
Resource Discovery with
Evolving Tuples

TR-UTEDGE-2007-006

Drew Stovall
Christine Julien

© Copyright 2007
The University of Texas at Austin

Resource Discovery with Evolving Tuples

Drew Stovall and Christine Julien
Mobile and Pervasive Computing Group

The Department of Electrical and Computer Engineering
The University of Texas at Austin

{dstovall, c.julien}@mail.utexas.edu

ABSTRACT
Pervasive computing environments present new challenges
that hinder traditional approaches to software engineering.
In this paper, we tackle one such challenge: the need of per-
vasive application developers to have access to constructs
that enable resource discovery in dynamic environments. We
first define the evolving tuples model, a novel extension to
traditional tuple spaces that allows applications to embed
context-aware adaptation directly in structures traditionally
used for distributed coordination. The behavior applica-
tions embed in evolving tuples can subsequently be used by
discovery queries to allow environmental characteristics to
directly impact the results of discovery. Our approach min-
imizes the amount of infrastructure that must be available
to support discovery by embedding the discovery function-
ality almost exclusively within the tuple. At the same time,
our model retains many of the benefits of traditional tuple
space approaches, namely providing content-based coordi-
nation that is easy for developers to understand and imple-
ment. The evolving tuple’s inherent flexibility also allows
resource discovery to adapt to the changing resources in a
pervasive environment.

Keywords
tuples, evolving tuples, pervasive computing,
resource discovery

1. INTRODUCTION
The future of computing relies upon embedding comput-

ing functionality into our everyday environments. This de-
fines the domain of pervasive computing, in which immersed
users must rely on the distribution of functionality in the
environment to support computing tasks. With the minia-
turization of technologies and the improvements of wireless
communication, pervasive computing applications are now
realizable in several domains, including support for first
responders [18, 26], intelligent construction sites [11, 25],
aware homes [16], and many others. New characteristics of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE 2007 Dubrovnik, Croatia
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

applications, such as the extreme heterogeneity of devices,
unpredictability of connectivity between users and embed-
ded functionality, the increasing scale and distribution of
the network, and the need for local information contribute
to significant complexity in designing, programming, and
deploying pervasive computing applications.

As demonstrated by existing attempts to support perva-
sive computing application development [2, 6, 10, 17], one of
the most important aspects that affects the quality of perva-
sive application support is the availability of constructs that
support the discovery of and connection to resources embed-
ded in the environment. Our experience in creating a mid-
dleware to support pervasive application development [12,
14] has demonstrated that resource discovery for pervasive
environments possesses several requirements on top of the
demands from traditional peer-to-peer applications. These
requirements are largely tied to the characteristics of these
emerging environments as overviewed above. Resource dis-
covery in pervasive computing environments must be:

• autonomous: applications should be able to indepen-
dently perform discovery without global coordination
or even global information;

• open: devices are not under the control of a single ad-
ministrative organization, and therefore resource dis-
covery mechanisms must allow open interactions;

• fully distributed: discovery must not rely on centralized
infrastructure to locate nearby useful resources;

• localized: because discovery should be fully distributed,
it must be scoped (e.g., by physical or network dis-
tance) to prevent flooding the entire network;

• best effort: discovery should prevent unreasonable or
exhaustive searches in lieu of strong fairness or com-
pleteness guarantees;

• context-aware: discovery should be influenced by envi-
ronmental, network, and application information, both
in the network as discoveries propagate, and at the
end-points where discoveries are resolved; and

• forward compatible: as device capabilities and func-
tions change (e.g., descriptions are extended to include
more information) discovery queries that worked pre-
viously should continue to function.

The above stated requirements of resource discovery in
pervasive computing applications intertwine specification re-
quirements and the implementation of those specifications

using communication protocols. This promotes awareness of
network and environmental concerns at the application level
(i.e., context-awareness) and awareness of application re-
quirements at the network level (i.e., application awareness).
This has the potential to complicate the interfaces between
the application and communication capabilities. Support for
resource discovery in pervasive computing, however, should
mitigate this complexity through a specification mechanism
that is implicitly coupled with the discovery implementation
and allows the application maximum flexibility and expres-
siveness without presenting undue complexity.

To achieve the above requirements for resource discovery
in pervasive computing, we define a new resource discov-
ery mechanism using tuple spaces to coordinate distributed
processes. The tuple space model originally introduced by
Linda [9], which enables content-based access to data, has
recently received significant attention in coordinating mo-
bile and pervasive applications. Much research has focused
on using tuple space derivatives to enable distribution of ap-
plication data among loosely connected nodes in mobile ad
hoc networks [4, 7, 13, 20, 21]. In general, the use of these
systems has shown that the tuple space provides a natural
abstraction that separates the application developer from
explicit representations of the communication required to
enable the desired coordination.

In this paper we briefly introduce a novel extension to
more traditional tuple space models that allows tuples to
evolve. This paper provides a brief introduction to the re-
sulting evolving tuples model. We then focus extensively
on how this model can be used to implement resource dis-
covery in pervasive computing environments. Our resource
discovery approach leverages the dynamic features provided
by evolving tuples to deliver tailored functionality based on
both network- and host-centric characteristics.

The novel contributions of this paper lie in two primary ar-
eas. We provide the first introduction to the evolving tuples
model, a new application of tuples that focuses on the abil-
ity of tuples themselves to be context-aware and implement
adaptive functionality. We also introduce a new approach
to resource discovery in pervasive computing environments.
This discovery mechanism is the first of its kind in that it
is tailored to the requirements of pervasive computing en-
vironments. This general technique for resource discovery
can be incorporated into existing frameworks for resource
provision in pervasive computing applications (e.g., [14]).

This paper is organized as follows. Section 2 briefly de-
scribes the evolving tuples model which is applied to perva-
sive computing networks in Section 3. Section 4 then builds
a resource discovery protocol for pervasive computing en-
vironments that uses this evolving tuples model. This is
followed by a comparison to related work in Section 5. Sec-
tion 6 concludes.

2. THE EVOLVING TUPLES MODEL
This research is founded on previous work that has demon-

strated that the tuple space is a useful abstraction with re-
spect to simplifying programming in complex distributed en-
vironments. In comparison to traditional distributed appli-
cations, however, pervasive computing applications require
significant amounts of context-awareness and adaptivity. In
this paper, we introduce the evolving tuples model which al-
lows application developers to embed this context-awareness
directly in the same tuples that are used for data coordina-

tion. This provides the expressiveness and flexibility appli-
cations require without adding undue complexity.

This section presents the evolving tuples model, which
serves as the foundation for defining the communication
and resource discovery mechanisms described in the sub-
sequent sections. Evolving tuples are passed between con-
nected nodes to gather and distribute information across the
network. In the remainder of this section we detail the in-
ternals of these evolving tuples. We start by overviewing
existing tuple approaches on which our model is based, then
explore the modifications our model uses to provide context-
aware behavior to pervasive applications.

2.1 Background
In Linda [9], data elements with very little structure are

used to communicate between parallel processes through a
shared tuple space. These data structures, or tuples, are sim-
ply sequences of fields. An application might use the tuple
〈“ping”, 10, 5, 3〉 to represent a request to ping another node
on a network. Given an a priori data format specification,
another application could decode the first field as the mes-
sage type, the second as the destination node, the third as
the source node, and the fourth as the “time to live” (ttl).

When a process wishes to coordinate with another pro-
cess, it inserts a tuple into a tuple space using the non-
blocking out(tuple) operation. A receiving process can ex-
tract a tuple using the in(template) operation, where the
template argument is a pattern that may contain a mixture
of both concrete values (actuals) and value types (formals)
as in 〈“ping”, 10, ? integer, ? integer〉. In this tuple, the
first two fields are actuals and the latter two are formals.

When the in operation is performed on a Linda tuple
space, tuples are compared with the template for exact equal-
ity to actuals and type equality to formals. If multiple tuples
are found to match the template, a single tuple is selected
non-deterministically and returned to the requesting pro-
cess. If no tuples are found, the operation blocks until a
matching tuple is inserted into the tuple space. In either
case, the returned tuple is removed from the tuple space.
The operation read(template) performs the same function
as in, but does not remove the tuple from the tuple space.

Recent research has added more expressive operations to
Linda’s original suite. The non-blocking inp and readp are
commonly used to ‘probe’ a tuple space for the existence
of matching tuples, without suspending the calling process.
The group operations ing and readg [24] are also commonly
added to allow all matching tuples to be returned to the
client in a single call.

ELights [13] builds upon the LighTS [3] implementation to
decouple the fields of a tuple from their positions by adding
an identifying name to each field, as in 〈msg type=“ping”,
destination=10, source=5, ttl=3〉. This addition allows ap-
plications to differentiate tuples that use the same value
types to represent different data. It also integrates seman-
tic information into the tuple so that it can be more easily
recognized by other processes. Our evolving tuples model,
described next, uses a similar approach to placing meta-
information with the application data in the tuple.

While the original Linda tuple space was intended for co-
ordinating parallel processes, tuple space models have been
adapted for mobile and pervasive computing. Lime [21],
for example, uses a single tuple space whose contents are
globally distributed. Other approaches (e.g., MARS [4] and

TOTA [20]) use many smaller tuple spaces located on phys-
ically distributed nodes. In both cases, the approaches must
be coupled with routing mechanisms that move tuples and
requests for tuples through the network. Our evolving tu-
ples model uses an approach similar to the latter case; we
define several small tuple spaces and focus on how tuples
move in and out of these distributed spaces.

2.2 An Overview of Evolving Tuples
The goal of this paper is to introduce a resource discovery

mechanism for pervasive computing applications that maxi-
mizes application expressiveness and flexibility without sac-
rificing simplicity. This resource discovery model, described
in Section 4, relies on a new approach to tuple space based
coordination. Existing coordination mechanisms founded on
tuple spaces do not completely address the requirements of
pervasive computing environments as described in the pre-
vious section. Most importantly, it is difficult if not impos-
sible to embed adaptive behavior in the tuples themselves.
Instead, the above approaches rely on external processes and
operations to encode adaptation. To remove such require-
ments for a priori information about adaptive behaviors, we
favor an approach that combines semantic data and context
adaptation into a single structure.

In this paper, we introduce evolving tuples to accomplish
this adaptive coordination. Evolving tuples extend Linda
tuples in two major ways. To each field in a tuple we add
name and formula elements allowing us to identify each field
and to specify its behavior over time. The former is similar
to some of the approaches cited above in that it allows us
to directly tag the data with semantic descriptions of it. In
contrast, the formula allows us to embed adaptive behaviors
directly in the data. Secondly we add the evolve(...) op-
eration which uses the field formulas to produce the next
evolution of the tuple. Evolutions are directly impacted
by the context in which they occur; successive evolutionary
steps of the same original tuple in different contexts can re-
sult in two completely different derivative tuples. It is from
this evolution that evolving tuples acquire the ability to pro-
vide highly expressive context adaptation that is simple for
application developers to specify and understand.

2.3 Decoupling Fields from their Order
As noted in ELights [13], the addition of a name element

to tuple fields greatly increases the ability to share tuples
between applications, especially if those tuples are developed
by different organizations. Our use of field names draws
directly on this work to provide tuples the flexibility required
for pervasive computing. With the inclusion of the formula
element, the format of an evolving tuple is:

〈 (name, type, value, formula),
(name, type, value, formula),
. . . 〉

Each field’s name is a unique and descriptive identifier, type
is the data type of the field’s value. The formula is discussed
below. With the addition of the field name, we must also
alter the format of the tuple templates used by tuple space
operations. The ELights system that introduces name ele-
ments to tuples also includes the ability to specify highly ex-
pressive constraints on field values. In this model we choose
to adhere to the original Linda specifications and allow the
user to match either the exact value (actual) of a field, or the

type of the field’s value (formal). This subset of functional-
ity suits our application requirements but may be expanded
later as we further develop the model. An actual is spec-
ified by setting a concrete value for the third element of
a template field, while a formal is specified by setting this
element to null (∅). In either case, the field formulas are
ignored when matching tuples and templates. The format
of a template is simply the name, type, and value of each of
the fields that must be matched:

〈 (name, type, value), ←Actual
(name, type, ∅), ←Formal
. . . 〉

The template’s name and type elements have the same mean-
ing as in a tuple. The third element can take either the null
value (∅) or an actual. The null value effectively turns the
field into a formal, indicating that the matching function
should only be concerned with the type. If an actual is pro-
vided, the matching function requires the candidate field to
contain the same value.

The matching functionM used by in and read is defined
for a tuple θ and a template τ as:

M(θ, τ) ≡ 〈∀c : c ∈ τ :: 〈∃f : f ∈ θ
∧ f .name = c.name
∧ f .type = c.type
∧ (c.value = f .value ∨ c.value = ∅)〉1〉

For each field in the template, the tuple must contain a
field with the same name and type. If a template field also
specifies an actual, the field must have a value equal to the
one specified. However, a template may also match a tuple
with more fields then the template. Specifically, the fields
in a template must be a subset of the fields in any matching
tuple. This flexibility allows applications to use data from
different sources provided a consistent naming scheme.

2.4 Embedding Evolution
Our second distinguishing change, the field formula con-

struct, is designed to allow a tuple author to specify incre-
mental changes to a field’s value. When evaluated, field
formulas can access values associated with the tuple’s con-
text, allowing the changes to reflect the current state and
history. These field formulas do not support complex pro-
gramming constructs such as loops and callable functions,
however they do support string concatenation and a simple
if-then-else construct2 in addition to common arithmetic and
boolean operators.3 These operators can be applied to both
constant values and to values from other tuple fields which

1In the three-part notation: 〈op quantified variables :
range :: expression〉, the variables from quantified variables
take on all possible values permitted by range. Each instan-
tiation of the variables is substituted in expression, produc-
ing a multiset of values to which op is applied, yielding the
value of the three-part expression. If no instantiation of the
variables satisfies range, then the value of the three-part ex-
pression is the identity element for op, e.g., true if op is ∀ or
∅ when op is set.
2In our examples, we use the notation if(condition, expres-
sion 1, expression 2). The value of the entire expression is
the value of expression 1 if condition evaluates to true, and
expression 2 otherwise
3Due to length constraints, it is impossible to present the
entire grammar of the allowed formulas.

are resolved when the formula is evaluated. Constant values
such as true, 0.2, or “Hello world” appear in-line in the for-
mulas. Values from other fields are referenced by the field’s
name, as in counter + 1.

A formula also has access to an “evolution context tu-
ple” whose field values are referenced with the notation
“context[field-name]”, where field-name is the name of the
context tuple’s field. Section 3 will explore the nature of
this evolution context tuple and its fields in more detail; our
discussion of field formulas and the evolve operation simply
assume this tuple which is supplied by an external process to
provide information about the tuple’s current environment.
A formula’s reference to a context tuple’s field is replaced
by the field’s value when it is evaluated.

By using a field formula, a tuple can update its field value
to reflect its environment. Consider, for example, the fol-
lowing field within a tuple:

〈 . . .,
(last-year, int, 2006, context[current-year] - 1),
. . .〉

When the field formula (context[current-year] - 1) is evalu-
ated, it will return the value of the evolution context tuple’s
current-year field, reduced by one.

2.5 Performing Evolution
The process of evaluating field formulas is handled by the

evolve() operation, which is responsible for choreographing
the process of evolution. Using context information and the
values and formulas of an existing tuple, evolve() generates
a new tuple representing the tuple’s next evolution. Since
field formulas are able to reference the values of sibling fields,
we must take care to evaluate formulas for the fields of a
tuple in a specific order to elicit deterministic behavior. For
example, if the formula for field A references a sibling field B
which also contains a formula, the results of the evaluation
of A’s formula may differ depending on the order of the
formulas’ evaluation.

Determining the order of evaluation for an evolution step
must be based on a universal standard and should also be
intuitive to users. Various evaluation orders are available,
such as “alphabetically by field name” which would yield a
simple-to-implement standard. However this ordering is not
intuitive to users. Instead, we logically create a dependency
tree and evaluate fields that are depended upon before the
fields that depend on them. In addition to being intuitive,
this technique ensures that the values appearing in the re-
sulting tuple are the same as those used to compute the
other values, ensuring a consistent data structure.

This ordering does, however, impose the additional re-
quirement that formulas do not create circular dependen-
cies. We make one exception to this rule to allow a formula
to reference itself. In this case, the value used in the evalua-
tion is the field’s previous value. We feel that the restriction
on circular dependencies is more than offset by the deter-
ministic and intuitive behavior that it provides. Given this
restriction, we can formalize the evolve() operation using
the following definitions.

First, let f refer to a field in a tuple (i.e., one name, type,
value, and formula combination). Within a field, f.formula
refers to the code that specifies that field’s evolution. Within
the formalization that follows, a formula has three compo-
nents. The first specifies the names of the sibling fields other

than itself that the formula relies on. The second specifies
the names of the fields of the evolution context that the
formula relies on. The third specifies the executable behav-
ior. That is, a formula, φ can be represented as the triple:
φ = 〈D, E, behavior〉. D and E are specified simply as sets
of names. These dependencies are extracted from the for-
mula when it is parsed by evolve() and are easy to sepa-
rate based on notation. We also define the following piece
of shorthand notation: names(θ), which allows us to access
the set of names contained within the tuple θ.

Let θ′ be the result tuple that is constructed incrementally
during evolution from the original tuple θ. Fields in the
tuple evolve one at a time, and as each field evolves, it is
added to the result tuple θ′. Initially, θ′ contains no fields.
Before formally defining tuple evolution, we define what it
means for a single field f in the tuple θ to be enabled, i.e.,
to be capable of being evaluated:

f.enabled ,
f.formula = ∅ ∨ f.formula.D ⊆ names(θ′)

The above states that a field’s formula is enabled exactly
when either no evaluation is required (the formula is ∅) or
the sibling fields that a formula depends upon have been
added to the new tuple θ′ (i.e., they have already been eval-
uated for this evolution step).

We now define evolution of a tuple in terms of single steps
that evolve one field at a time, ultimately generating a new
tuple (θ′) that has exactly the same field names and formulas
as the original tuple (θ) but potentially new values:

θ′ := evolve(θ, ε) ,

θ′ = newTuple()
while f := f ′.(f ′ ∈ θ ∧ f ′.enabled ∧

f ′.name 6∈ names(θ′))4 6= ∅ do
if (f.formula.E ∈ names(ε)) then

new value := exec(f.formula, f.value, θ′, ε)
θ′.add(〈f.name,new value.type,new value, f.formula〉)

else
θ′.add(f.name, f.type, f.value, f.formula)

endif
od
while f := f ′.(f ′ ∈ θ ∧ f ′.name 6∈ names(θ′)) 6= ∅ do

θ′.add(〈f.name, f.type, f.value, f.formula〉)
od

where ε is the evolution context tuple provided by the call-
ing process. The guard on the first loop in this definition re-
quires that there exists a field in the original tuple that is en-
abled and has not yet been evaluated for this evolution step.
As long as such a field exists (i.e., the non-deterministic
selection results in a non-null value), the selected field is
subjected to a second guard requiring the formula’s depen-
dencies on the evolution context are satisfied. If these de-
pendencies are present, the field is evolved, and the result
of the evolution is placed in the result tuple θ′. Since the
evolution context tuple ε does not change during evolution,
any formula that fails the second guard can not be evaluated
during this evolution, and the field is simply copied with its

4The construct x.(condition) non-deterministically returns
any value that matches the condition and will return ∅
(null) immediately if no value can be found [1].

original value to the new tuple. The evolution of a partic-
ular field (either evolved or copied) may enable additional
fields in the original tuple whose formulas rely on the new
field. When there are no more enabled fields in the origi-
nal tuple, the second loop copies any remaining unselected
fields to the result tuple; their evaluation cannot be enabled
in this context.

After evolution, this new tuple can be inserted into a tuple
space for other processes to consume. Since the new values
of the tuple have drawn from the environment, any process
inspecting these fields is using context information to influ-
ence its behavior. Additionally, since the tuple can change
its values and types, its formulas can use environmental in-
formation to alter the tuple itself so that it will be selected
by templates used by specific processes. In the next section,
we will see how tuples use context-awareness and how they
can change personas as they progress through the network.

3. EVOLVING TUPLES IN
PERVASIVE ENVIRONMENTS

The previous section defined the evolving tuples model
and showed how tuples change over time in response to the
contexts in which they are placed. In this section, we be-
gin to explore the use of this model in pervasive environ-
ments in general and show how expressing of messages as
tuples and processing of messages as tuple evolutions sim-
plifies application-level understanding of communication in
pervasive environments. The next section will build on this
generic model to demonstrate how evolving tuples can be
used to build a specific type of pervasive computing com-
munication: resource discovery.

We envision pervasive computing environments to consist
of a heterogeneous collection of distributed devices that com-
municate directly with each other and with users immersed
in the environment. In such scenarios, it is impractical to as-
sume that a centralized authority exists to mediate all com-
munication; instead applications rely on ad hoc networks for
interactions among application components and embedded
capabilities. This system view is directly in line with the
requirements enumerated in Section 1.

In applying evolving tuples to pervasive computing, ap-
plications perceive the data and resources available on hosts
distributed throughout the network to be available within
a collection of tuple spaces. Each participating device hosts
one or more tuple spaces, and these repositories serve as
mechanisms for coordinating applications’ actions. This model
is shown in Figure 1, which depicts a small network of co-
ordinating devices. This representation is similar to that
used in other tuple space adaptations for mobile comput-
ing [13, 20, 21], where the union of all of the tuple spaces in
a connected network can be viewed as a global virtual data
structure [22]. In our evolving tuples model, entry to and
exit from tuple spaces may be guarded by tuple evolution
operations, as dictated by application requirements.

The allocation and layout of the tuple spaces and the use
of the evolve operation described in the previous section
are purpose-dependent, and different applications are likely
to use different collections of tuple spaces to enable their
particular coordination tasks. In this section, however, we
look at the tuple spaces and tuple space interactions that
must be defined to allow pervasive computing applications
to perform network communication actions to transmit and

Figure 1: Ad-Hoc network using tuples to exchange
application data

receive tuples. The behavior we describe here generically
supports any pervasive computing behavior that may reside
in a layer above the reception and distribution of tuples
across the network.

An overview of a single node’s participation in this com-
munication process is shown in Figure 2. The figure shows
tuples arriving from the network layer into a receive

method. This method assumes that every tuple contains a
field named destination. If this is not the case, the receive

method does not know how to receive this tuple, and it will
be dropped. Upon reception, incoming tuples are imme-
diately evolved with an evolution context containing infor-
mation about the network context in which the tuple was
transmitted. If, after evolution, the tuple has a destina-
tion field with either the host’s address or the broadcast
address, it is placed in the application tuple space where
local applications can consume it. Broadcast tuples and
tuples not bound for the host are placed in the outgoing tu-
ple space where they are forwarded through the network by
the Propagate process. Tuples are dispatched to the net-
work using a send method on the network interface. We
assume that the network interface handles one-hop unicast
and broadcast routing. We also assume an underlying route
discovery protocol that provides the address of the next hop
on the route to a given destination address (other than the
broadcast address).

Figure 2: Tuple propagation mechanics

As indicated in the figure, the receive method demul-
tiplexes tuples received from the network interface. A key
component of this method’s behavior is its use of the evolve
method to potentially update the fields of the received tuple.
This is important because applications may make decisions

based on the network contexts a tuple has recorded in its
route to the application. As one example, real-time applica-
tions may be concerned with the amount of latency a tuple
experiences between the source and the destination. A field
inside the tuple can monitor this value, and the evolve op-
eration in the receive method can update the value. Con-
sider, for example, the following field within a tuple:

〈 . . .,
(latency, float, 0, latency + context[last-link-latency]),
. . . 〉

This can communicate to the application the overall net-
work latency that the tuple has experienced. As the tuple
traverses the network, the latency experienced at each hop
is aggregated and placed in the tuple. The evolution of
the latency field defined above relies on its own previous
value and a value that must be provided by the evolution
context: context[last-link-latency]. Because this and other
similar metrics can be measured at the network level, an
evolution step on entry to the receive method allows the
tuple to carry this network status information up to the ap-
plication. We assume this network information is available
as the receive method’s evolution context in a tuple named
“network-context.” The behavior of the receive method is
formalized as:

receive(θ) ,
θ′ := evolve(θ, network-context)
if (θ′[destination].value = my-address or

θ′[destination].value = broadcast) then
application.out(θ′)

fi
if (θ′[destination].value 6= my-address) then

outbound.out(θ′)
fi

In this definition, after evolving the received tuple θ within
the network context, the receive method checks θ’s des-
tination. If destination is either the node’s local address
(my-address) or the broadcast address, the tuple is deliv-
ered to the application. This is accomplished by placing the
received tuple in the application tuple space, which serves
as a communication interface between the network and the
application. In addition, broadcast tuples and tuples ad-
dressed to other nodes should be propagated by placing the
tuple in the outbound tuple space, which is accessed by the
Propagate process, described below.

This description of the receive method does not han-
dle the reception of duplicate broadcast tuples. Instead,
we assume that each tuple has a unique sequence number
(for example, a concatenation of the source address and a
counter). As tuples evolve and are duplicated, the sequence
number does not change unless explicitly reassigned (i.e.,
it has a ∅ formula). The above receive method assumes
that a filter running at the network interface monitors which
sequence numbers have been received and only passes up
“new” tuples. More sophisticated communication methods
(e.g., those specified in [15, 23]) make context-dependent de-
cisions as to whether or not to look at a duplicate tuple (e.g.,
when the incoming tuple has a lower latency than the pre-
vious reception of the same tuple). In such cases, the above
assumption is not valid, and a more sophisticated receive

method is required. We ignore this issue for the remainder
of this paper for the sake of clarity.

When broadcast tuples or tuples from the application need
to be sent out on the network interface, they are placed in
the outbound tuple space. A dedicated process, Propagate,
continuously checks this tuple space for outgoing tuples.

Propagate ,

while true do
template := 〈(destination, int, ∅)〉
t := outbound.in(template)
if t[destination].value 6= ∅ then

next-hop := lookup(t[destination].value)
send(t, next-hop)

fi
od

The Propagate process non-deterministically removes a tu-
ple from the outbound tuple space. If the tuple has a null (∅)
destination, the Propagate process ignores (i.e., drops) it.
Otherwise, the process looks up the next hop on the route
to the stated destination and sends the tuple there. The
lookup function accesses a routing database maintained by
an underlying routing protocol. The function returns broad-
cast if the destination address is broadcast and a network id
of the next hop otherwise.

Throughout the receive method and the Propagate()

process, tuples are handled based on their destination fields.
Since the field’s value is updated by its formula, the tu-
ple can be viewed as providing its own routing information.
This self-routing functionality can be leveraged by a tuple
author to elicit elaborate behavior from a tuple such as way-
point based traversals of the network.

The Propagate process above provides simple non-
deterministic behavior, and, like any non-deterministic al-
gorithm, it lacks any fairness guarantees. For example, if
enough tuples are being inserted into the outbound tuple
space, and the Propagate process is slow, some tuples may
never be removed and forwarded to their destination. More
sophisticated Propagate processes could provide, for exam-
ple, FIFO behavior to ensure this fairness.

As indicated above, these reception and propagation ca-
pabilities are intended to be generic across a pervasive com-
puting system. While different implementations of receive
or Propagate can provide different behavior, these behaviors
are application-independent and may be tailored to a partic-
ular pervasive network’s operating characteristics. Application-
specific behavior is implemented on top of these communica-
tion capabilities. In the next section we describe the use of
the evolving tuples model from the previous section in con-
junction with the network model described here to provide a
resource discovery mechanism that satisfies the requirements
from Section 1 and is simple for application developers to
implement and use.

4. RESOURCE DISCOVERY WITH
EVOLVING TUPLES

To share its resources, a host must be able to receive re-
source requests and send appropriate replies. Often the pro-
cess of matching resources to requests requires information
from application level processes (e.g., physical location) as
well as from various levels of the networking stack (e.g., link
latency, buffer saturation). In addition, the context informa-
tion available for evaluating a resource’s suitability is often

restricted to the values originally built into the resource dis-
covery protocol. If a certain attribute (e.g., manufacturer)
was not specified during the protocol’s design, a resource
request may not be able to restrict resources based on its
value. Evolving tuples allow us to collect context informa-
tion by name from any provided context and allows the tu-
ple author to combine these values using mathematical and
logical operators to form a variety of preference behaviors.

In this section, we first show a discovery request expressed
as an evolving tuple, explain the various fields, and show how
the fields are essential to providing context-aware resource
discovery. As resource discovery tuples are broadcast across
the network using the facilities described in the previous sec-
tion, they will be inserted into the application tuple space
as described in the previous section. The Discovery pro-
cess defined below is responsible for receiving these tuples
and evolving them in the context of each available resource.
After an explanation of how this process is modeled, we in-
clude a step-by-step example of a discovery tuple as it passes
through a sample network.

4.1 Crafting a Resource Request
A resource discovery request, like other evolving tuples,

is a self-routing structure that gathers data and changes its
values as it progresses through a series of evolutions. The
tuple will cross a multi-hop network and will be evolved in
the context of potentially matching resources. If a suitable
resource is found, the tuple switches itself from a request to
a reply and sends itself back to the original source.

Figure 3 shows a tuple that a requester would create to
locate a printer within 100ms network latency (0.1 seconds5)
This request has embedded within it all of the information
necessary to evaluate the request (in the context of poten-
tial resources) and to return a reply. Because this definition
is under the control of the requester, many options can be
changed depending on application requirements, for exam-
ple, dispatching the reply to a node other than the requester
itself. Below we explain each field and formula in the exam-
ple, which assumes that the broadcast address is -1.

• source: The network address of the node sending the
resource request. In our example, this value will be
used as our destination for the reply sent when the
request finds a matching resource.

• latency: A simple counter that tracks the total network
latency of the links the tuple has traversed. When this
field is evolved by the receive method, the latency
of the last transmission is added to the cumulative
total. When the field is evolved by other processes,
the last-link-latency field is not present in the evolution
context, preventing the formula from being evaluated.

• match: Serves as a simple switch to notify other fields
that a resource has (or has not) been found. The initial
value is set to ∅ to indicate that no resource has been
evaluated. When the formula is evaluated, the value
becomes either true to denote a suitable resource, or
false to denote an unsuitable resource. We use an if
statement to preserve the field’s value if it is non-null.

• msg type: A flag used to retrieve resource discovery tu-
ples from the application tuple space. Initially, and any

5This tuple assumes that quantities are expressed in ISO
units (e.g., seconds instead of milli-seconds).

〈
(source, int, 5, ∅),
(latency, int, 0,

latency + context[last-link-latency]),
(match, boolean, ∅,

if (match 6= ∅,
match,
(latency ≤ 0.1 and

context[resource-type]=“printer”))),
(msg type, string, “discovery-request”,

if (match = true,
“discovery-reply”,
“discovery-request”)),

(destination, int, -1,
if (match = ∅,

if(latency < 0.1, -1, ∅),
if(match = true, source, ∅))),

(resource-host-address, int, ∅,
if (resource-host-address = ∅ and match = true,

context[host-address],
∅))

〉

Figure 3: Example discovery tuple

time before the match field is set to true, the message
type is “discovery-request”. Once the tuple has found
a matching resource, the message type is changed to
“discovery-reply”. Since this reply tuple will eventu-
ally be returned to the source, a process there can use
this value to retrieve a successful resource discovery.
The msg type field may also be used by other applica-
tion level processes, for example a print daemon might
use tuples with a msg type of “print-job”.

• destination: Used by the Propagate process to forward
the tuple. Until a resource has been evaluated (i.e.,
match = ∅) the destination is a function of latency.
We set the destination to the broadcast address if the
next hop will not exceed our scope, and set the value to
null (∅) if it will. After a resource has been evaluated,
the destination is a function of match. If match is true,
we set our destination to the value of the source field.
If match is false, we set our destination to null, causing
the Propagate process to drop the tuple.

• resource-host-address: originally null, this value is set
to the address of the host that contains the matched
resource. The if statement guards the value from being
updated once it has been set and only sets it when a
match has been found.

As shown above, the data and logic necessary for selecting
resources is completely contained within the tuple with the
exception of the requisite resource attributes. This reduc-
tion frees the host system from any deep involvement in the
process of discovery, and, as we will see next, the interface
between the host and tuple has been reduced to just the
destination and msg type fields.

4.2 Discovery Resolution
In our model, the Discovery process is responsible for

converting request tuples into reply tuples. As discussed in

Section 3, tuples addressed to either the broadcast address
or a node’s address are inserted into the node’s application
tuple space by the receive method. As shown in Figure 4,
the resource discovery tuples are removed from the applica-
tion tuple space by the Discovery process, using an in oper-
ation. Since this operation blocks when no matching tuples
are available, the Discovery process is suspended until a
request tuple is available.

Figure 4: The discovery process

The descriptive attributes of the host’s resources are ac-
cessed as the Discovery process’s evolution context. The
host maintains tuples that represent the resources available
for discovery which are then used as the evolution contexts
to evolve the discovery tuple for each resource. This proce-
dure generates n new tuples that are each the result of evolv-
ing the original tuple with the ith resource where i = 0..n.

These new tuples are each potential matches that the
Discovery process could filter based on the value of some
standard field. However, by relying on the self-routing mech-
anism of the tuple, the Discovery process is relieved of any
interaction with the tuples’ fields beyond the template used
for the in operation. The resulting tuples are simply de-
posited into the outbound tuple space where they are prop-
agated to the node indicated by the tuple’s destination. If
the tuple represents a failed resource match, the destination
will be null and the tuple dropped during propagation. We
describe this formally as:

Discovery() ,

while true do
template := 〈(msg type, string, “discovery-request”)〉
θ = application.in(template)
res[] := getResources()
for each r in res

θ′ := evolve(θ, r)
outbound .out(θ′)

rof
od

This definition contains only the procedural framework for
discovery, while all of the logic of matching resource at-
tributes and determining resource satisfaction is delegated
to the internals of the evolving tuple. The resource tu-
ples used as evolution context are provided by the method
getResources(), which may in turn retrieve its tuples from
a separate tuple space (not shown). By using a ‘probing
group read’ of this ‘resources tuple space,’ the operation
would return all of a host’s resources in a single step with-
out blocking when no resources are available.

4.3 Example
In this section, we will step through the entire process of

sending and returning resource discovery tuples. For this
example we will use the network depicted in Figure 5. The
discovery tuple from Figure 3 is sent by node 5 through the
entire network, but we will specifically concentrate on the
tuples that pass through nodes 1 and 2.

Figure 5: The dissemination of discovery request tuples
followed by the return of discovery reply

The process begins when an application on node 5 creates
a resource-discovery tuple. This tuple is inserted directly
into the outbound tuple space where it is removed by the
Propagate process described in Section 2. The Propagate

process reads the value of the destination field (the broad-
cast address -1) and sends the tuple to each of the node’s
neighbors (2, 3, 6, and 7). When this tuple is received at
node 2, it is handled by the receive method and encounters
its first evolution (within the receive from Section 2).

This evolution is performed with a network-context tuple
containing values describing the network. First the latency
formula shown in Figure 3 is evaluated and increments the
field’s current value of 0 by context[last-link-latency] to (for
example) 0.01. The network-context tuple does not con-
tain a resource-type field, a dependency of the match field,
so this formula is not evolved and retains its current value
(∅). The other fields (destination, msg type, and resource-
host-address) each depend on match, so they are also not
evaluated and retain their initial values.

After this evolution step is complete, the new tuple is
inserted into both the application and outbound tuple spaces.
From the outbound tuple space, the Propagate process will
re-broadcast the tuple to all of the node’s neighbors, where
receptions of duplications of the same broadcast are handled
as described in Section 3. The tuple in the application tuple
space is removed by the Discovery process described in the
previous subsection, which will then evolve the tuple in the
context of each of the resources available on the node.

For the purposes of discussion, we will assume that node 2
contains only one resource, and the tuple describing it
has a field named resource-type with value “printer.” The
Discovery process evolves the tuple just once with this re-
source as the evolution context. Since the latency field de-
pends only on a context tuple field that is not available,
its value is not changed. The sibling field latency and the
context field resource-type are available, enabling the match
formula. When it is evaluated, the value for the match field
is set to true. This enables evolution of the remaining fields:
destination, msg type, and resource-host-address. The desti-
nation field is updated to the value of the source field (5), the
msg type field is set to “discovery-reply,” and the resource-

host-address field is set to context[host-address] (2).
The Discovery process then places this evolved tuple into

the outbound tuple space where the Propagate process will
send it to its new destination, node 5. As mentioned pre-
viously, the Propagate process also sent the first evolu-
tion of our tuple to node 2’s neighbors, or more specifi-
cally, to node 1. In our example, node 1 also contains a
matching resource which causes the Discovery process to
evolve a discovery-reply tuple and place it in the outbound
tuple space. However, if node 1 also contains a resource
with a resource-type field that is not equal to “printer”, the
Discovery will evolve a new tuple with a match value of false
and a destination field of ∅. When this tuple is removed by
Propagate from the outbound tuple space, it is ignored and
dropped due to its null destination.

In Figure 5, node 8 similarly creates multiple discovery-
reply tuples for each matching resource hosted on the node.
Each of these tuples are inserted into the local outbound
tuple space and are forwarded individually to node 5.

When the discovery-reply tuples arrive at node 5, the
application that inserted the original tuple (or potentially
another application) will retrieve the reply tuples from
its application tuple space using an in(〈(msg type, string,
“discovery-reply”)〉) operation. In our sample, the applica-
tion would then use the value in the resource-host-address
field to begin communications with the printer resources
that were discovered.

5. RELATED WORK
As mentioned in previous sections, various systems ex-

ist that use tuple spaces to coordinate interactive behaviors
among locally connected groups of nodes. MARS [4], for
example, associates a tuple space to each host in a group of
physically connected nodes. Mobile agents can roam from
host to host, interacting with other agents through the lo-
cally available tuple spaces. The MARS employs reactivity
in its tuple spaces to allow context information to impact
some of these interactions. However, the context-awareness
is embedded in these reactions, which are coded as separate
entities from the data they impact. In our approach the
tuples themselves carry the behavior that creates context-
aware adaptation. Lime [21] is a more general model than
MARS that also uses tuple spaces to simplify the devel-
opment process. Lime enables mobile coordination by ab-
stracting communication into a logically unified global tu-
ple space that spans all connected nodes in a mobile net-
work. At any instant, a device’s perception of the world
is through this tuple space which contains all of the data
available on all connected devices. Like MARS, Lime relies
on reactions external to the tuple space to create context-
aware adaptation, while we focus on embedding this adap-
tation directly in the coordination model. TOTA [20, 19]
has a more integrated approach to incorporating context-
awareness into tuple spaces. In this system, tuples are au-
tomatically moved in a dynamic network according to con-
textual properties. TOTA subroutines can adapt to exter-
nal properties in the environment and to the content of the
tuples to make decisions regarding, for example, routing.
While these subroutines can be carried within the tuple, the
tuples effectively become empowered mobile agents. The
evolving tuples model, on the other hand, maintains a tuple
structure imposed over the data and the behavior in com-
bination, maintaining the easy-to-use benefits of traditional

tuple space approaches.
In general, these aforementioned tuple based systems pro-

vide complex behavior but often require rich environments
to supply elaborate functionality. Our model joins the data
and code into a simple structure that can elicit elaborate be-
havior from a very simple API. The evolving tuples model
requires very little functionality (comparatively) from the
host environment and thus promotes adoption across the
wide variety of platforms in the mobile computing space.

An extension to Lime [10] uses tuple spaces to perform
resource discovery in mobile ad hoc networks. This sys-
tem is specifically designed to advertise remote services and
propagate proxy objects to clients wishing to use them. The
evolving tuples resource discovery model, on the other hand,
does not specifically provide support for proxy-based service
invocation, but these proxies could be embedded a binary
data field in a future version. There are numerous other ap-
proaches to resource discovery in dynamic networks that are
related to our approach in Section 4. We do not provide an
exhaustive survey of them but instead highlight a few that
are especially interesting. Systems such as [5] and [8] can be
implemented as reactive protocols layered on top of existing
routing support. However, the approaches use highly spe-
cific message formats and coordination patterns that force
highly coupled interactions. By basing our resource discov-
ery model on evolving tuples, we can leverage the simplicity
of tuple-based coordination and delegate specifics of discov-
ery decisions to the client application requesting a resource.
The evolving tuples model also allows for new attributes
and resources to be added to the system without requiring
a global update to some a priori naming or coordination
scheme. In addition, if a new value or field is added to a re-
source or a resource discovery, only the applications wishing
to use this new element must be updated; remaining nodes
and existing discovery requests are unaffected.

6. CONCLUSIONS
In general, pervasive computing applications rely on sev-

eral constructs provided by underlying frameworks or mid-
dleware to achieve interactive capabilities. One of the most
important of these is the ability to discover resources dis-
tributed in a dynamic network. In this paper, we have in-
troduced the evolving tuples model (Section 2), which is tai-
lored for use in pervasive computing environments. Evolving
tuples embed context-aware adaptation within tuple struc-
tures, making it simple for application developers to explic-
itly specify how tuples should change in response to envi-
ronmental conditions. We provided a formalization of this
model and then shown how the model can be used to pro-
vide functionality generic to pervasive computing environ-
ments. Specifically, we show how evolving tuples can self-
route through a network of connected hosts (Section 3). The
approach to implementing the communication constructs is
independent of the tuples’ data content and depends only
on the tuples’ routing components. We use this founda-
tional communication structure to provide a resource dis-
covery framework for pervasive computing that uses deci-
sions encoded within tuple formulas to make discovery deci-
sions (Section 4). This reduces the requirement of a priori
knowledge at the discovery endpoints and makes the dis-
covery process more flexible for developers and responsive
to application requirements. By using evolving tuples to
implement necessary pervasive computing constructs such

as resource discovery, our approach provides a simple, ex-
tensible, flexible and expressive framework for engineering
pervasive software.

Acknowledgments
The authors would like to thank the Center for Excellence in
Distributed Global Environments for providing research fa-
cilities and the collaborative environment. This research was
funded in part by NSF Grant #CNS-0620245 and AFOSR
Grant #FA9550-07-1-0157. The views and conclusions herein
are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

7. REFERENCES
[1] R. Back and K. Sere. Stepwise refinement of parallel

algorithms. Science of Computer Programming,
13(2-3):133–180, 1990.

[2] R. Bagrodia, S. Bhattacharyya, F. Cheng, S. Gerding,
G. Glazer, R. Guy, Z. Ji, J. Lin, T. Phan, E. Skow,
M. Varshney, and G. Zorpas. iMASH: Interactive
mobile application session handoff. In Proc. of
Mobisys, pages 259–272, May 2003.

[3] D. Balzarotti, P. Costa, and G. P. Picco. The lights
tuple space framework and its customization for
context-aware applications. Int’l Journal on Web
Intelligence and Agent Systems, 2005. To appear.

[4] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A
programmable coordination architecture for mobile
agents. IEEE Internet Computing, 4(4):26–35, July
2000.

[5] D. Chakraborty, A. Joshi, and Y. Yesha. Integrating
service discovery with routing and session
management for ad hoc networks. Ad Hoc Networks
Journal, March 2004.

[6] A. Cole, S. Duri, J. Munson, J. Murdock, and
D. Wood. Adaptive service binding middleware to
support mobility. In Proc. of ICDCS, pages 369–374,
May 2003.

[7] C. Curino, M. Giani, M. Giorgetta, A. Giusti,
A. Murphy, and G. Picco. TinyLIME: Bridging mobile
and sensor networks through middleware. In Proc. of
Percom, pages 61–72, March 2005.

[8] C. Frank and H. Karl. Consistency challenges of
service discovery in mobile ad hoc networks. In Proc.
of MSWiM, pages 105–114, New York, NY, USA,
2004. ACM Press.

[9] D. Gelernter and A. J. Bernstein. Distributed
communication via global buffer. In Proc. of PODC,
pages 10–18, New York, NY, USA, 1982. ACM Press.

[10] R. Handorean and G.-C. Roman. Secure service
provision in ad hoc networks. In Proc. of ICSOC, St.
Louis, Missouri, 2003. Washington University,
Department of Computer Science.

[11] E. Jaselskis and T. Elmisalami. RFID’s role in a fully
integrated automated project process. In Proc. of
ASCE Construction Congress 7, 2003.

[12] C. Julien. Adaptive preference specifications for
application sessions. In Proc. of ICSOC, volume 4294
of Lecture Notes in Computer Science, pages 78–89,
2006.

[13] C. Julien and G.-C. Roman. Egospaces: Facilitating
rapid development of context-aware mobile
applications. IEEE Trans. on Software Engineering,
32(5):281–298, May 2006.

[14] C. Julien and D. Stovall. Enabling ubiquitous
coordination using application sessions. In Proc. of
Coordination, pages 130–144, June 2006.

[15] S. Kabadayi and C. Julien. A local data abstraction
and communication paradign for pervasive computing.
In Proc. of Percom, 2007. (to appear).

[16] C. Kidd, R. Orr, G. Abowd, C. Atkeson, I. Essa,
B. MacIntyre, E. Mynatt, T. Starner, and
W. Newstetter. The aware home: A living laboratory
for ubiquitous computing research. In Proc. of the 2nd

Int’l Workshop on Cooperative Buildings, 1999.

[17] M. Klein and B. Konig-Ries. Combining query and
preference: An approach to fully automize dynamic
service binding. In Proc. of the IEEE Int’l Conf. on
Web Services, pages 788–791, July 2004.

[18] D. Malan, T. Fulford-Jones, M. Welsh, and
S. Moulton. CodeBlue: An ad hoc sensor network
infrastructure for emergency medical care. In Proc. of
the Int’l Workshop on Wearable and Implanted Body
Sensor Networks, April 2004.

[19] M. Mamei and F. Zambonelli. Self-maintained
distributed tuples for field-based coordination in
dynamic networks. Proc. of SAC, 2004. Nicosia,
Cyprus.

[20] M. Mamei, F. Zambonelli, and L. Leonardi. Tuples on
the air: a middleware for context-aware computing in
dynamic networks. In Proc. of ICDCS Workshops,
pages 342–347, 19-22 May 2003.

[21] A. Murphy, G. Picco, and G.-C. Roman. Lime: A
coordination middleware supporting mobility of hosts
and agents. ACM Trans. on Software Engineering and
Methodology, 15(3):279–328, July 2006.

[22] G. Picco, A. Murphy, and G.-C. Roman. On global
virtual data structures. In Process Coordination and
Ubiquitous Computing, pages 11–29, 2002.

[23] G.-C. Roman, C. Julien, and Q. Huang. Network
abstractions for context-aware mobile computing. In
Proc. of ICSE, pages 363–373, May 2002.

[24] A. Rowstron. Wcl: A co-ordination language for
geographically distributed agents. World Wide Web,
1(3):167–179, 1998.

[25] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan,
A. Broad, R. Govindan, and D. Estrin. A wireless
sensor network for structural monitoring. In Proc. of
SenSys, pages 13–24, November 2004.

[26] G. Zussman and A. Segall. Energy efficient routing in
ad hoc disaster recovery networks. In Proc. of
Infocom, pages 682–691, March–April 2003.

