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Abstract

Termination detection, a classical problem in distributed
computing, is revisited in the new setting provided by the
emerging mobile computing technology. A simple solution
tailored for use in ad hoc networks is employed as a vehicle
for demonstrating the applicability of formal requirements
and design strategies to the new field of mobile computing.
The approach is based on well understood techniques in
specification refinement, but the methodology is tailored to
mobile applications and helps designers address novel con-
cerns such as the mobility of hosts, transient interactions,
and specific coordination constructs. The proof logic and
programming notation of Mobile UNITY provide the intel-
lectual tools required to carry out this task.

1. Introduction

Increasing demands for dependability provide a strong
impetus for the software engineering community to eval-
uate and adopt formal methods. Formal notations led
to the development of specification languages; formal
verification contributed to the application of mechani-
cal theorem provers to program checking; and formal
derivation—a class of techniques that ensure correctness by
construction—has the potential to reshape the way software
will be developed in the future. Program derivation is less
costly than post-factum verification, is incremental in na-
ture, and can be applied with varying degrees of rigor in
conjunction with or completely apart from program verifi-
cation. More significantly, while verification is tied to anal-
ysis and support tools, program derivation deals with the
very essence of the design process, the way one thinks about
problems and constructs solutions.

In sequential programming, formal derivation enjoys a
long standing and prestigious tradition [4, 5, 7, 8, 14, 15].
By contrast, derivation is a relatively new concern in con-
current programming. Although a clean and comprehensive

characterization of the field is difficult to make and is be-
yond the scope of this paper, three general directions seem
to have emerged in the concurrency area. Constructivist ap-
proaches start with simple components having known prop-
erties and combine them into larger ones whose properties
may be computed. CSP-related efforts [6, 9, 11] appear
to favor this approach in part due to the algebraic mind-
set that characterizes the work on abstract CSP. Specifica-
tion refinement has been advocated strongly in the work
on UNITY [2, 10, 23]. An initial highly-abstract specifi-
cation is gradually refined up to the point when it contains
so much detail that writing a correct program becomes triv-
ial. Program refinement uses a correct program as a start-
ing point and alters it until a new program satisfying some
additional desired properties is produced. In some of the
work on action systems [1], for instance, sequential pro-
grams are transformed into concurrent or distributed ones.
Mixed specification and program refinement [22, 20] has
been used in conjunction with the Swarm model [18] and
its proof logic [3, 19].

In this paper we pose a simple question. Is it feasible
to apply formal derivation techniques to the development of
mobile applications? Mobile systems, in general, consist of
components that may move in a physical or logical space.
If the components that move are hosts, the system exhibits
physical mobility. If the components are code fragments,
the system displays logical mobility, also referred to as code
mobility. Code on demand, remote evaluation, and mobile
agents are typical forms of code mobility. Of course, many
systems entail a combination of both logical and physical
mobility. LIME [16], for instance, provides logical mobility
of agents on top of both fixed and ad hoc networks. The po-
tentially very large number of independent computing units,
a decoupled computing style, frequent disconnections, con-
tinuous position changes, and the location-dependent na-
ture of the behavior and communication patterns present de-
signers with unprecedented challenges [21]. While formal
methods may not be ready yet to deliver complete practi-
cal systems, the complexity of the undertaking clearly can
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benefit enormously from the rigor associated with a precise
design process, even if employed only in the design of the
most critical aspects of the system.

Our first attempt to answer the question raised ear-
lier consists of a formal specification and derivation for
a termination detection protocol for ad hoc mobile sys-
tems; we carry out this exercise by employing the Mobile
UNITY [12] proof logic and programming notation. Mobile
UNITY provides a notation for mobile system components,
a coordination language for expressing interactions among
the components, and an associated proof logic. This highly
modular extension of the UNITY model extends both the
notation and logic to accommodate specification of and rea-
soning about mobile programs that exhibit dynamic recon-
figuration. Once expressed in the Mobile UNITY notation,
a system can be subjected to rigorous formal verification
against a set of requirements expressed as temporal proper-
ties of its execution.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the Mobile UNITY syntax and its
proof logic. Section 3 provides a formal specification of the
termination detection problem. Section 4 provides a series
of UNITY-style refinements of the specification. Section
5 presents the Mobile UNITY program generated from the
specified requirements. Finally, Section 6 summarizes the
lessons we have learned from this exercise.

2. Methodology and Notation

This section provides a gentle introduction to Mobile
UNITY. A significant body of published work is available
for the reader interested in a more detailed understanding of
the model and its applications to the specification and ver-
ification of Mobile IP [13], and to the modeling and verifi-
cation of mobile code [17], among others. Mobile UNITY
is based on the UNITY model of Chandy and Misra [2],
with extensions to both the notation and logic. Each UNITY
program comprises a declare, always, initially, and assign
section. The declare section contains a set of variables that
will be used by the program. Each is given a name and a
type. The always section contains definitions that may be
used for convenience in the remainder of the program or in
proofs. The initially section contains a set of state predi-
cates which must be true of the program before execution
begins. Finally, the assign section contains a set of assign-
ment statements. In each section, the symbol ‘ � � ’ is used to
separate the individual elements (declarations, definitions,
predicates, or statements).

Each assignment statement is of the form ������ �� if 	 ,
where �� is a list of program variables, �� is a list of expres-
sions, and 	 is a state predicate called the guard. When a
statement is selected, if the guard is satisfied, the right-hand
side expressions are evaluated in the current state, and the

resulting values are stored in the variables on the left-hand
side. The standard UNITY execution model involves a non-
deterministic, weakly-fair execution of the statements in the
assign section. The execution of a program starts in a state
satisfying the constraints imposed by the initially section.
At each step, one of the assignment statements is selected
and executed. The selection of the statements is arbitrary
but weakly fair, i.e., each statement is selected infinitely of-
ten in an infinite execution. All executions are infinite. The
Mobile UNITY execution model is slightly different, due
to the presence of several new kinds of statements, e.g., the
reactive statement and the inhibit statement described later.

A toy example of a Mobile UNITY program is shown
below.

Program 
���
�������� at �
declare����� ����� � � � �������
initially����� �����! 
assign" �$# � � ����� �����%� ����� ���'&)(
� �+*,�$- � :: � �%�/. �$- � ���102�3�

end host

The name of the program is 
4��
�� , and instances are indexed
by � . The first assignment statement in 
���
�� increases the
token count by one. The second statement models move-
ment of the 
���
�� from one location to another. In Mobile
UNITY, movement is reduced to value assignment of a spe-
cial variable � that denotes the location of the host. We
use . �$- � �5�102�3� to denote some expression that captures the
motion patterns of 
���
�������� .

The overall behavior of this toy example host is to count
tokens while moving. The program 
���
����5��� actually defines
a class of programs parameterized by the identifier � . To
create a complete system, we must create instances of this
program. As shown below, the Components section of the
Mobile UNITY program accomplishes this. In our example
we create two hosts placed at initial locations �46 and �87 .
System Token-Collection

Program 
���
�������� at �9:9:9
end host
Components
���
����  � at �;6� �<
���
���� ( � at � 7
Interactions
���
����  �>= ����� ��� 02
4��
���� ( ��= ����� ������ 
���
����  �>= ����� ���'& 
4��
���� ( ��= ����� ��� 0  

when �?
4��
:���  ��= � � 
4��
:��� ( ��= �3�@ �?
4��
���� ( ��= ����� ���BA�! �� � inhibit 
4��
:��� ( ��= *C�$- � and 
4��
����  ��= *C�$- �



when � 
���
����  �>=�� � 
���
���� ( �>=��3�@ �?
4��
:��� ( ��= ����� ��� � (� �
End Token-Collection

Unlike UNITY, in Mobile UNITY all variables are local
to each component. A separate section specifies coordi-
nation among components by defining when and how they
share data. In mobile systems, coordination is typically
location dependent. Furthermore, to define the coordina-
tion rules, statements in the Interactions section can refer
to variables belonging to the components themselves us-
ing a dot notation. The section may be viewed as a model
of physical reality (e.g., communication takes place only
when hosts are within a certain range) or as a specifica-
tion for desired system services. In the Interactions section
of our Token-Collection example, the first statement allows
���
����  � to collect the tokens from 
4��
���� ( � when the two are
co-located. The second statement inhibits the execution of
the “ *C�$- � ” statement in both hosts when the two hosts are
co-located and 
4��
���� ( � has more than ten tokens. The oper-
ational semantics of the inhibit construct is to strengthen
the guard of the affected statements whenever the when
clause is true. The statements in the Interactions section
are selected for execution in the same way as those in the
component programs. Thus, without the inhibit statement,
���
����  � and 
4��
���� ( � may move away from each other be-
fore the token collection takes place, i.e., before the first
interaction statement is selected for execution. With the
addition of the inhibit statement, when two hosts are co-
located, and 
���
���� ( � holds more than ten tokens, both hosts
are prohibited from moving, until 
4��
���� ( � has fewer than
eleven tokens. The inhibit construct adds both flexibility
and control over the program execution.

In addition to its programming notation, Mobile UNITY
also provides a proof logic, a specialization of temporal
logic. As in UNITY, safety properties specify that certain
state transitions are not possible, while progress properties
specify that certain actions will eventually take place. The
safety properties include unless, invariant, and stable:

� 	 unless � asserts that if the program reaches a state in
which the predicate (	 @�� � ) holds, 	 will continue to
hold at least as long as � doesn’t, which may be forever.

� stable 	 is defined as 	 unless ���
	 
 � , which states that
once 	 holds, it will continue to hold forever.

� Inv 	 means ( � INIT � 	8� @ stable 	 ), i.e., 	 holds
initially and throughout the execution of the program.
INIT characterizes the program’s initial state.

The basic progress properties include ensures, leads-to,
until, and detects:

� 	 ensures � simply states that if the program reaches a
state where 	 is � � # � , 	 remains � � # � as long as � is

����	?
 � , and there is one statement that, if selected, is
guaranteed to make the predicate � � � # � . This is used
to define the most basic progress property of programs.

� 	 leads-to � states that if program reaches a state
where 	 is true, it will eventually reach a state in which
� is true. Notice that in the leads-to, 	 is not required
to hold until � is established.

� 	 until � defined as ( �%	 leads-to ��� @ �%	 unless ��� ), is
used to describe a progress condition which requires 	
to hold up to the point when � is established.

� 	 detects � is defined as � 	
����� @ ��� leads-to 	8�
All of the predicate relations defined above represent a

short-hand notation for expressions involving Hoare triples
quantified over the set of statements in the system. Mobile
UNITY and UNITY logic share the same predicate rela-
tions. Differences become apparent only when one exam-
ines the definitions of unless and ensures and the manner
in which they handle the new programming constructs of
Mobile UNITY [12].

Here are some properties the toy-example satisfies:

(1) �?
4��
����  �>= ����� ���'& 
4��
:��� ( ��= ����� ����� �;�
unless � 
���
����  �>= ����� ��� & 
4��
:��� ( ��= ����� ��� � ��� 1

— the total count will not decrease
(2) 
4��
:���  ��= ����� ��� � � leads-to 
4��
:���  ��= ����� ��� � �

— the number of tokens on 
4��
����  � will
eventually increase

In the next section we employ the Mobile UNITY proof
logic to give a formal requirements definition to the termi-
nation detection problem.

3. Problem Specification

We illustrate our methodology for formal specification and
design of mobile systems by examining the case of a termi-
nation detection protocol. We consider a set of mobile hosts
with identifiers 0 through ����� ( � moving through space.
Initially some of the hosts are idle while others are active.
Hosts communicate with each other while in range. A host
can becomes idle at any time but can be reactivated if it en-
counters an active host. The basic requirement is that of
determining that all hosts are idle and storing that informa-
tion in a boolean flag (

"
	�� � * ) located on some specific host

of our choice, say 
���
����  � . Formally, the problem reduces
to:

stable � ( � 7 )"
	�� � * detects � ( � 7 )

1In this notation we assume all free variables are universally quantified



where � is the termination condition

��� � @ � �  �� ��� � � � ���
	 � � � �
	 2 ( � 7 )
( � 7 ) is a safety property stating that once all hosts are idle,

no host ever becomes active again. ( � 7 ) is a progress prop-
erty requiring the flag claim to eventually record the sys-
tem’s quiescence.

We use ��� 	 � � � � to express the quiescence of a host and
define �

" ��� - � � � � to be its negation. It is important to note
that the problem definition in this case does not depend on
the nature of the underlying computation.

In the next section we demonstrate how to refine this
specification step by step.

4. Formal Derivation

In this section, we employ specification refinement tech-
niques towards the goal of generating a programming so-
lution that accounts for the architectural features of ad hoc
networks that form opportunistically as hosts move in and
out of range. The refinement process starts by capturing
high level behavioral features of the underlying application.
It moves on to introduce the key elements of the termination
detection protocol. The final refinement steps bring mobil-
ity and transient communication to the surface before gen-
erating Mobile UNITY code adhering to the specification.

The remainder of this section proceeds one refinement at
a time. In each case, we provide the informal motivation
behind that particular step and show the resulting changes
to the specification. As an aid to the reader, each refinement
concludes with a list of specification statement labels that
captures the current state of the refinement process, as in:

Refinement 0: � 7 , � 7
4.1. Refinement 1: Activation Principle.

While a host may become idle at any time, it can only
return to active status in the presence of an active host. This
property of the underlying computation can be expressed as
a safety property:

��
���� � �?� ( ��� )

unless����� � � A� � � ������� � �!�#" � � � @ ����� � �#� � � � @ ����� � �!� � � �
	
2The three-part notation $ op %'&�(*),+ -
.#- /10 23(*45- (�6�78/:9;4<(�)>=�/?9@9/BA*C!4</5D1DB- E')�F used throughout the text is defined as follows: The vari-

ables from quantified variables take on all possible values permitted by
range. If range is missing, the first colon is omitted and the domain of the
variables is restricted by context. Each such instantiation of the variables
is substituted in expression, producing a multiset of values to which op is
applied, yielding the value of the three-part expression. If no instantiation
of the variables satisfies range, the value of the three-part expression is the
identity element for op, e.g., true when op is G or zero if op is “ H ” .

It states that a host may remain idle forever, or it may
become active at a time some other active host is present
in the system. The history variable, ����� � �#� " � � � records

�
’s

status before � became active. Clearly, if all hosts are idle,
quiescence is established and it will be retained forever. As
we add ( � � ) to our specification, property ( � 7 ) is no longer
needed because it can be derived from ( � � ).

Refinement 1: � 7 , ���

4.2. Refinement 2: Token Based Accounting.

One way to determine termination is to simply count how
many hosts are idle. Frequent host movement makes di-
rect counting inconvenient, but we can accomplish the same
thing by associating a token with each idle host. Indepen-
dent of whether it is currently idle or active, each host in the
system holds zero or more tokens. The advantage of this
approach is that tokens can be collected and then counted
at the collection point. Of course this strategy works only
if the number of tokens always equals the number of idle
hosts. If we define I to be the number of tokens in the
system and J to be the number of idle hosts, i.e.,

IK� � & � � �L�NMPO ��Q � � �
	 ( � � )

JR� � & � � ��
���� � � � � ��( 	 ( �TS )

the relationship between the two is established by the in-
variant:

Inv. I � J�= ( �US )

By adding this constraint to the specification, the qui-
escence property ( � ) may be replaced by the predicate
( I � � ), where � is the number of hosts in the system.
Property ( � 7 ) is then replaced by:"

	�� � * detects I � � ( �V� )

with the collection mechanism left undefined for the time
being.

Refinement 2: �V� , ��� , � S

4.3. Refinement 3: Token Consumption.

To maintain the invariant that the number of tokens in
the system reflects the number of idle hosts, activation of
an idle host requires that the number of tokens decrease by
one. Therefore, when an active host awakens an idle host,
they must consume a token between them. To express this,
we add a history variable, ��M3O �*Q " � � � , which maintains the



value of ��M3O �*Q � �?� held before execution of the most recent
statement. The safety property:

��
���� � � � ( ��� )
unless����� � � A� � � � ����� � �!� " � � � @ �>�*� � �#� � � � @ ����� � �!� � � �@ � ��M3O �*Q � � � & ��M3O �*Q � � � �

��M3O �*Q " � � � &K�NMPO ��Q " � � � � ( � �  	
captures the requirement that, when host

�
activates � , one

of their tokens must be destroyed in the same step. Clearly,
this new property strengthens property ( � � ) by accounting
for token consumption. The fact that an active node can-
not always activate an idle node that is within reach may be
atypical for diffusing computations, but it is not surprising
for the mobile setting in which nodes may not be available
because they are simply out of reach. The algorithm draws
no distinction between disconnection and the lack of dis-
posable tokens.

Refinement 3: �V� , � S , ���

4.4. Refinement 4: Token collection.

As mentioned in refinement 2, we would like to collect
the tokens and count them at the collection point. In this
step, we choose � M��<� �  � to be our collection point, and we
introduce a token passing mechanism. To simplify our nar-
ration, we introduce the concept of rank. A host with a
higher id is said to rank higher than a host with a lower id.
Once all hosts are idle, � M��<� �  � should eventually collect all
� tokens. We will accomplish this by forcing hosts to pass
their tokens to lower ranked hosts. For this, we introduce
two definitions. First,

� � � & � � ��
���� � � � � � �NMPO ��Q � � �
	 ( � � )
counts the number of tokens idle agents hold. Obviously,� � � , when all hosts are idle. We also add

� � �
	 ��� � �
� � � @ �NMPO ��Q � � � �  � � ��	 ( ��� )
to keep track of the highest ranked host holding tokens. No-
tice that � is undefined unless all hosts are idle. After all
hosts are idle, we will force � to decrease until it reaches 0.
When � �/ , � M��<� �  � will have collected all the tokens.

At this stage we add a new progress property,

� � � �  until � � � ( � S )

that begins to shape the progress of token passing. As men-
tioned in Section 2, an until property is a combination of
a safety property (the unless portion) and a progress prop-
erty (the leads-to portion). Therefore, the above property

requires that the metric � never increases and guarantees
that it will eventually decrease. Note that this property only
restricts the behavior of the highest ranked host holding to-
kens but says nothing about the behavior of the other hosts.
As long as the highest ranked token holder passes its tokens
to a lower ranked host, we can show that all the tokens will
reach � M��<� �  � without having to restrict the behavior of any
host except � M��<� � � � . Therefore termination can now be de-
tected when � � �! � , so we can replace ( � � ) with"

	�� � * detects � � �/ �>= ( ��� )
Refinement 4: � S , � S , ��� , ���

4.5. Refinement 5: Rank independent behavior.

Because determining the identity of � requires stopping
the computation and asking each host whether it has any
tokens, we would like to unify the behavior of any host be
it � or not. We do so by rewriting property ( � S ) in terms of
variables of the underlying program. We begin by adding
the progress property:

�NMPO ��Q � � � �  @ � � � @ � A�/ ( ��� )
until

��M3O ��Q � � � �) @ � � �
which states that all hosts except the token collection point
should eventually surrender their tokens. Note that ( � � )
alone cannot replace ( � S ) because it does not prevent
� M��5� � � � from passing its tokens to a higher ranked host.
We fix this by adding the stability property

stable � � � ( ��� )
which guarantees that � M��<� � � � never passes tokens to a
higher ranked host. The combination of ( � � ) and ( � � ) guar-
antees that once all hosts are idle, all tokens must be col-
lected by � M��5� �  � , i.e., all other hosts pass their tokens to
� M��5� �  � either directly or indirectly. Property ( � � ) only con-
strains � M��<� � � � ’s behavior, and the variable � , still appears
in property ( � � ); we will replace this property in a later re-
finement.

Refinement 5: �US , � � , � � , ��� , ���

4.6. Refinement 6: Pairwise communication.

So far, hosts can awaken other hosts and hosts can pass
tokens to other hosts. Clearly, a host can only activate an-
other host or pass tokens to another host if the two parties
can communicate. However, the previous refinements do
not embody any notion of communication among hosts re-
quired for these activities to actually take place. To accom-
plish this, we introduce the predicate, �5M 	 �5�10 � � that holds
if and only if hosts � and

�
can communicate.



We begin this refinement with a new safety property:
��
���� � � � ( ��� )

unless����� � � A� � � � ����� � �!� " � � � @ �>�*� � �#� � � � @ ����� � �!� � � �@ � ��M3O �*Q � � � & ��M3O �*Q � � � �
��M3O �*Q " � � � &K�NMPO ��Q " � � � � ( � �  

@ �'M 	 �5�10 � �B	
which requires that hosts � and

�
be in communication when�

activates � . This property replaces property ( � � ) without
losing any of the constraints it imposes.

We also add the property:
�NMPO ��Q � � � �  @ � � � @ � A�/ ( � � )

until
��M3O ��Q � � � �) @ � � � @ � � � � � � � �'M 	 �5�10 � �1	

which requires a host to pass its tokens and, when it does,
to have been able to communicate with a lower ranked
host. As we add this property, we can easily remove prop-
erty ( ��� ). Property ( � � ), in conjunction with property ( ��� ),
requires that the highest ranked token holder, � , pass its
tokens to a lower ranked host. Again, it still says nothing
about the behavior of other hosts.

As we leave this refinement, we separate property ( ��� )
into its two parts; a progress property,

�NMPO ��Q � � � �  @ � � � @ � A�/ ( ��� )
leads-to

��M3O ��Q � � � �) @ � � � @ � � � � � � � �'M 	 �5�10 � �1	
and a safety property,

�NMPO ��Q � � � �  @ � � � @ � A�/ ( ��� )
unless

��M3O ��Q � � � �) @ � � � @ � � � � � � � �'M 	 �5�10 � �1	
In later steps, we refine these two pieces separately.

Refinement 6: � S , ��� , � � , ��� , � � , � �
4.7. Refinement 7: Contact Guarantee.

Property ( ��� ) conveys two different things. First, it en-
sures that a host with tokens will meet a lower ranked host,
if one exists. Second, it requires the tokens to be passed
to the lower ranked host. The former requires us to either
place restrictions on the movement of the mobile hosts or
make assumptions about the movement. For this reason, we
refine property ( � � ) into two obligations. The first,

�NMPO ��Q � � � �  @ � � � ( ��� )
leads-to

��M3O ��Q � � � �  @ � � � @ � � � � � � � �'M 	 �5�10 � �1	

guarantees that a host with tokens will meet a lower ranked
host. The second,

�NMPO ��Q � � � �  @ � � � @ ��� ��� � � � �5M 	 ���20 � �B	 ( ��� )
leads-to

��M3O ��Q � � � �) @ � � � @ � � � � � � � �'M 	 �5�10 � �1	
forces a host that has met a lower ranked host, to pass its to-
kens. At the point of passing, communication is still avail-
able. These two new properties replace property ( ��� ); they
neither strengthen nor weaken it.

Refinement 7: � S , ��� , � � , ��� , � � � � , � �

4.8. Refinement 8: Decentralization.

As alluded to previously, because of the existence of �
in our specification, token collection is still not completely
decentralized. In this final refinement, we eliminate � by
forcing every host, rather than just � M��<� � � � to pass its to-
kens to a lower ranked host, if one exists. Here, then, we
add the following safety property:

�NMPO ��Q � � � �  @ � � � @ � A�! ( � � )
unless

��M3O �*Q � � � �) @ � � �@ � � ��� � � � �5M 	 �5�10 � �@ ��M3O �*Q � � � � ��M3O �*Q " � � � &K�NMPO ��Q " � � � 	
which requires that if any host passes its tokens, there must
have been a host with a lower id within communication
range that gained that exact number of tokens. We can use
this property to replace both properties ( � � ) and ( � � ). At
this point, if we look at properties ( � � ), ( � � ), and ( � � ) we
see that the specification requires a host with tokens to meet
a lower ranked host (if one exists) and to pass its tokens.
The two hosts must be in communication at that time. Be-
cause of this, termination is now reduced to detecting when
the token count in � M��<� �  � reaches � . Therefore we re-
place ( � � ) by: "

	�� � * detects ��M3O �*Q �  � � � ( � 7�6 )
Refinement 8: �US , � � , ��� , ��� , ��� , � 7�6

5. Mobile Program

In the final step of the design process, we use our refined
specification to mechanistically construct the program text.
We first define the program components, and then we derive
the program statements directly from the final specification.
The resulting program (called a system in Mobile UNITY)
is shown below and discussed in the text following it. In the



process, we shift to using the programming notation of Mo-
bile UNITY, e.g., ����� ��� � � � becomes 
4��
����5���>= ����� ��� to ex-
press the local nature of the variable and the ownership by
that particular component. Communication is modeled as
co-location by introducing:" �$* ���10 � � � � 
���
���������= � � 
4��
���� � �>=��3�
System MobileSystem

Program host(i) at
�

declare�������	��
���
������������	�� � ��������
���� ����!"
�#$�%�&���	���
always���'����(��*),+��������
initially�������	�-)/.

if
�������10 2

if
���3����(��� � ��� ����!4),56���87	�� � �9);:

if
��);2<0 2

if
�>=),2

assign
idle ::

��������
��?�&���	�@
 )A���%B���
��������C�ED;.
if

���3����(��� �
detect ::

�$� ����!F
 )HG��?�&���	�9)I�KJ
if

�L)M2� �
move ::

� 
 ),N,�%(��OG8��
 � J
end host(i)

ComponentsP � � �Q
O2SRT�VUA:"
W
OX���7$��G8�YJZ�O� �\[Y]

InteractionsP � � ��
Y^E
W

X���7$��G8�YJ'_ ��������
3X6�&7��$G8�YJ'_ �?�&���	��
�X6�&7��$G`^OJ'_ �������	�


 )M56���87	��

aCb�c'd?eYf [hgji e c'k$l�m&nKb�c3d�eYf [ gji e c'k$l�m�oKpq r 

s b�c'd?eYf [hgji e c'k$l�m&nKb�c3d�eYf [ gji e c'k$l�m�oKpq t

when
X6�&7$��G8�YJ'_ �������

u X6�&7$��G`^OJ'_ ���'����(��
u G�X6�&7$��G8�YJ'_ � );X6�&7$��G`^OJ'_ � J
u G�X6�&7$��G8�YJ'_ �������	�vDwX6�&7$��G`^OJ'_ �������	�@xA2&J� � X���7$��G8�YJ'_ �������C��
3X6�&7$��G`^OJ'_ �������C�


 ),X6�&7$��G8�YJ'_ �������	�vDwX6�&7$��G`^OJ'_ �������	��
32
when

G�X6�&7$��G8�YJ'_ � ),X���7$��G`^OJ'_ � J
u G`^Exy�YJ
u X6�&7$��G8�YJ'_ �j��� �
u X6�&7$��G`^OJ'_ �������
u X6�&7$��G`^OJ'_ �������	�T=),2� �

inhibit host(i).move and host(j).move
when

G�X6�&7$��G8�YJ'_ � ),X���7$��G`^OJ'_ � J
u G`^Exy�YJ
u X6�&7$��G8�YJ'_ �j��� �
u X6�&7$��G`^OJ'_ �������
u X6�&7$��G`^OJ'_ �������	�T=),2]

End MobileSystem

Our final specification shapes the resulting program in a par-
ticular manner reflected by the code associated with each
host and by the coordination policies governing the inter-
actions among the hosts. It is the latter that represents our

novel contribution to program derivation literature and the
key to tying our derivation techniques to mobility.

The local actions of the individual host are simple; two
relate to the behavior of the underlying computation, while
the third implements the detection decision. The statement
“idle” captures the transition from active to idle and, to pre-
serve the invariant ( �US ), generates a new token in the pro-
cess. The “detect” statement is reduced to a skip in all hosts
except 
4��
����  � where tokens are checked against the num-
ber of known hosts in order to record the termination in the
local variable, 
4��
:���  ��= " 	�� � * . Finally, the “move” state-
ment models mobility by assigning new values to the loca-
tion variable, � .

All actions involving multiple components (pairs in our
example) are captured in the Interactions section, which
may be viewed either as a model of the physical reality or
as a specification for services to be provided by the operat-
ing system or by middleware designed to support mobility.
In this particular example, the first interaction captures the
requirement that a token is consumed when an active host
wakes an idle one—the fact that the remaining tokens are
distributed among the two hosts is just an arbitrary imple-
mentation detail. We use the when statement here to indi-
cate that host activation is nondeterministic and not oblig-
atory at the time of the encounter—when statements are
selected for execution in the same weakly-fair manner as
all other statements in the system. The second interaction
is mechanically similar but captures the transfer of tokens
among idle hosts from a higher to a lower ranked host. Here,
however, the specification demands that such transfer be ac-
complished before the two hosts can move apart. We ac-
complish this by employing a third interaction construct, an
inhibit statement, that explicitly precludes the movement
for as long as the transfer of tokens is not yet complete.

It may appear at this point that we indeed have a correct
program, but any attempt to verify its correctness reveals
that we have overlooked property ( � � ) which demands that
(when all hosts are idle) a host (other than 
4��
:���  � ) carry-
ing tokens must meet a lower ranked host. In an ad hoc net-
work, constructing a program which satisfies this require-
ment is generally impossible. Fortunately, Mobile UNITY
includes the notion of conditional properties, thus allowing
us to define correctness as being conditional of ( ��� ), i.e.,
if the latter holds, the desired behavior is achieved. In cer-
tain circumstances, we can actually guarantee that ( � � ) is
met by taking advantage of the properties of motion and
the structure of space. For instance, if hosts move back and
forth in a long hallway, pairwise meetings become a reality.

6. Conclusion

In this paper we presented the formal derivation of a ter-
mination detection protocol for mobile computing. While



our discussion focused on physical mobility, i.e., ad hoc
networks, the solution works equally well in wired net-
works supporting communities of mobile agents. Despite
the simplicity of the actual protocol, this exercise demon-
strates once more the versatility of Mobile UNITY, reveals
a number of subtle methodological issues, and raises some
interesting questions as well. In this particular study, the
problem definition is general enough to be independent of
mobility. Is this a desirable goal? When do we need to ad-
dress mobility from the onset? A precise definition of space
was not required since co-location was sufficient to model
the idea of two hosts being in range of each other, in part
because we ignored ad hoc routing. Can we take advan-
tage of the structure of space and its properties? The or-
der of refinements is clearly important and late introduction
of location-dependent communication constraints made the
derivation simpler. Is this always the case? While it has
been known for a long time that the underlying architec-
ture greatly affects the derivation process, it was interest-
ing to see that the available coordination constructs (e.g.,
those of Mobile UNITY) also shape the manner in which
refinements take place. Can we take advantage of this
and simplify the derivation process by focusing on tailored
abstract coordination constructs (easily built from Mobile
UNITY primitives) rather than the traditional communica-
tion primitives considered by much of the literature on dis-
tributed computing? Finally, this exercise reconfirmed the
usefulness of conditional properties in reasoning about open
systems—knowledge of how many hosts we had in the sys-
tem not withstanding. This paper provides strong evidence
that a formal treatment of mobility is not only feasible but,
given the complexities of mobile computing, also very de-
sirable.
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