattern. The matching function, M is then used to filter the data tuples
using this pattern. Hosts and agents in the system provide profiles containing
personal information. Host profiles handle logical properties of the host, and may

4

relate to the user of the computer. Examples of such properties may include the
host’s id, the identity of the owner of the computer, or services provided by
the computer. Agent profiles, on the other hand, are likely to contain properties
related to the application on whose behalf the agent is running. The view’s host
and agent constraints then reduce to a pattern of constraints over a profile,
and these constraints can also be evaluated using the matching function, M.
An agent provides network constraints by forming an abstraction of the network
topology and its properties. This abstraction, detailed in [13], generates a subnet
of the network around the specifying host. For example, the application can
restrict its context with respect to the physical distance to other hosts. The
subnet constructed includes hosts only within the application-specified distance;
all other hosts are excluded.

In any shared data space, access control becomes a real problem. Our model
addresses this issue by adding the notion of an access control function. Each
agent specifies an individualized function that limits the ability of other agents
to access its local data. From the opposite direction, an agent specifying a view
attaches to the view a set of credentials that verify it to the other agents. Addi-
tionally, the specifying agent declares the operations it intends to perform over
the view. These operations can include simple reading or removal of data or more
complex operations such as reacting to the appearance of a particular piece of
data. The provision of the operations can be viewed as a contract between the
specifying agent and the system. Any attempt by the specifying agent to perform
an operation that it didn’t declare will result in an exception. When determin-
ing the contents of a view, the system evaluates each contributing agent’s access
control function over the view’s credentials and potential operations. The fact
that the access control function is evaluated on an individual basis for each tuple
adhering to the view constraints provides a very fine level of granularity.

Figure 1 shows our

Local
Tuple Tuple

Local

SpaceSpace

Location Profile Location

Access Control Function

v_n=view+credentials v_n=view+credentials

v_1=view+credentials

Host 1

Agent 2

Profile Location

Access Control Function

Agent 1

Profile

v_1=view+credentials

Fig. 1. The computational model.

computational model. A
host, the outer rectangle
in the figure has a phys-
ical location and a profile
describing its properties.
Each host contains mobile
agents, the smaller rect-
angles in the figure. Each
agent also stores its prop-
erties in a profile and has
a logical location, the host
on which it is located. Ad-
ditionally, agents can define
views which consist of the view specification, described in detail below, and the
credentials provided for that view. For evaluating the view specifications of other
agents, each agent also defines an access control function. Finally, every agent
owns a local tuple space that contains its data items.

5

Given a reference host r, we first define η, the subnet of the ad hoc network
that satisfies the provided network constraints (n), to be a subset of the closure
of r’s network. η must be a tree, r must belong to η, and η must satisfy n. Given
the host constraints (h), the agent constraints (a), the data constraints (d), the
agent’s credentials (κ), and the operations that will be performed on the view
(ops), a view specified by a reference agent, r contains the tuples defined by:

viewr(n, h, a, d , κ, ops) ,

〈set η, γ, α, θ : η ⊆ Closure(r) ∧ tree(η) ∧ r ∈ η ∧ η sat n
∧ γ ∈ η ∧M(γ.profile, h) ∧ α.loc = γ ∧M(α.profile, a)
∧ θ ∈ α.T ∧M(θ, d) ∧ α.acf (κ, ops, θ)
:: θ〉. 3

where γ is a host, α is an agent, and θ is a tuple. α.loc refers to the host on which
agent α is currently running, α.T refers to α’s local tuple space, and α.acf to
α’s access control function. A tuple belongs to a view only if it satisfies the view
constraints and the reference agent meets the requirements of the access control
function of the agent owning the tuple.

As hosts and agents move and the available data changes, the view is updated
to reflect the changing set of available tuples. From the application’s perspective,
all of these changes are transparent and manifest only in changes to the set of
available data items. Therefore, the application agent can operate over a view
without regard to the changes occurring in that view. The application also has
the freedom to change the constraints associated with its view dynamically, and,
when it does, the model adjusts the view to reflect the application’s new needs.

The adoption of a declarative context specification is motivated by our belief
that transparent context management will shift to the underlying middleware
many of the burdens programmers face in the development of applications for
use in ad hoc networks. Moreover, the programmer controls the scope of the
view (a large or small neighborhood), the size of the view (the range of entities
included), and the relative cost of executing a particular operation on that view
(by defining the level of consistency, e.g., best effort versus transactional seman-
tics). The presentation of the information in this view to the programmer can
take a more abstract form than a simple tuple space. A variety of data structures
in addition to a tuple space will prove useful to applications in different domains.
Additionally, more sophisticated context-sensitive interactions can be provided
through veneers that build on the basic model. The next section details some
examples of such models in our system.

3 The three-part notation 〈op quantified variable : range :: expression〉 used here
is defined as follows: variables from quantified variables take on all possible values
permitted by range. Each such instantiation of the variables is substituted in ex-

pression, producing a multiset of values to which op is applied, yielding the value
of the expression. If no instantiation of the variables satisfies range, the value of the
expression is the identity element for op, e.g., true when op is ∀; zero if op is “+”.

6

3 Models of Context-Awareness

Because we see ad hoc mobility as a fundamental challenge to developing the
next generation of consumer, industrial, and military applications, we seek to
develop new models of context-awareness able to accommodate the complexities
of mobile computing, to build middleware that embodies these models, and to
evaluate both on interesting application test beds. This section offers a broad-
brush discussion of the four types of context-awareness models we are currently
developing. Our models reflect those popular in distributed computing, but we
expect new technological advances to result from our special focus on their ap-
plicability to ad hoc networks, the introduction of declarative specifications of
context, and automatic context maintenance.
To show how an agent’s interaction with the view differs among the four

models, we introduce an example that we will revisit throughout this section.
Consider a team of robots exploring an uninhabited planet. The robots need to
perform experiments that require precise relative locations and instrumentation
that no single robot can carry. For example, some robots may be able to pre-
cisely sense their locations, some may be able to sense the ambient temperature,
others may sense atmospheric pressure, and still others may collect data about
the soil composition. All of these pieces of information have the potential to
contribute to the operating context of any agent in the system. Now consider
a specific reference agent that requires two pieces of location information from
other robots (for determining relative locations) and a single piece of tempera-
ture information (for performing its particular experiment). To satisfy its needs,
the agent defines two views. The first is defined to contain the location data
items that are between some minimum and maximum distance from the agent’s
robot. The second view contains temperature data items within a specified num-
ber of network hops. The agent can dynamically adjust its view specifications
as its needs change. The agent’s style of interaction with these views depends
upon the features of the context-awareness model in use by the system. As we
describe our context-awareness models, we will revisit this example to elucidate
how the agent interacts with its temperature view in each model.

3.1 Context-Sensitive Data Structures.

In many distributed systems, data access serves as the primary form of interac-
tion among components. In mobile computing, several systems have used shared
tuple spaces as a coordination medium. As discussed previously, MARS [10] em-
ploys a single tuple space per host to facilitate coordination among co-located
mobile agents while Lime [11] relies on transient sharing of tuple spaces among
agents on the same host and among hosts within communication range. Other
systems have explored different data structures. PeerWare [14], for example,
stores documents in trees and adjusts the contents of the tree to account for
mobility. All these systems assume a symmetric and transitive model of sharing.
When a group of components is formed, they all share the same data, and they
perceive it in the same manner. By contrast, our proposed model allows each

7

d1

d2

d1

d2

d1
d2

d3

d1
d2 d1

d2

a1

a2 a3

d3

a1

a2

h1

h2

d1

d1

d1d2

d2

d2

d3

a1
a3

a2

h3

h1 d1
d2
d1
d3h2

a1
a2

a1

Contents of a1's view

(a)

d1
d1

d1d2

d2

d2

d3

a1
a3

a2

h3

d1
d2

d1

d2

d1
d2

d3

d1
d2 d1

d2

a1

a2 a3

d3

a1

a2

h1

h2

d1
d1

d1d2

d2

d2

d3

a1
a3

a2

h3

h1 d1
d2
d1
d3h2

a1
a2

a1

h3 a2 d2
d3

Contents of a1's view

(b)

Fig. 2. View dynamics. Data items visible to reference agent a1 located on host h1

before and after h3 moves into h1’s range. Hosts, agents, and data items with darkened
borders contribute to the view, while ones with lighter borders do not satisfy the
specification.

individual agent to define its own perspective of the data available in the world
in terms of one or more views. This asymmetry, a distinguishing feature of our
model, allows each agent to assume responsibility for and control over the size
and scope of the data it accesses. For example, an agent associated with a manag-
ing robot that monitors the activities of other robots in its vicinity might define a
view that includes the locations and activities of all other robots within a certain

8

distance, which may be continuously adjusted as the exploration progresses. One
of the worker robots, however, may define a view containing only information it
needs to accomplish its individual task; this view may have nothing to do with
the monitoring agent.

In general, the agent’s view contains a representation of a subset of the data
available in the ad hoc network. The choice of representation is a defining feature
of each specific instantiation of the general model. In the context-sensitive data
structures model, the view’s representation is a simple data structure (e.g., a
tuple space). The three remaining models build on this foundation. The choice
of data included in the view, i.e., its contents, is determined by the view spec-
ification. The latter is given in a declarative manner by stating constraints on
the network, hosts, agents, and data that contribute to defining the view. One
can impose restrictions on network properties (e.g., number of hops, distances,
bandwidth, etc.) so as to define a connected subnet immediately surrounding the
reference host. This kind of locality will help control the context maintenance
costs while meeting the needs of most mobile applications. Within this contex-
tual setting, an application can impose further restrictions on the properties of
the physically mobile hosts (e.g., power availability, devices supported, etc.) in
the subnet and of the mobile agents supported by the admissible hosts. Finally,
data associated with the remaining eligible agents can be filtered to produce
the actual contents for that view. As hosts and agents move and properties of
the network components change over time, the contents of the view must be
transparently updated for the reference agent.

The dynamic nature of the view definition is illustrated in Figure 2, where
the depicted view of agent a1 changes as the distance between hosts h1 and
h3 decreases. Agent a1 is grayed to indicate that it is the agent specifying the
view. Hosts, agents, and data items that contribute to the view are shown with
darkened borders. In part (a) of the figure, due to a1’s specification, only hosts
h1 and h2 qualify to contribute agents to the view. Because of the restrictions
on agent and data properties, only certain data items on certain agents on these
hosts appear in the view. The balloon pointing to a1 shows a table of the hosts,
agents, and data items contributing to a1’s view. As part (b) shows, when host
h3 moves closer to h1, it satisfies the view’s constraints. Again, only certain data
items on certain agents appear in the view. Exactly which hosts, agents, and data
items contribute is determined by the application-provided view specification.

In the context-sensitive data structures model, the view representation takes
the form of a standard data structure. For the purposes of discussing our exam-
ple, we assume this data structure is a tuple space with which the robot agent
interacts by performing standard tuple space operations. Figure 3 shows this
general pattern of interaction. This figure and all subsequent ones show a vir-
tual picture of an agent’s view where both remote and local tuples are included
in a single “soup.” The actual distribution of information in logical and physical
space (as shown in Figure 2) is omitted. Tuple space operations, or requests,
can include reading and removing data from the view. Additionally, the tuple
space can provide reactive behaviors whereby a robot agent can react to the

9

appearance of new data items in the view. As discussed previously, tuples match
operations or reactions through content-based pattern matching, i.e., an agent
selects data by specifying constraints over the values of the tuples’ fields. In the
robot example, tuples from temperature sensors might contain fields including
a unique id identifying the probe, the string temp indicating that the probe is
a temperature probe, the value of the temperature at that probe, and other
fields. The agent can provide constraints over all of the data item’s fields or over
a subset of them. A robot agent might gain an initial temperature reading by
performing a read operation for a tuple corresponding to any probe (p), labeled
as temperature data (by the string temp), with any temperature value (v):

<probe_1, temp, 23>

<probe_2, temp, 36>

robot agent's
temperature view

request

robot
agent

Fig. 3. Agent/view interaction in
the context-sensitive data struc-
tures model.

read(〈probeId : p, probeType = temp, probeValue : v〉)

This request constrains only the fields ex-
plicitly mentioned; it places no restrictions on
other fields in the tuple. When the request
completes, the probe id and value are stored
in the local variables, p and v, respectively.
(The reader is reminded that this notation
and all similar notation is for illustration pur-
poses only.) If the robot wants to receive later
readings from the same temperature probe (p)
that differ from the initial reading by more
than 5 degrees, it might register a reaction:

react to(〈probeId = p, probeType = temp, probeValue : v′ :: (v− 5) < v
′

< (v+ 5)〉, A)

The action A will be performed whenever the temperature probe p outputs a
new temperature reading that satisfies both the view specification and the value
constraints provided in the react to operation.

3.2 Context-Sensitive References.

Traditional distributed systems, like CORBA-compliant systems [15] and Jini [16]
hide many of the details of object distribution from the programmer. The general
pattern of interaction requires a client to find an object using a lookup service
and then bind to it, allowing the programmer to invoke methods on the remote
object as if it were local. If the remote object fails, the client must revisit the
lookup service to retrieve a new reference. This style of interaction, while com-
mon in traditional distributed systems has received only limited attention in ad
hoc networks [17]. Our next model extends the context-sensitive data structures
model so the view contains objects and object references instead of data items.
An agent obtains an object reference and description from the view through
a request similar to those used in the previous model. Because the object de-
scription contains information about the interface of the object, the application
agent can use this information to interact with the remote object directly by
invoking methods on the reference. The agent can continue to use the reference

10

but receives no guarantees regarding the stability of the remote object because
the interaction occurs outside the view.
In using the context-sensitive references model in the robot environment,

the temperature data is encapsulated in objects. Instead of reading data items
directly from the view, the robot agent reads an object reference based on re-
quirements it provides. The agent provides these requirements as a pattern that
is matched (again, in a content-based fashion) against the object description
stored in the tuple space. The reference returned indicates the remote object’s
location and information about how to interact with it (i.e., the object’s inter-
face). Figure 4 shows this style of interaction. A robot agent might request from
the view a reference to a temperature object at a location (loc) within 2 meters
of the agent’s current location (here):

read(〈objectReference : r, probeType = temp, location : loc :: |loc− here| < 2m〉)

For a more complicated request, the

temp

location

reference

interaction

returned
request

remote
object

robot
agent

robot agent's
temperature view

Fig. 4. Agent/view interaction in the
context-sensitive references model.

agent could require that the object ref-
erence returned provide a particular
method. Because the object reference is
bound to r when the read operation re-
turns, the robot agent can interact di-
rectly with the remote object by in-
voking methods on r. For example, a
temperature object might have methods
getCelsius() and getFahrenheit(),
and the robot agent could call either
method depending on its needs:

r.getCelsius()

The agent can hold the reference as long as it desires, however, if the reference
object disappears, an exception will be generated the next time the robot agent
attempts to use the stale reference. In such a case, the agent must obtain a
new reference from the view. Additionally, because both the robot agent and
the agent holding the temperature object are mobile, the distance between them
could grow to more than two meters without the robot agent’s knowledge. The
next model of context-awareness, while incurring additional overhead, helps the
application programmer transparently cope with these deficiencies.

3.3 Context-Sensitive Bindings.

The need for load-balancing [18] and fault-tolerance [19] have been addressed
in extensions to the CORBA specification. These additions accomplish their re-
spective tasks by selecting from among a set of object replicas for each remote
object call. In the case of load-balancing, consecutive remote method calls are
not necessarily forwarded to the same object; instead calls are spread to multi-
ple replicas. For fault-tolerance, consecutive calls can be forwarded to the same
object instance until that object fails. In these cases, a different replica ser-
vices later remote object calls. The DENO (Decentralized Network Objects) [20]

11

system also attempts to address these problems in the context of mobile and
unreliable networks, adding object replication to increase efficiency, availabil-
ity, and fault-tolerance. Our context-sensitive bindings model attempts to solve
similar problems in the ad hoc environment. Instead of addressing the replica-
tion problem, however, our model concentrates on the binding aspect. The view
abstraction allows our model to provide a more general and transparent solution.
In the mobile ad hoc environment, objects move, and bindings are even more

likely to break. The middleware supporting the view concept transparently man-
ages bindings, hiding both the lookup service and object mobility from the pro-
grammer. In general, the view contains a set of objects (and associated object
descriptions) owned by connected agents. The set of available objects depends
on the reference agent’s view specification. However, the programmer does not
access this set of objects directly. Instead he requests bindings to objects in the
view, subject to certain policies. For example, if multiple objects available in
the view match the binding request, the application might desire the nearest
match. As agents and the objects associated with them move, the bindings are
maintained and transparently updated to select new objects as needed. If an ob-
ject matching the binding request in the view better satisfies the binding policy,
the application’s bound object is updated to reference the better match. Addi-
tionally, when bound objects move outside the view, a new object satisfying the
binding request and located in the view replaces it. The change from one satis-
fying object to another is under the indirect control of the programmer through
the binding policies he provides. Any effects of this rebinding are therefore the
responsibility of the application itself.
As an example of a view, consider a reference agent responsible for printing

documents. Its view might contain all printers available on the current floor in
the current building. The agent might then request a binding to the highest
quality printer. As the agent moves, the set of available printers changes, and
therefore the binding automatically changes. This model may be added as a thin
veneer over the context-sensitive references model. This veneer hides the view
contents and services a binding request by locating an object in the view that
matches the binding specification and policy and by creating the connection to
it for the agent. The layer also responds to changes in the available set of objects
in order to maintain, update, and break bindings when necessary.
Because the robot agent requires a single temperature reading, when using

the context-sensitive bindings model, the agent requests a single binding to a
temperature object. Because this model allows the agent to specify a binding
policy which helps select the “best match” for the binding from among the
objects in the view, the agent might request to bind to the temperature probe
with the highest precision. Even though the object description might contain
a wealth of information, the requesting agent can choose which fields of the
description to provide constraints for. A binding request might look like:

bind(〈objectReference : r, probeType = temp〉) highest precision policy

The agent interacts with the object by invoking methods on the binding:

r.getCelsius()

12

Figure 5 shows these interac-
method

invocation

local
reference

bound
object

robot agent's
temperature view

robot
agent

Fig. 5. Agent/view interaction in the context-
sensitive bindings model.

tions. If the bound object disap-
pears from the view, or a new
object appears that better satis-
fies the binding policy, the middle-
ware automatically updates the
binding. The system generates an
exception only when no object in
the view satisfies the binding re-
quest. An agent can also request
to receive a special notification that the bound object has changed to a new
object.

3.4 Context-Sensitive Events.

The final model allows agents to interact through a language of events. In this
case, the view contains events generated by components in the system. For ex-
ample, an agent monitoring robot activity might define a view containing events
generated when new robots (hosts) connect and are within a certain physi-
cal distance. Event-based interactions have become common in distributed sys-
tems. The JEDI system [21], for example, defines a distributed event dispatcher
through which active entities communicate by generating events and registering
to receive events. The Siena event distribution service [22] addresses scalability
issues by aggregating similar event subscriptions. Recent work [23] has targeted
publish/subscribe systems for the ad hoc environment, specifically addressing
reconfiguration algorithms much needed in the highly dynamic ad hoc environ-
ment. These systems address specific implementation concerns, while our goal
is to apply the view’s scope limiting concept to publish-subscribe models. Our
generalized view concept provides allowances for ad hoc mobility and the capa-
bility to restrict the scope of visible events based on the network, hosts, agents,
objects, and the events themselves.
In this case, objects themselves are not directly visible to agents, only the

events they generate are visible. These events are filtered by an event specifica-
tion. Agents operate on this resulting view of events by binding callback func-
tions to events or prescribed sequences of events which pass through the filter.
Any application-defined object can generate events, allowing agents to respond
to both application specific events as well as generic events such as a change
in an object data field. An agent must subscribe to receive particular event no-
tifications, and an agent receives a notification only if it is subscribed for the
event at the time it is generated. To ensure a unified treatment of all events and
uniformity of the view contents, we introduce (for specification purposes) virtual
objects so named as to refer to application agents, hosts, and network resources
abstractly. These special objects pass on system generated events to the con-
text, but their implementation is hard-coded in the middleware. The existence
of these virtual objects allows an application agent to react to, for example, the

13

appearance in the view of a new contributing agent. The context-sensitive events
model is provided as a veneer over the context-sensitive data structures model.
In this model, the example robot agent registers to receive temperature events

from its view. As shown in Figure 6, this registration attaches a callback function
provided by the agent to the generation of the relevant events. As the figure
indicates, this style of interaction completely hides the view’s contents from the
robot agent. An example of this interaction using our illustrative notation is:

subscribe(〈probeType = temp〉, C)

In this example, the callback function

robot agent's
temperature view

robot
agent

call-
back

registration

event

Fig. 6. Agent/view interaction in the
context-sensitive events model.

is called anytime a temperature probe
generates a temperature event. Whether
events are generated at a certain fre-
quency or upon a temperature change is
determined at the application level by
the temperature probe’s implementation.
The callback function receives an instance
of the event, which contains information
about the event itself and about the tem-
perature probe object generating the event. The agent will, however, receive all
events generated by all temperature probes in the view. To handle this, the agent
has several choices. One is simply to filter these events locally, at the applica-
tion level. A second option would detect a single “first” event and remember
the source, probe p. The callback for this event would deregister the initial reg-
istration and register the agent for only events originating at p. This second
registration might look like:

subscribe(〈probeId = p, probeType = temp〉, C′)

Of course, this option requires the agent to explicitly handle the failure or
disappearance of probe p by subscribing to events generated by the tempera-
ture probe’s virtual object. As previously described, this virtual object and the
events it generates are defined by the middleware, and an API for accessing this
information is provided to the application programmer.
Even for this simple example, each model has advantages and disadvantages.

The model chosen for use depends on factors as varied as the guarantees required
by the system and the application developer’s preferred programming paradigm.

4 Conclusions

Our experiences in the ongoing development of the Lime middleware provide us
with a foundation for beginning this model’s implementation. A prototype im-
plementation of the basic context-sensitive data structures model builds directly
on top of Lime and provides most of the capabilities outlined in this paper. This
initial prototype allows us to begin the development of the applications that
spurred this investigation. Further work on the middleware’s development will
provide the true asymmetric behavior and will allow for performance evaluation

14

studies to be carried out. We approach this development effort from a bottom-up
perspective. The lowest level requires algorithms and protocols for gathering in-
formation from sensors and disseminating that information in a timely fashion.
We have already developed an algorithm for consistent group membership [24]
that uses location information to provide the appearance of announced discon-
nection in spite of host mobility. Other work on providing an abstraction of
the network based on properties of network paths [13] establishes a foundation
for implementing the view abstraction required in this model. Each layer of the
implementation must address key issues related to the highly dynamic ad hoc
environment. As mentioned in the introduction, one such issue concerns the ap-
plication’s ability to specify the level of consistency guarantees it requires for
particular operations over particular views. As always, another key element of
the final implementation involves tradeoffs between system expressiveness and
the efficiency of its implementation. In particular, the view specification lan-
guage should be as flexible as possible without losing the efficiency gains associ-
ated with the provision of the asymmetric model. The prototype will be useful
in evaluating possible specification mechanics, but conclusive evaluation results
will only be available once the implementation of the asymmetric model is fully
operational.
As software must function in settings that are increasingly open and highly

dynamic, software development is becoming more complex. While we cannot
eliminate intrinsic complexities of software artifacts operating under such de-
manding circumstances, we can reduce the complexity of application develop-
ment by shifting much of the burden onto the system support infrastructure.
Programming power can be amplified by allowing the developer to think at a
new and high level of abstraction. Effective use of the limited resources often
associated with mobile systems can be achieved by having the system infrastruc-
ture explicitly know what the application needs are at any given point in time.

Acknowledgments

This research was supported in part by the National Science Foundation under
Grant No. CCR-9970939 and by the Office of Naval Research MURI Research
Contract No. N00014-02-1-0715. Any opinions, findings, and conclusions or rec-
ommendations expressed in this paper are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation or the Office of Naval
Research.

References

1. Harter, A., Hopper, A.: A distributed location system for the active office. IEEE
Networks 8 (1994) 62–70

2. Want, R., et al.: An overview of the PARCTab ubiquitous computing experiment.
IEEE Personal Communications 2 (1995) 28–43

3. Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cy-
berguide: A mobile context-aware tour guide. ACM Wireless Networks 3 (1997)
421–433

15

4. Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C.: Experiences of
developing and deploying a context-aware tourist guide: The GUIDE project. In:
Proceedings of MobiCom, ACM Press (2000) 20–31

5. Ryan, N., Pascoe, J., Morse, D.: Fieldnote: A handheld information system for the
field. In: First International Workshop on TeloGeoProcessing. (1999) 156–163

6. Salber, D., Dey, A., Abowd, G.: The Context Toolkit: Aiding the development of
context-enabled applications. In: Proceedings of CHI’99. (1999) 434–441

7. Hong, J., Landay, J.: An infrastructure approach to context-aware computing.
Human Computer Interaction 16 (2001)

8. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: IEEE
Workshop on Mobile Computing Systems and Applications. (1994) 85–90

9. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

10. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. Internet Computing 4 (2000) 26–35

11. Murphy, A., Picco, G., Roman, G.: Lime: A middleware for physical and logi-
cal mobility. In: Proceedings of the 21st International Conference on Distributed
Computing Systems. (2001) 524–533

12. Julien, C., Roman, G.C.: Egocentric context-aware programming in ad hoc mobile
networks. In: Proceedings of the 10th International Symposium on the Foundations
of Software Engineering (FSE-10). (2002) 23–30

13. Roman, G., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: Proceedings of the 24th International Conference on Software
Engineering. (2002) 363–373

14. Cugola, G., Picco, G.: PeerWare: Core middleware support for Peer to Peer and
mobile systems. Technical report, Politecnico di Milano (2001)

15. Emmerich, W.: Engineering Distributed Objects. John Wiley and Sons, Ltd.
(2000)

16. Edwards, K.: Core JINI. Prentice Hall (1999)
17. Handorean, R., Roman, G.: Service provision in ad hoc networks. In: Proceedings

of the 5th International Conference on Coordination Models and Languages. (2002)
207–219

18. Othman, O., O’Ryan, C., Schmidt, D.: Strategies for CORBA middleware-based
load balancing. IEEE Distributed Systems Online 2 (2001)

19. Object Management Group: Fault tolerant CORBA specification. OMG Document
ptc/2000-04-04 (2000)

20. Keleher, P., Cetintemel, U.: Consistency management in Deno. Mobile Networks
and Applications 5 (2000) 299–309

21. Cugola, G., Nitto, E.D., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27 (2001) 827–850

22. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems 19 (2001)
332–383

23. Cugola, G., Picco, G., Murphy, A.: Towards dynamic reconfiguration of distributed
publish-subscribe middleware. In: Third International Workshop on Software En-
gineering and Middleware. (2002)

24. Roman, G., Huang, Q., Hazemi, A.: Consistent group membership in ad hoc
networks. In: Proceedings of the 23rd International Conference on Software Engi-
neering. (2001) 381–388

16

