
ROCC: A Communication
Overlay Abstraction for

Coordination Middleware

TR-UTEDGE-2007-002

Seth Holloway
Christine Julien

© Copyright 2007
The University of Texas at Austin

ROCC: A Communication Overlay Abstraction
for Coordination Middleware

Seth Holloway and Christine Julien

Mobile and Pervasive Computing Group
The Center for Excellence in Distributed Global Environments

The University of Texas at Austin
{sethh, c.julien}@mail.utexas.edu,

http://mpc.ece.utexas.edu

Abstract. As wireless mobile devices become more popular, the po-
tential for new collaborative applications has emerged. For example,
a group of coworkers can opportunistically come together, and share
project documents and other data. Such applications are characterized
by the fact that information needs to be distributed among all members
of a group, while providing robustness in the face of network disconnec-
tions and reconnections. Supporting such coordination currently requires
using low-level multicast protocols that are complex and resource inten-
sive to initialize and maintain without the support of an infrastructure.
In this paper, we introduce the ring overlay for collaborative coordination
(ROCC), which offers a fair, reliable coordination service for dynamic en-
vironments. ROCC is tailored to networked environments characterized
by frequent topology changes, and the abstraction allows applications to
seamlessly adapt and operate in the face of these changes. By providing
application-level communication, ROCC specifically addresses applica-
tion situations requiring group coordination. ROCC is influenced by tra-
ditional token ring and overlay communication protocols but leverages
unique properties of the broadcast nature of the wireless environment
to improve performance. The result is a minimal, fair, dynamic group
coordination service. This paper introduces the ROCC abstraction, an
implementation, and an analysis.

1 Introduction

The combination of heightened numbers of mobile electronic devices and users’
acceptance of pervasive computing hardware and applications has enabled new
classes of mobile, collaborative applications. These new applications demand in-
creased levels of coordination as we strive to maintain connectivity in an always-
on world. Mobile collaborative applications can be envisioned in lecture halls,
where students and teachers share notes and lecture information, to coffee shops,
where an ad hoc group of customers can initiate a multi-player game that re-
quires dynamically sharing changing state information.

These collaborative applications share a number of characteristics that en-
gender them to the creation of a generic coordination infrastructure. We have

created such an infrastructure, Sliverware [6], that encapsulates software and
communication concerns associated with collaborative applications in dynamic
mobile computing environments. In addition to requiring low-level communica-
tion capabilities (typically provided by the wireless medium in mobile scenarios),
collaborative applications require a group coordination component that deter-
mines how and when information is shared among participants. While existing
protocol approaches can be manipulated to support mobile collaborative appli-
cations, either their performance suffers because they are not tailored for this
domain or applications have to perform extra communication tasks because the
the protocols are not particularly suited to the application’s characteristics.

In this paper, we create a novel group coordination abstraction targeted to
supporting the kinds of information sharing necessary in collaborative applica-
tions. This abstraction and middleware service, the ring overlay for collabora-
tive coordination (ROCC), accounts for the dynamic departure and addition of
participants in a collaborative activity. In addition, ROCC takes advantage of
properties both of the application (e.g., the definition of the communicating part-
ners) and of the physical communication channel (e.g., the wireless medium) to
provide guaranteed delivery, fairness, and reduced overhead. ROCC is suited to
supporting applications in which all information shared within the collaboration
group must be received by all members of the group, and the ability to trans-
mit data to group members must be allocated fairly. To achieve these goals, the
ROCC abstraction leverages aspects of token ring protocols, application-level
overlay protocols, and existing coordination languages.

The remainder of this paper is organized as follows. In Section 2, we provide
a combination of a high-level, informal description of the ROCC protocol and
its underlying formalization. In Section 3, we briefly describe our prototype
implementation and present an analysis of its performance. Section 4 places the
ROCC protocol in the context of related work, and Section 5 concludes.

2 Coordinating Collaboration Participants:
The ROCC Abstraction

Collaborative applications must create and coordinate groups of participants.
Groups must remain connected so that users can reliably exchange information
necessary to support collaborative activities. Within any single collaborative
application, multiple groups may exist and must be maintained independently.
In a classroom, one group may include all students and the teacher; other groups
may support teams working together on class projects.

As mobile computing becomes more widely accepted, mobile ad hoc networks
will be increasingly used to support collaborative applications. Mobile ad hoc
networks form opportunistically in response to devices’ movements in physical
space. When devices are close enough to create a wireless link, a new connection
is added. In such environments, communication protocols provide minimal point
to point and multicast abstractions. The latter can support coordination among
collaborative groups when all members of the group have joined the multicast

group, but the implementations in mobile ad hoc networks incur significant over-
head, as they are based on protocols that functioned well in networks with signif-
icant centralized infrastructure but are not well suited to dynamic networks. In
addition, when many participants try to send information simultaneously, such
communication strategies can result in significant contention for the wireless
medium, requiring additional negotiation protocols for group communication.

The principle motivation of this work is to create a communication abstrac-
tion that directly reflects the requirements of collaborative applications in dy-
namic environments. Our approach raises the level of abstraction for the appli-
cation developer by directly reflecting the structure and communication pattern
of the group. The fundamental structure of our abstraction is a ring overlay,
reminiscent of token ring networks. Each node in the collaboration group can
exchange information only when it possesses the token. Imposing such an overlay
gives each group member a chance to transmit and, as described below, can aid
in ensuring that every member receives every other member’s transmissions.

Fig. 1 depicts such an overlay

Overlay

Topology

A

B C D
E

F

Fig. 1. A sample network demonstrating
connectivity between nodes.

and shows that it may not neces-
sarily directly reflect available phys-
ical connections. Instead, the over-
lay’s implementation may use mul-
tiple hops in the physical network to
provide what appears to be a single
hop connection in the overlay. If the
ring does reflect a subset of the net-
work’s true topology, we avoid un-
necessary transmissions, which can
serve to increase the overall efficiency
and speed. Overall, providing the ap-
plication with the appearance of this ring structure directly matches communica-
tion capabilities to collaborative applications’ expectations of underlying group
communication schemes and prevents collaborative application developers from
having to awkwardly manipulate existing protocols to achieve their goals.

In the remainder of this section, we describe the ROCC model. We first dis-
cuss how the ring is used to support group coordination. Then we provide details
of the ring maintenance aspects, including adding, removing, and maintaining
group members. In our subsequent discussion of ROCC, we assume the presence
of only one application group. If multiple application groups exist, we assume
the ROCC overlay runs separately for each one, on a different (non-interfering)
channel to prevent collisions between the groups. For now, we assume the as-
signment of these channels to groups is performed out of band; future work will
investigate how to handle dynamic channel assignments.

2.1 Basic Operation in the Ring Overlay

Before looking at how ROCC constructs and maintains its overlay, we first look
at how collaborative applications use ROCC to ensure fair and reliable collabo-

ration. ROCC establishes and maintains an overlay on top of the true topology;
in ROCC, this overlay is presented to the application as a directed token ring
network. Once the node is part of a ring, the node can communicate only when it
possesses that ring’s token. By imposing ring-like behavior, ROCC significantly
reduces the likelihood of competition for the physical medium and the potential
for interference between transmissions from members of the same group.

In ROCC’s overlay ring, each node has a predecessor (the previous node in
the ring) and a successor (the next node in the ring). When a ring consists of
only a single node, the node is its own predecessor and successor. Fig. 2 shows
some simple examples. It is important that nodes adhere to this structure even
in the simplest cases to ensure that adding and removing nodes can be done
smoothly.

A B

A.Predecessor = B

A.Successor = B

B.Predecessor = A

B.Successor = A

A.Predecessor = C

A.Successor = B

B.Predecessor = A

B.Successor = C

C.Predecessor = B

C.Successor = A

A B

C

A

A.Predecessor = A

A.Successor = A

Fig. 2. Successors and Predecessors for three basic networks.

The goal of data transmission in ROCC is to ensure that, after each complete
token rotation, every node in the ring has the exact same picture of the data
as every other node. When forwarding the token, each node forwards a list of
all other nodes in the group. Token carrying messages are structured in the
following format:

〈ring address, source, destination, participants, datai〉

The ring address identifies the ring, while the source and destination addresses
indicate the sender and targeted receiver of this packet. The participants list con-
tains the identities of the members of the ring. This portion of a ROCC message
is therefore variable in length, depending on the number of ring participants and
has the following format:

participants ≡ 〈node address1, . . . ,node addressn〉

The final portion of the message, datai contains this round’s data for the sending
node (i.e., node i), if the node has data to send.

To optimize its performance, ROCC takes advantage of the inherent broad-
cast nature of wireless links. This means when a node receives the token, it may

have already overheard data transmissions between other nodes. Consider Fig. 1.
If node A transmits data within its token message to its successor (B), D and F
will overhear the message because these nodes are within communication range
of A. Since C is not within range of A, B will transmit A’s data to C. C will not
forward A’s data to D since D overheard the original transmission.

ROCC nodes take advantage of this optimization by storing any data con-
tained in overheard packets. When a node eventually receives the token, it com-
pares the token’s list of ring participants to the already buffered (overheard)
data. The node holding the token proactively solicits any missing data from the
predecessor. The result of this solicit message is an array of the missing data,
and other nodes may overhear this exchange and store this information, reducing
the future overhead. Especially in densely connected networks, this drastically
reduces the communication overhead and, consequently, the speed at which the
token can circulate. This is particularly practical in collaborative applications
that demand that every node receive every other nodes’ data transmissions. Im-
plementing such a situation using traditional communication protocols at the
application level results in numerous retransmissions due to a significant poten-
tial for collision, as evaluated in the next section.

If a packet that a node overhears contains a ring address other than the
node’s ring address, the node is marked in the connectivity table, and it raises
an internal flag to merge the ring with this newly discovered ring. After receiving
the token but before updating the neighbor information as described above, the
node begins the ring join phase, which will be described in the next subsection.

The ROCC protocol as described above does not completely prevent all col-
lisions, as simultaneous transmissions in neighboring rings may compete with
each other. In overhearing these transmissions, ROCC nodes can discover new
nearby rings; the detriment is the expense of the overhead of recovering from
collisions. However, the degree of collisions is likely significantly decreased in
comparison to straightforward contention for the media; this aspect will be an-
alytically evaluated in Section 3.

Formal Description of Ring Operation. To formally describe nodes’ behav-
ior in ROCC, we use I/O Automata notation [7]. We show the behaviors of node
A, indicated by the subscript A. Each action has an effect guarded by a pre-
condition. Actions without preconditions are input actions triggered by another
host. Every action executes as one atomic step. We abuse I/O Automata nota-
tion slightly by using “send TokenPacket to B” to indicate a sequence of actions
that triggers the action TokenPacketReceived on node B. Fig. 3 provides a
listing of the state information stored by each node. The formal description also
references a set of helper methods; these are detailed in Fig. 4.

Fig. 5 shows the action TokenPacketReceived for node A. Within the
loop that specifies the proactive solicitation, we model the request for each node’s
data as a separate SolicitData message; in the implementation, these are en-
capsulated into a single request, as are the replies from the predecessor. The

ringAddress the address of the ring the node is participating in
predecessor the previous node in the ring
successor the next node in the ring
participantsTable the set of nodes known to be participating in the ring
dataTable buffered data for the participants that has been overheard

from other nodes’ transmissions
oldBuffer the last round’s data; saved in case the successor solicits data
waitingForAck boolean indicating that this node has transmitted the token

but is waiting for an acknowledgement
ackTimer timer for token acknowledgement; if no acknowledgement is

received before the time is expired, the node assumes the
neighbor is lost

join flag that indicates whether this node has discovered a nearby
neighbor from a different ring

discoveredNeighbor address of one-hop neighbor that is not a member of this ring
attemptJoin condition that, when true, enables this node to attempt to

join with a nearby ring
joinRequested condition set when another node requests a join
joinRequester the address of the node requesting the join
acceptJoin set to true by this node when it determines a willingness to

participate in the requested join
departing flag indicating this node’s intention to announce its departure

Fig. 3. ROCC State Information

updateParticipants(H[]) replaces the current list of participants with those
referenced in the passed array

updateBuffer(i, d) for the ring participant identified by i, add the data d to
the buffer

bufferComplete() return true if the buffer contains data for all of the
participants

getSuccessor(i) retrieve the successor of the node i from participants

Fig. 4. ROCC Helper Methods

ackTimer is used to handle failures; its behavior and the actions associated with
joining and departing will be described in subsequent sections.

Fig. 6 shows the action a node takes when it receives an acknowledgement
that its successor received the token. This action simply cancels the ackTimer
and resets the local waitingForAck variable.

Fig. 7 shows the action that occurs when a node receives a solicit data mes-
sage from its successor. As above, we model these as separate requests, but for a
given node, all of the data will be encapsulated in a single message to save over-
head. This is the same message that is used to handle overhearing and buffering
data sent between other source/destination pairs.

TokenPacketReceivedA(p)
Effect:
if p.ring address = ringAddress then
if p.destination = A then

predecessor = p.source
send AcknowledgeToken to predecessor
updateParticipants(p.participants)
if departing then {see Section 2.3}

send SetSuccessor(successor) to predecessor
send SetPredecessor(predecessor) to successor
[empty all state associated with ring]

else if joinRequested then {see Section 2.2}
acceptJoin = true

else if join then {see Section 2.2}
attemptJoin = true

else
for each i ∈ participantsTable do
if dataTable(i)=∅ then

send SolicitData(i) to predecessor
if bufferComplete() then

[deliver data to application]
oldBuffer = dataTable
dataTable = ∅
send TokenPacket to successor
waitingForAck = true
ackTimer.start

else
updateBuffer(p.source, p.data)

Fig. 5. Receiving a Token Packet

AcknowledgeTokenPacketReceivedA(p)
Effect:

successor = p.source
waitingForAck = false;
ackTimer.cancel;

Fig. 6. Acknowledging a Token Packet

Once a node has solicited data from its predecessor, it must wait for all of
that data to be received before forwarding the token. Fig. 8 shows the action
that is executed when a solicited (or overheard) data packet is received.

2.2 Building Ring Overlays

Because, in the base case, a node by itself is also a ring, adding a new node to an
existing ring and joining rings together uses the same process. When a node is

SolicitDataReceivedA(p)
Effect:
if p.destination = A then

send DataPacket(oldBuffer(p.i)) to successor

Fig. 7. Receiving a Data Solicitation

initialized into a ring with a single member, it uses its unique id (e.g., IP address
or MAC address) as the ring’s identifier.

To discover a new ring,

DataPacketReceivedA(p)
Effect:

updateBuffer(p.source, p.data)
if p.destination = A then
if bufferComplete() then

[deliver data to application]
oldBuffer = dataTable
dataTable = ∅
send TokenPacket to successor
waitingForAck = true
ackTimer.start

Fig. 8. Receiving a Data Packet

a node within a ring must
receive or overhear a trans-
mission from a nearby ring.
Because rings containing
only a single node do not
actually require data trans-
mission, such self rings pe-
riodically signal their pres-
ence with a beacon. Nodes
in rings with more than one
node do not have to do
this because their standard
transmissions can be over-
heard by nearby nodes. When a nearby node hears either type of transmission
(a beacon from a single-node ring or a standard packet from a ring other than
its own), it sets a flag to join the neighboring group.

Within the standard ring operation described above, each node will eventu-
ally receive and acknowledge reception of the token, at which point it checks
the join flag. If the join flag is set, the node sends a join request to the neigh-
boring ring. This join request contains the sending node’s address, the sending
node’s ring address, the sending node’s predecessor and successor, and the des-
tination ring’s identifier. Since only a ring’s token holder is allowed to transmit
information, the receiving node in the newly discovered ring must also hold its
ring’s token for a join operation to commence. For this reason, the join request
is followed by a brief delay to give the node in the neighboring ring some time
to capture its ring’s token. If the neighboring node does not reply within the
allotted time, the requester returns to normal operation by transmitting data
and forwarding the token.

This join process does not ensure that nearby rings join in a timely fashion,
but it does avoid the deadlock that arises when a node in one ring has blocked its
ring to start a join, while a different node in the target ring has also blocked its
ring to start a join. This could also be avoided using extra control messages, but

these messages cause more possibilities for collisions and increased coordination
overhead.

If the discovered node in the

B C B C

Join through B and
C new way

Exchange
successors

A

B

A D

C

D

B C

A

B

A

C B C

i

ii

iii

Fig. 9. The three possible configurations
for B joining C: i) single node to single
node, ii) single node to group, iii) group
to group.

neighboring ring captures the to-
ken in time, it will send an ac-
knowledgment with its predecessor
and successor. At this point, the
ring that has the lower ring iden-
tifier becomes the control point for
the join operation. The control node
swaps the successors from the join-
ing nodes (itself and the active node
from the joining ring) by sending
an update messages to the affected
nodes (both the new successors and
new predecessors). Fig. 9 demon-
strates the three cases that can oc-
cur during the join operation. In
all of these cases, assume nodes B
and C moved within communication
range of each other. Each case ex-
changes B and C’s successors. The
third case is the general case for joining two rings, since there can be arbitrarily
many nodes between A and B and between D and C.

After completing a join, the node that had to change its ring address (not
the control node) sends an update message to its original ring.

Formal Description of Ring Creation The first step of our formal descrip-
tion checks the join flag in the TokenPacketReceived method as shown in
Fig. 5. This enables the AttemptJoin action, shown in Fig. 10. The attempt
to join with a neighboring ring creates a JoinRequestPacket that it sends to
the discovered neighbor.

The joinTimer

AttemptJoinA

Precondition:
join ∧ attemptJoin

Effect:
send JoinRequestPacket to discoveredNeighbor
joinTimer.start

Fig. 10. Attempting to Join a Neighboring Ring

waits for a response
from the node in the
neighboring ring. If
the timer expires, it
is assumed that the
neighboring node ei-
ther departed or could
not retrieve its ring’s
token in time, and the
state regarding this join is canceled. If the node rediscovers this neighboring
ring during a subsequent round, the join request will be reattempted. The
CancelJoinAttempt action, shown in Fig. 11, is enabled when the joinTimer

expires and resets the state associated with the join attempt. The node then
continues in the same manner as the TokenPacketReceived action in Fig. 5
would have had the join not been attempted.

When the node in the

CancelJoinAttemptA

Precondition:
joinTimer.expired

Effect:
join = false
discoveredNeighbor = ∅
[solicit data and forward token as in Fig. 5]

Fig. 11. Cancelling a Join Attempt

neighboring ring receives
a JoinRequestPacket,
it sets the joinRequested
flag. The TokenPacke-
tReceived action, before
attempting to initiate a
join, checks this flag. If it
is set, the TokenPack-
etReceived action sets
the acceptJoin flag, which
enables the AcceptJoinRequest action, as shown in Fig. 12.

AcceptJoinRequestA

Precondition:
joinRequested ∧ acceptJoin

Effect:
send AcceptJoinPacket to joinRequester
if ringAddress < joinRequester.ringAddress then

send setPredecessorPacket to successor
send SetSuccessorPacket to joinRequester
successor = joinRequester.successor
[solicit data and forward token as in Fig. 5]

[reset local flags dealing with joins]

Fig. 12. Accepting a Join Request

The counterpart to the above action, AcceptJoinPacketReceived has
similar functionality, and is omitted for brevity. In both cases, the node that
is part of the ring with the lower ring address initiates the swap of predeces-
sors and successors, and this node also continues with the token. The other
node’s setSuccessorPacketReceived action is initiated, which generates a
setPredecessorPacket for the node’s old successor and resets the node’s
successor. This node also propagates a ResetRingAddressPacket around its
old ring. The handling of these last few actions is simple and straightforward,
and they are also omitted for brevity.

2.3 Maintaining Ring Overlays in the Face of Failures

When coordination becomes no longer necessary, group members will start to
depart, and the ring will begin to dissolve. In addition, as nodes move in the

wireless environment, nodes may incidentally become disconnected from the ring.
In general, nodes intending to disconnect from the group will announce this
intention before simply disconnecting. When this occurs, the node sets a local flag
indicating this intention. When the node receives the token, it handles its own
departure by setting up a connection between its predecessor and its successor.
This quickly and easily remotes the departing node and maintains the general
group ordering.

Such an announced departure is the best case, but since ROCC is designed for
supporting dynamic mobile communication, it must also handle unpredictable
cases that result from device mobility and the unreliability of the wireless links.
The remainder of this section details how ROCC handles these cases and makes
their complexity transparent to the application.

Unannounced Disconnection. When a node departs from the ring unex-
pectedly, the network must restore the ring connectivity and gracefully discard
information related to the departed node’s participation. In ROCC, a departed
node’s predecessor will eventually attempt to forward the token to its successor
(the departed node). When the successor does not acknowledge receipt of the
token, the sender assumes the node has departed.

Because the sending

AckTimerExpiredA

Precondition:
ackTimer.expired

Effect:
successor = getSuccessor(successor)
if successor != A then

send TokenPacket to successor
waitingForAck = true
ackTimer.start

Fig. 13. Handling an Acknowledgement Timeout

node has complete infor-
mation about the group
members and their order
(given the packet informa-
tion above), the sender can
simply select its successor’s
successor and attempt to
send the packet directly
there. If this node acknowl-
edges receipt of the token,
it sets its predecessor to
the sender, and the sender
sets the node as its new successor. Because ROCC relies on an underlying
routing protocol, it does not matter if this new successor is directly connected
to the sending node or not; the underlying communication substrate will handle
the end-to-end connections. If the successor’s successor is unavailable (i.e., it’s
also been disconnected) the node holding the token simply continues down the
list of the ring’s participants (in order) until it finds a node that is responsive.

Formally, when the ackTimer expires, the actionAckTimerExpired, shown
in Fig. 13 is enabled. If the ackTimer expires again, the process continues, until
the next available successor is this node.

Lost Ring Address. ROCC is almost completely decentralized. However, to
ensure that ring addresses are unique, the address assigned to the ring needs
to be the address of one of the nodes in the ring. When this node departs

unannounced, this ring address needs to be updated. In the process described
above for handling unannounced disconnections, if a node discovers that it has
lost its successor and that successor’s address is also the ring address, the node
sends a ResetRingAddressPacket around the ring before passing the token
along to the next neighbor. This node changes the ring’s identifier to its own
addresses. We omit the formalization of handling a lost ring address for brevity.

Lost Token. The last and most difficult case to handle occurs when a node
departs without announcement while it is holding the token. In this case, the
rest of the ring is completely crippled. In handling this case, we must balance
the overhead of reorganizing the group with the increased latency incurred by
the increase in the amount of time the group does not communicate at all. Since
this token loss is a rare event, it is appropriate for ROCC to ensure that the
token is lost before generating a new one. If a node does not receive the token in
twice its estimated token rotation period (based on the average time it took the
token to rotate for the past rotations), it queries its predecessor to see if its still
alive. The node continues to query successive predecessors until it either finds
one alive or finds itself. If this process does not locate the token, it is assumed
that the token disappeared with one of the departing nodes, and the remaining
nodes coordinate to generate a single new token.

3 An Analytical Comparison of ROCC and Multicast

To gauge ROCC’s usefulness as a coordina-

Simulation Setups

A B

DE

F C

A

B

C

D
i ii

Fig. 14. The two types of net-
work topologies examined an-
alytically

tion middleware service, we analytically com-
pared it to another coordination service, wire-
less multicast. Variations on wireless multicast
(such as MAODV [10]) are the most commonly
used communication service for support of co-
ordination middleware, especially when consid-
ering collaborative applications. In our analy-
sis, we compared the latency and overhead of
the two approaches. To bound our analysis, we
compare the approaches’ performance for two
types of networks (as shown in Fig. 14): a network in which each node is con-
nected only to two other nodes, and a fully connected network in which every
node is directly connected to every other node. The picture shows five nodes in
each network; our analysis varies the number of nodes in the network from 2 to
20. These represent two fairly extreme cases; we expect that results for other
types of topologies lie in between. We expect that ROCC can take full use of
overhearing optimizations when there are several overlapping connections, so we
expect the second type of setup to fully demonstrate ROCC’s potential. Both
types of configurations shown in Fig. 14 are possible in real networks, but in en-

vironments where collaborative applications are likely, we expect networks with
several redundant links to be common.

Both ROCC and basic multicast run with the support of media access control
(MAC) protocols. We assume that both ROCC and multicast use the 802.11
MAC protocol without the RTS/CTS exchanges that are commonly used to
reduce collisions. We omit RTS/CTS exchanges because they have been shown
not to provide a benefit to throughput in wireless ad hoc networks (and may
in fact be detrimental) [11] due to the fact that a node’s interference range is
much larger than the transmission range over which the RTS/CTS functions.
We assume a bandwidth of 2Mbps, and we evaluate the latency and overhead
for each approach for an entire “round” of collaboration. We assume an active
collaboration activity in which every participant has (a 1KB piece of) data to
send, and we determine the amount of time and overhead involved in ensuring
that every participant has every other participant’s piece of data. For now, we
evaluate only the costs of participating in the ring; future work will extend this
analysis to include situations in which nodes must be added and removed from
the group during normal function. In ROCC, this will happen as described in the

Total Traffic vs. Number of Nodes when Each Node is Connected to Two
Neighbors

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Nodes

T
o

ta
l
T
ra

ff
ic

 (
b

y
te

s)

ROCC

Multicast

Total Traffic vs. Number of Neighbors for a Fully Connected Network

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Nodes

T
o

ta
l
T
ra

ff
ic

 (
b

y
te

s)

ROCC

Multicast

Fig. 15. The total amount of traffic generated by ROCC and multicast for each network
configuration.

previous sections; multicast also incurs overhead in setting up and maintaining
routes in the face of dynamics.

Fig. 15 shows the total data sent in the two topologies when transmitting
every node’s data to every other node. ROCC generates far fewer bytes than
a multicast protocol; this can be explained by two factors: ROCC eavesdrops
to help reduce the amount of coordination necessary and ROCC transmissions
do not experience collisions. Overhead for ROCC is modeled as described in
Section 2 while multicast operation is modeled based on protocols similar to
MAODV [10]. As described in the previous section, upon receiving the token
a node using ROCC will request information that it has not already heard. In
the case of full connectivity, a node does not have to request anything because
it has already overheard all of the other participant’s transmissions. When the
network is less than fully connected, ROCC follows the same procedure; how-
ever, each node will request the missing information, then send their own data
and the token to their neighbor. Each node in ROCC transmits one request for
missing information, one individual data packet, and one message containing the
data that the successor requested. Multicast protocols must send one message to
every member of the group and send along the multicast tree. As a result, mul-

Latency vs. Number of Nodes when each Node has Two Neighbors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of nodes

L
a
te

n
cy

 f
o
r

si
n

g
le

 d
a
ta

 d
e
li

v
e
ry

 (
se

co
n

d
s)

ROCC

Multicast

Latency vs. Number of Nodes for a Fully Connected Network

0

0.005

0.01

0.015

0.02

0.025

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Nodes

L
a
te

n
cy

 f
o
r

S
in

g
le

 D
a
ta

 D
e
li

v
e
ry

 (
se

co
n

d
s)

ROCC

Multicast

Fig. 16. The latency for one node’s data to reach the entire network.

ticast protocols generate more messages as the number of connections decreases,
though the messages ROCC sends are likely to be larger (since they contain an
aggregation of several nodes’ data items). Multicast encounters collisions when
neighboring nodes attempt to transmit at the same time. ROCC forces nodes
to take turns, eliminating the possibility of collisions. We model only the in-
terference caused by direct neighbors in the multicast case; in truth, neighbors
multiple hops away can also interfere [11].

Fig. 16 shows the delay between when a node sends its data until every
other node in the network receives that data. To send a single node’s data to
the entire group in a sparsely connected network (e.g., one shaped as a ring),
ROCC must pass the token to all members in order. Multicast transmits data
directly to all members—the only slow down incurred is due to collisions. This
comparison is depicted in the upper graph in Fig. 16. However, when a ROCC
node wants to send its data to all members of a fully connected network, ROCC
provides ordered communication and allows the node to send the data only once
since everyone else will overhear it. To send one node’s data to everyone in
a fully connected network using multicast will generate collisions proportional
to the number of nodes within communication range. As the number of nodes
increases, the amount of collisions forces many retransmissions that greatly slow
the network. This demonstrates the benefit ROCC achieves due to overhearing.
In collaborative application domains, it is likely that group participants are
nearby (e.g., in the same classroom), so the likelihood for redundant connections
is high. ROCC takes advantage of these redundant connections, while traditional
approaches such as multicast are crippled by them.

Overall, our analysis shows that ROCC provides low latency communica-
tion in additional to decreased overhead; these properties make ROCC an ideal
protocol for coordination on wireless devices.
4 Related Work

ROCC provides high-level coordination constructs built on underlying communi-
cation protocols that collaborative applications can use for timely, reliable group
communication. ROCC is inspired by token ring protocols whose goals revolved
around mediating access to a shared medium. The Wireless Token Ring Pro-
tocol (WTRP) [4] brought token rings into the wireless domain. WTRP builds
on 802.11, and it aimed to mediate access to the wireless medium. WTRP has
been shown to outperform 802.11 by itself [5] while at the same time mini-
mizing the delays applications experience. Extensions to WTRP [2, 3] focus on
minimizing energy consumption or maximize reliability. While these protocols
provide inspiriation for ROCC, the fundamental goal is different. ROCC relies
on underlying protocols for medium access control and instead aims to provide
coordination constructs tailored for collaborative applications. As such, ROCC
aims to ensure reliable delivery to every group members while existing token
ring approaches are tailored to supporting unicast communication.

As a potential middleware service for coordination, ROCC has the potential
to replace existing approaches within coordination middleware. For example,

the Lime middleware [9] uses basic multicast communication to ensure deliv-
ery among the members of a Lime coordination group. As demonstrated by the
analysis in the previous section, replacing multicast in Lime has the potential
to offer decreased overhead and increased timeliness for group-wide communica-
tion. In the TOTA middleware [8] propagation rules require a distributed overlay
data structure to ensure that tuples are received at every member of a group
of TOTA nodes. Employing ROCC in this situation may be able to produce
the same benefits as underneath Lime, providing an abstraction on which this
distributed data structure can be implemented. Decentralized publish-subscribe
systems (e.g., [1]) connects groups of publishers and subscribers and aims to
ensure that a publisher’s event is delivered to every registered subscriber. When
the rate of publication is high, ROCC can offer significant benefits to such appli-
cations by ensuring this delivery with minimal overhead. Finally, middleware for
collaborative applications, e.g., [6], often entail group definitions in which groups
of collaborators should maintain a consistent overall picture. Using ROCC as the
group support protocol in such middleware provides a clean abstraction for this
grouping mechanism, while also offering the benefits of reliability, timeliness,
and decreased overhead.

5 Conclusions

Thanks to the proliferation of wireless devices, there are more ways to share
information with one another than ever before. Exciting new applications push
the envelope and extend the role of coordination. To aid in this exciting time we
have presented a middleware service, the ring overlay for collaborative coordi-
nation (ROCC), which we designed to support the kind of information sharing
found in collaborative applications executing in modern mobile environments.

ROCC combines properties of applications and the communication channel to
create a decentralized, efficient coordination service for dynamic environments.
Since ROCC builds on token rings, we benefit from the fairness inherent in turn-
taking schemes. The turn-taking also frees communication from collisions. ROCC
coordinates the underlying devices providing a solid communication foundation.
An analysis of ROCC shows that the protocol outperforms existing coordination
services with significantly lower overhead and decreased latency. These results
demonstrate that, as applications’ demands on coordination continue to grow,
we must adopt efficient coordination abstractions that can both ease the de-
velopment task by raising the level of abstraction and can inherently lead to
efficient implementations.

Given the feasibility of the ROCC approach demonstrated in this paper,
future work will provide further analysis of dynamics associated with ROCC,
comparisons through simulation, and the encapsulation of ROCC as a standalone
coordination middleware service that can be incorporated into both middleware
and application solutions.

Acknowledgments

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This work was funded, in part, by the National Science Foundation (NSF), Grant
CNS-0620245. The views and conclusions herein are those of the authors and
do not necessarily reflect the views of the sponsoring agencies.

References

1. A. Carzaniga, D. Rosenblum, and A. Wolf. Achieving scalability and expressiveness
in an internet-scale event notification service. In Proc. of the 19th Annual ACM
Symp. on Principles of Distributed Computing, pages 219–277, 2000.

2. Z. Deng, Y. Lu, C. Wang, and W. Wang. E2WTRP: an energy-efficient wireless
token ring protocol. In Proc. of the 15th IEEE Int’l. Symp. on Personal, Indoor
and Mobile Radio Communications, pages 574–578, September 2004.

3. Z. Deng, Y. Lu, C. Wang, and W. Wang. EWTRP: enhanced wireless token ring
protocol for small-scale wireless ad hoc networks. In Proc. of the 2004 Int’l. Conf.
on Communications, Circuits, andSystems, pages 398–401, June 2004.

4. M. Ergen, D. Lee, R. Sengupta, and P. Varaiya. WTRP: Wireless token ring
protocol. IEEE Trans. on Vehicular Technology, 53(6):1863–1881, November 2004.

5. M. Ergen, D. L. R. Sengupta, and P. Varaiya. Wireless token ring protocol-
performance comparison with IEEE 802.11. In Proc. of the 8th Int’l. Symp. on
Computers and Communication, pages 710–715, June/July 2003.

6. S. Holloway and C. Julien. Developing collaborative applications using sliverware.
In Proc. of the 14th Int’l. Conf. on Cooperative Information Systems, volume 4275
of Lecture Notes in Computer Science, pages 587–604, 2006.

7. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3):219–246, 1989.

8. M. Mamei and F. Zambonelli. Programming pervasive and mobile computing ap-
plications with the TOTA middleware. In Proc. of the 2nd Int’l. Conf. on Pervasive
Computing and Communications, pages 263–273, March 2004.

9. A. Murphy, G. Picco, and G.-C. Roman. Lime: A middleware for physical and
logical mobility. In Proc. of the 21st Int’l. Conf. on Distributed Computing Systems,
pages 524–533, April 2001.

10. E. Royer and C. Perkins. Multicast ad hoc on-demand distance vector (MAODV)
routing. In Proc. of the 2nd IEEE Workshop on Mobile Computing Systems and
Applications, 1999.

11. C. M. Wu and T. C. Hou. The impact of RTS/CTS on performance of wireless
multihop ad hoc networks using ieee 802.11 protocol. In 2005 IEEE Int’l. Conf.
on Systems, Man and Cybernetics, volume 4, pages 3558–3562, October 2005.

	TR-UTEDGE-2007-002.pdf
	ROCC: A Communication Overlay Abstraction for Coordination Middleware

	ROCC.pdf

