Opening Pervasive Computing to the Masses Using
the SEAP Middleware

Seth Holloway, Drew Stovall, Jorge Lara-Garduno, and Christine Julien
Mobile and Pervasive Computing Group
The University of Texas at Austin
{sethh, dstovall, jlara-garduno, c.julien} @mail.utexas.edu

Abstract— The increasing availability of sensing devices has
made the possibility of context-aware pervasive computing ap-
plications real. However, constructing this software requires
extensive knowledge about the devices and specialized program-
ming languages for interacting with them. While the nature of
pervasive computing lends users to demand individualized ap-
plications, complexities render programming embedded devices
unapproachable. In this paper we introduce the SEAP (Sensor
Enablement for the Average Programmer) middleware which
applies existing technologies developed for web programming to
the task of collecting and using sensor data. We show how this
approach can be used to create new applications and to update
existing web applications to accept sensor data.

I. INTRODUCTION

George, an undergraduate in Computer Science, wants to
develop an aware apartment. To start, he would like to
automatically turn on lights whenever he is home. George
understands the logic perfectly, but he does not know how to
use the necessary pervasive computing elements. George has
found inexpensive, single-purpose solutions (e.g., a motion-
sensitive light switch) or expensive, complex, multi-purpose
solutions (e.g., the X10 Ultimate System). George wants a
cheap, multi-purpose solution with low complexity.

While George may be fictional, this scenario is real. The
potential for pervasive computing research to impact the
world is real. Application scenarios are not limited to homes;
developing an expressive application for any environment with
embedded sensing, computation, and actuation will encounter
the same challenges. This complexity is simply too high
for average programmers, particularly those looking to create
custom applications to enhance their own lives.

Making pervasive computing devices availabile dramatically
increases the number of achievable applications, enabling
all manner of context-awareness. Unfortunately, the reality
remains that average programmers with the ideas and interest
to create such applications can not overcome the steep learning
curve that currently exists for programming these devices.

Recent sensor integration techniques have improved device
interactions but still require significant configuration and pro-
gramming. In addition, because of the complexity of program-
ming, existing approaches are stovepipe solutions that solve a
single problem independent of other devices already deployed
on the site. Current approaches fuse the entire application
stack, creating significant but unnecessary interdependencies;
for example, George cannot reuse the motion sensor from his

aware home after it is tied to lighting one area. To enable pro-
grammability of pervasive computing applications, we propose
a paradigm shift that empowers the average programmer rather
than highly specialized device programmers.

Our approach, the Sensor Enablement for the Average
Programmer (SEAP) middleware, makes pervasive computing
applications easier to develop. SEAP provides a middleware
layer between the developer and the customized hardware,
publishing sensor and actuation data using the standard HTTP
protocol. The SEAP approach can be used to support the
development of entirely new pervasive computing applications
or to integrate existing applications into a pervasive computing
environment. Our approach takes advantage of the wealth of
experience the average programmer has in web programming.
With the growth of demand for new consumer applications in
the pervasive computing realm, we anticipate that given appro-
priate development aids, the adoption of pervasive computing
will be similar to the growth of the Internet.

In this paper we describe the SEAP middleware, its uses,
and qualitative results from our initial prototypes. We start
by overviewing related work. We then detail the SEAP ar-
chitecture and the process by which SEAP can be used to
implement applications. Finally, we mention extensions to and
applications of SEAP and conclude.

II. RELATED WORK

The notion of sensor and web integration is not entirely
new, and several related projects have paved the way for
our proposed approach. CoolTown allows networked mobile
devices to publish data on the web through a variety of
tailored protocols [1]. Data being published includes informa-
tion about a device’s characteristics (location, for example),
enabling a degree of content-based discovery. Another project
created a centralized website that accepts sensor data generated
worldwide [2], a technique cleverly titled slog (sensor log).
Sensors communicate their data to a base station that funnels
sensor data to the clearinghouse. Because we are interested in
enabling more personal applications, in SEAP, users control
their own data. This provides a more distributed computing
approach since data and actuation events are only shared
relative to a local space.

Other current approaches to sharing sensor data build on
standard web services using SOAP, WSDL, and XML. The



Open Geospatial Consortium (OGC) allows access to sen-
sors using SensorML, a sensor-specific language that defines
an XML schema to use sensors [3]. Microsoft’s SenseWeb
project [4] also provided a generic method to push sensor data
online. Both approaches rely on SOAP web services, which
can be inflexible, slow, hard to maintain and manage, and
heavyweight [5]. SOAP web services present an unnecessary
cost for small deployments that we set out to alleviate. This
is especially relevant to pervasive computing deployments
where resource-constrained devices often demand efficient,
streamlined solutions.

While rooted in different technologies, there are a number
of other designs to reduce the efforts required to develop
pervasive computing applications. For example, Weis et al. [6]
use visual programming techniques to reduce the learning
curve typically required. Other approaches [7], [8] provide
additional layers of abstraction to manage complexities that
can be hidden from the developer. We anticipate that these
techniques will be complementary to the SEAP middleware
architecture and might be combined to further ease software
development for pervasive computing.

With SEAP we minimize the interface for both devices
and programmers by relying on a simple but expressive
form for data movement, HTTP GET and POST commands.
Our approach is consistent with representational state transfer
(REST) principles [9] in an effort to be lightweight, flexible,
and compatible. REST is an architectural style that promotes
the transmission of domain-specific data over HTTP. Users
interact with resources using a small set of well-defined com-
mands to manipulate the resource. Some work has been done
to apply REST to pervasive computing [10], however, this
work violates many REST principles with complex systems
that require a great deal of configuration and knowledge; this
reduces benefits innate in the initial REST proposal. SEAP,
on the other hand, approaches the problem with a minimalist
perspective: get the data online in a form that entry level web
programmers can already use. By using standard HTTP, we
inherit the benefits of both past and future work on HTTP and
allow programmers to begin writing ubiquitous applications
immediately.

III. SEAP ARCHITECTURE

In this section, we describe the SEAP approach in detail.
Specifically, we present the necessarily simple software archi-
tecture that underlies the sensing, actuation, communication,
and interaction capabilities.

By relying on well-established programming standards,
SEAP brings the seemingly unapproachable task of program-
ming pervasive computing applications into the hands of
domain programmers who are experts in their applications’ re-
quirements. SEAP hides complexities associated with data col-
lection and actuator command with familiar web programming
patterns, using lightweight software components deployed on
resource-constrained devices to manage the distributed coordi-
nation tasks. Through SEAP’s abstractions, an individualized
application can tailor device and network configurations to

a particular task by parameterizing the software running re-
motely. At the same time, participating remote devices can
use standard posting procedures to exchange sensor data and
actuation commands in simple formats.

We divide our description of the SEAP architecture into
two aspects: the behavior of devices participating in a SEAP
supported application, and the application server that hosts the
applications.

A. SEAP Architecture: Devices

As SEAP aims to be generally applicable to a wide variety
of pervasive computing applications, a goal of the SEAP archi-
tecture is therefore to ensure that the functionality required for
these devices is kept to a minimum. To this end, devices are
not required to accept arbitrary inbound connections; instead
each device controls its own communication costs through
the outbound connections it creates. This includes both the
transmission of data requested by an application and the
reception of configuration and actuation commands. The SEAP
data flow depicted in Fig. 1 provides a high-level view of
the relationships between different hardware components in a
SEAP system.

Data Server
Command 1—=
Actuator User Code
| Req. Configuratio
Configuration

Fig. 1. Data flow in the SEAP architecture.

SEAP participating devices are classified as sensors (data
producers) and actuators (command consumers). While it is
possible for a node to perform both sensing and actuation
duties simultaneously, this distinction allows clarity in the
architectural description.

Sensors. A device that is creating its own data or gathering
data from the environment to send to the application is
considered a sensor. SEAP enables applications to collect
this information from sensors in an intuitive fashion. The
SEAP components running on the remote device create an
interface to the accepted web-based programming approaches.
Specifically, when a sensor has data to send, SEAP packages
the data and opens an HTTP connection to a preconfigured
Uniform Resource Identifier (URI). The sensor data is encap-
sulated as parameters in the connection and is transferred to



the application. A basic algorithm to be implemented by the
SEAP component on the remote device is shown below.

while (true) {
connect to data-report-uri
send readings
disconnect
sleep data-report-delay

}

The connection to the server is successful when commu-
nication paths are available (SEAP delegates communication
to an underlying network infrastructure). When the central
web server receives the connection and its parameters, SEAP
deployments use common web application frameworks to han-
dle communication and parse the parameters and present the
data to the user’s application. Because the user’s application
appears to be interacting only through web programming
constructs, interaction with sensor data is reduced to familiar
and routine operations.

Actuators. A device that receives commands from an appli-
cation to alter the logical or physical environment is considered
an actuator. As before, SEAP’s goal is to allow applications to
pass commands to remote actuators using simple and intuitive
techniques. Like sensors, a remote SEAP actuator manages the
HTTP connection and invokes native functions. A basic SEAP
component for a remote actuator could use the following
algorithm.

while (true) {
connect to command-uri
while (connection open) {
read command
apply command

sleep command-retry-delay

}

Here, the while (connection open) loop is used to eliminate
the resource usage of continuously polling the server for new
commands. When the connection is closed explicitly by the
host or implicitly due to a link failure, the device will wait
before attempting to reestablish the connection. This pause
could incur an undesired delay between sequential commands
if a SEAP server were only allowed to send a single command
per connection. To address this issue, devices read sequences
of commands from a single connection as they are sent by
the server. Assuming the read command above is able to
parse the commands as they are delivered, the inner while
loop explicitly provides support for batching many commands
together. Any sequence of commands returned to the device
will be processed in order, without encountering the sleep
statement.

However, even batching commands together may still not
provide the immediate response that some applications desire.
If the connection is closed after each batch of commands
is processed, the device must still wait for the command-
retry-delay before receiving a new batch of commands. This
concern is easily addressed by allowing the read command to

block until new commands are received. The server simply
distributes commands with arbitrary delays, each of which is
read and applied as soon as it is received. When the end-to-
end connections are stable (compared to the command-retry-
delay), this gives the application much finer control over the
timing of actuation commands.

Reconfiguration. Both sensors and actuators rely on a
small set of pre-configured variables to properly integrate and
support a SEAP application. However, while the application is
running, it may become necessary to change the values of such
a variable on a remote device. For example, an application may
request more frequent sensor readings due to an event external
to the remote device. To enable these scenarios, devices
also host a SEAP component which downloads configuration
changes in much the same way that commands are retrieved
by an actuator. This allows a developer to programmatically
alter any of the variables mentioned in this section, even the
reconfiguration URI, at runtime.

In the example sensor and actuator algorithms above, the uri
and delay variables can be reassigned by providing new values
on the webserver as a simple properties-style configuration
page like the one below.

http://my.host.name/sensor7/config.properties

data-report-uri=\
http://myhost/sensor7/readings

data-report-delay=3

command-uri=\
http://myhost/sensor7/command.properties

command-retry—-delay=10

configuration-uri=\
http://myhost/sensor7/config.properties
configuration-delay=60

In this case the configuration file contains the URIs and
delays for a fictitious device “sensor7.” The device parses
the configuration and updates its internal variables. Once the
sensor has applied this configuration, we expect it to post
readings every three seconds, and download its configuration
every 60 seconds.

Even devices that can be reconfigured still require initial
settings; a process we call bootstrapping. When a device
participating in SEAP is initially put into service for an appli-
cation, the user configures the device by specifying variables
necessary to coordinate with the web application. An example
configuration utility, Fig. 2, demonstrates the interaction that
is required for this process. Here, a device with a temperature
sensor and an LED is configured to publish temperature
readings and retrieve commands to control the LED. The
nature of this component depends on the particular target
device; it’s main purpose is to translate between the low-level
hardware and protocols and the simple SEAP interface. As the
final step of the configuration utility, the SEAP component is
loaded on the device (either through a direct connection or
through existing over-the-air programming capabilities).



Configuration Utility: Sensor 0000.0661 -] X
Configuration
Read from: http://my.host.name/sensor7/configuration.jsp
Every 60 seconds

Temperature Sensor

Post to: http://my.host.name/sensor7/temperature.jsp

Every 3 seconds
LED Display
Read from: http://my.host.name/sensor7/alarm_status.jsp
Every 10 seconds
Cancel Submit
- J

Fig. 2. Example user interface for sensor configuration.

B. SEAP Architecture: Application Server

Because average, hobbyist programmers do not have device-
specific knowledge, we shift the application logic to the
application server where programmers are more comfortable.
By centralizing the logic to an application server we mitigate
complexities of coordinating distributed devices. This also
allows us to apply existing high-quality tools and techniques
to the problem that would not otherwise be available. Because
SEAP reduces interactions with both sensors and actuators
to a standard web-style interaction paradigm, constructing
applications becomes much simpler and more familiar.

A web application framework (e.g., Tomcat, Ruby on Rails,
ASP.Net, etc.) simplifies the design of the server by addressing
many of the traditional server-programming concerns (e.g.,
connection management, data-stream parsing, etc.). Many of
these frameworks also provide support for advanced features
such as load balancing and clustering. By including web appli-
cation frameworks in the SEAP architecture, we are encourag-
ing the separation of non-application concerns from the user’s
code base and into a purpose-built tool. Pragmatically, the key
advantages of using a web application framework are derived
from re-framing misunderstood pervasive computing problems
into a standard web applications. This enables developers to
use almost any of the popular programming languages and
the manuals, tutorials, and guides that are available for them.
Developers also benefit from the high-quality tools available
for testing, debugging, documentation, and integration for this
popular application domain.

By introducing elements that serve as both device and
server, applications can adopt a more hierarchical design.
Intermediate nodes could perform data filtering, aggregation,
or even pre-processing.

At the other end of the spectrum of pervasive computing
applications, a SEAP system that does not require sensors can
use simple static content based web servers instead of web ap-
plication servers. Commands and configurations requested by
remote devices could be read directly from the central server’s
file system. Any web server (Apache httpd for example) would
be sufficient for this purpose. Updates to the files made by
hand or by other applications would be immediately reflected
by the web server and propagate to the devices.

1V. SEAP-BASED IMPLEMENTATIONS

SEAP eases software development by moving the logic of
pervasive computing applications to an environment that is
accessible and familiar to junior programmers. In this section
we detail how this is done in practice for two different
applications. One application was developed before the SEAP
architecture was conceived and then adapted to it after the fact.
The other was developed from scratch using the SEAP patterns
to build a robust, flexible, and easily testable application.

A. SEAP Applied to an Existing Application

The UbiCoffee application was previously developed by
graduate students to monitor coffee levels at several locations
in our building. Originally users of the application updated the
“amount available” through a web-based interface. Since a web
browser was often not available near the coffee pot, most users
traveled back to their desk to update the application. Often
these trips were interrupted leaving the application unaware
of the actual state of the coffee pots.

To increase the quality of the data reported to the appli-
cation, we wanted to place two buttons near the coffee pots
to indicate the addition and removal of coffee. Users would
simply press a button labeled “+1” several times when brewing
new coffee (8 presses to indicate brewing 8 cups) or press the
“-1” button when taking a cup from the pot. To provide this
functionality, we selected SunSPOT [11] devices. However,
this choice left us with a problem. The server is written with
Ruby on Rails, a language used to enable rapid prototyping
of web applications, while the SunSPOT is programmed with
a variant of JavaME.

To bridge this language divide, we used the SEAP architec-
ture. As a first step, the UbiCoffee application was extended to
include an “amount changed” form in addition to the existing
“amount available” form. This work was completed quickly
by the original developers and could be independently tested
and verified without any interaction with the SunSPOT.

The second step was programming the SunSPOT to behave
as a simple pervasive computing device with “+1” and “-1”
buttons. This task was not difficult, but was performed by a
student familiar with the nuances of these devices. Now, when
the buttons are pressed the device posts the appropriate value
to a given web URI as a given parameter.

To link our new pervasive device to our web application,
we simply provided the URI of the new UbiCoffee page and
the parameter name to the device. The resulting system now
accepts data from users via the SunSPOT device or web
browsers at their discretion.

B. SEAP From Scratch

The Spot-to-Bot application was developed by a undergrad-
uate researcher in our lab to steer a Roomba robot using the
accelerometer on a SunSPOT. In this case, the SEAP archi-
tecture was used to break the complete application into three
distinct parts, each independently testable and exchangeable.
The resulting application is flexible and easily extended to
accept new sensors, actuators, or behaviors.



The first of the three components is a web application with
three pages. The first page is a web form that accepts three
values: “X”, “Y”, and “Z”. Eventually these values were to
be provided by the SunSPOT. In the meantime, these values
were provided by submitting the form from a web-browser.
The second and third pages of the web application display
one value each; representing the requested speed and turning
angle for the robot. The web application thus contains the
logic to translate the raw data provided by the sensor into the
commands given to the actuator.

The second component of the system delivers accelerometer
data from the SunSPOT device to the web server. This
component is a simple extension of the program developed
for the UbiCoffee application described in the previous section.
The third system component drives the Roomba robot. Using
existing code as a basis, the majority of this work fell to
retrieving and parsing values provided by the web server.

The resulting application uses three components which
can be independently tested and verified. In fact, the three
components can even use different programming languages,
each specifically suited to the component’s primary task (e.g.,
JavaME for the SunSPOT, PHP for the server, C++ for the
Roomba controller).

V. FUTURE WORK

We see several extensions to, and applications of, the SEAP
middleware. We are investigating the use of this technology
in other pervasive computing scenarios; in particular, we see
an opportunity to apply the SEAP approach in the absence of
infrastructure—SEAP 1is particularly well-suited to pervasive
networks. Although HTTP is normally run over TCP/IP, the
specification is compatible with any networking stack, and
there are lightweight web servers capable of running on
handheld and other resource-constrained devices. We plan to
explore the ability to quickly deploy a sensor network for
environmental monitoring in a disaster-relief circumstance.

We would like to extend this architecture to other platforms
and create tutorials. Ultimately, we will publish prototypes
for end-user customization that allow novice programmers to
create exciting, useful pervasive computing applications.

Perhaps the most ambitious ideas are blog widgets and
an SMS-proxy. Ready-to-use sensor data provided via blog
integration and widgets to be used in mash-ups or composite
applications. The Internet experience will be more personal
by adding sensor-provided context information. The SMS
interface would allow access to your devices from all over the
world; for example, a user could send a text message from
home that would start brewing coffee at work.

VI. CONCLUSION

In this paper we present the Sensor Enablement for the Aver-
age Programmer (SEAP) middleware, which lowers the barrier
to entry for programming pervasive computing applications.
While we could have developed a new, heavyweight frame-
work aimed at making ubiquitous computing more accessible,

we instead focused on a broad solution using existing tech-
nologies where possible. As a result, the SEAP middleware
allows people to interact with sensors and actuators without
learning new languages or procedures. We also described two
existing SEAP deployments. The UbiCoffee application
shows how SEAP was used to add sensors to an existing
web-based application while the Spot-to-Bot application
shows the benefits of using SEAP as an architectural pattern
for system development.

The scalability and accessibility of the Internet make the
web an ideal platform for increasing the number of active
pervasive computing applications. Initially, only large organi-
zations had a web presence. However, the Internet age truly
burgeoned once individuals could create and maintain web
pages. To achieve the same growth in pervasive computing,
sensors and actuators should be easily accessible through a
suite of abstractions usable by the average programmer. The
SEAP middleware achieves this, allowing programmers to
easily integrate sensors and actuators without any awareness
of the specific low-level languages and protocols.

SEAP takes advantage of the vast body of work on web pro-
gramming to provide an approach that is easy-to-understand,
easy-to-use, language-agnostic, robust, reusable, and immedi-
ately achievable. People are ready for pervasive computing
applications; we provide an accessible method to enable multi-
device developments. SEAP is that method.

VII. ACKNOWLEDGMENTS

The authors would like to thank the Center for Excellence
in Distributed Global Environments for providing research
facilities. This work was funded, in part, by the National
Science Foundation (NSF), Grant # CNS-0620245. The views
and conclusions herein are those of the authors and do not
necessarily reflect the views of the sponsoring agencies.

REFERENCES

[1] J. Barton, T. Kindberg, H. Dai, and N. Priyantha, “Sensor-enhanced
mobile web clients: an XForms approach,” WWW, pp. 80-89, 2003.

[2] K. Chang, N. Yau, M. Hansen, and D. Estrin, “SensorBase.org-A
Centralized Repository to Slog Sensor Network Data,” DCOSS/EAWMS,
2006.

[3] M. Botts, “Sensorml,” http://vast.uah.edu, 2007.

[4] A. Santanche, S. Nath, J. Liu, B. Priyantha, and F. Zhao, “SenseWeb:
Browsing the Physical World in Real Time,” Demo Abstract, IPSN, 2006.

[5] C. Kohlhoff and R. Steele, “Evaluating SOAP for High Performance
Business Applications: Real-Time Trading Systems,” WWW, pp. 03—
2002, 2003.

[6] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle, “Rapid
prototyping for pervasive applications,” IEEE Pervasive Computing,
vol. 6, no. 2, pp. 76-84, April-June 2007.

[7]1 R. Handorean, J. Payton, C. Julien, and G.-C. Roman, “Coordination
middleware supporting rapid deployment of ad hoc mobile systems,” in
MCM, May 2003, pp. 362-368.

[8] F.J. Ballesteros, E. Soriano, G. Guardiola, and K. Leal, “Plan B: Using
files instead of middleware abstractions,” IEEE Pervasive Computing,
vol. 6, no. 3, pp. 58-65, July-September 2007.

[9]1 R. Fielding and R. Taylor, “Principled design of the modern Web
architecture,” TOIT, vol. 2, no. 2, pp. 115-150, 2002.

[10] W. Drytkiewicz, I. Radusch, S. Arbanowski, and R. Popescu-Zeletin,
“pREST: a REST-based protocol for pervasive systems,” MASS, pp. 340—
348, 2004.

D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White, “Java on
the bare metal of wireless sensor devices,” in VEE, June 2006.

(1]



