
SMASH: Modular Security for 
Mobile Agents

TR-UTEDGE-2006-007

Adam Pridgen
Christine Julien

© Copyright 2006
The University of Texas at Austin



SMASH: Modular Security for Mobile Agents

Adam Pridgen and Christine Julien

The Center for Excellence in Distributed Global Environments
The Department of Electrical and Computer Engineering

The University of Texas at Austin
{atpridgen, c.julien}@mail.utexas.edu

Mobile agent systems of the future will be used for secure information de-
livery and retrieval, off-line searching and purchasing, and even system software
updates. As part of such applications, agent and platform integrity must be
maintained, confidentiality between agents and the intended platform parties
must be preserved, and accountability of agents and their platform counter-
parts must be stringent. SMASH, Secure Modular Mobile Agent System.H, is
an agent system designed using modular components that allow agents to be
easily constructed and the system to be easily extended. To facilitate security
functionality, the SMASH platform incorporates existing hardware and software
security solutions to provide access control, accountability, and integrity. Agents
are further protected using a series of standard cryptographic functions. While
SMASH promotes high assurance applications, the system also promotes an open
network environment, permitting agents to move freely among the platforms and
execute unprivileged actions without authenticating. In the remainder of this pa-
per, we elaborate on the components and capabilities of SMASH and present an
application that benefits from each of these elements.

1 Introduction

Mobile agent systems and applications are becoming highly prominent for tasks
such as information sharing, analysis, evaluation, and response, but before these
systems can be fully utilized, security mechanisms in these services must be
improved [1]. In general, software agents are regarded as highly autonomous
processes which can perform tasks ranging from simple queries to complex com-
putations. The counterpart to this system is the platform, which loads and ex-
ecutes the agent. Mobile agents augment the traditional agent’s autonomy with
the ability to move from platform to platform to accomplish their tasks.

Motivating applications for mobile agents range across many domains, and
the benefit of using mobile agents in distributed computing applications can
far outweigh traditional approaches. In epidemic updates, mobile agents carry
firmware upgrades to remote clients by intelligently propagating through a net-
work. As computer systems become increasingly pervasive, an effective means
for propagating updates to these systems will be required, especially when phys-
ical contact with a device is infeasible (e.g., when devices are located in remote
regions or hostile environments). Epidemic updates also provide relief to au-
tomobile manufacturers or fleet maintainers who could upgrade their vehicles’



2

software without initiating a massive recall. A dealership could strategically de-
ploy updates on a few vehicles, and, when vehicles stop in public areas such as
a market, the update can spread to nearby systems to which it applies.

Another distributed information application that could benefit from secure
mobile agents focuses on collecting and comparing events in a distributed surveil-
lance sensor network. In this system, agents can be utilized to help monitor arrays
of various sensors such as cameras, acoustics, and pressure sensors. Furthermore,
all of these sensors could be used to create intelligent detection networks that
combine and look for anomalies calculated from sensor readings combined across
regions of the network. Network monitoring agents could even be used for col-
lecting network-wide events and pushing the filtering and processing of these
events into the network without disclosing sensitive or proprietary information.

In this paper, we introduce the Secure Modular Mobile Agent System.H
(SMASH), which provides modularity for agent and platform components, in-
formation assurances, and mechanisms to assist mobile agents as they move be-
tween platforms. SMASH is also designed to enable coordination among agents
and platforms, address context-based agent execution and security that enables
adaptive services, and, overall, improve programmability, security, and extensi-
bility for highly versatile mobile agent applications. SMASH utilizes asymmetric
and symmetric cryptographic functions from existing encryption libraries, per-
mitting more flexible authentication for both the agent and the platform, rather
than restricting agent authentication to code signing as employed in Java-based
approaches. To support unpredictable travel patterns, SMASH supports strict
authorization and resource control measures yet eliminates the burden of exces-
sive authentication for transient agents as they move to their destinations.

The rest of this paper is organized as follows. Section 2 will discuss the agent’s
components and functionality, and Section 3 will elaborate on the supporting
platform’s architecture and capability. In Section 4, properties of a secure system
are discussed, and these qualities are related to SMASH’s capabilities and design.
Section 5 provides some example applications that can benefit from SMASH’s
architecture. Section 6 will discuss past work related to SMASH, while Section 7
concludes the paper.

2 Agent Components and Security Measures

This section will describe the SMASH agent architecture and then discuss how
these components supply adequate security functionality. We start with an
overview of the SMASH agent model and conclude with system and implementa-
tion details that provide a close inspection of a SMASH agent’s inner workings.

2.1 The SMASH Agent Model

To adhere to an open architecture, SMASH supports two types of agents, anony-
mous and authenticated agents, in a manner similar to [2]. An anonymous agent is
simply one that has not authenticated with the platform on which it is currently



3

located. Such an agent may access designated read-only data, read and write to a
Blackboard, perform simple unprivileged actions, or leave. This anonymous clas-
sification allows agents to move through intermediate platforms without having
to authenticate with each of them, which can improve performance and reduce
the latency caused by unnecessary authentication.

An authenticated agent, on the other hand, is one that has sufficiently proven
its identity to the platform. An agent’s identity refers to with whom the agent is
associated and may represent a user, group, platform, application, etc. Once a
platform verifies an agent’s identity, the platform awards the agent rights based
on its identity and/or the context of its task(s).

Fig. 1 shows a pictorial repre-

Fig. 1. A Mobile Agent in SMASH

sentation of the components found
in any SMASH agent. All agents
are composed of modules, which are
simply defined architectural types,
methods, and functions of the mo-
bile agent. By taking this design ap-
proach, SMASH can take advantage
of this component model and pro-
tect pieces of the agent in differ-
ent ways, rather than protecting an
entire agent in a single manner. In
addition, this design supports mod-
ular development and evolution of
agents, which reduces the develop-
ment burden and may even enhance
the ability to spawn new agents in
an automated and consistent man-
ner. SMASH agents contain an immutable main module shown at the top of
the figure (with the darkened rectangular border). This main module comprises
the following submodules: code, application data, agenda, itinerary, credentials,
and a time-to-live. The main module is signed by the agent’s creator, and this
signature helps protect the agent’s main module from unauthorized modification.

The code shown in Fig. 1 is the executable portion of the SMASH agent, and
the application data (“app data” in the figure) contains static data the agent
carries during its travels. The application data is simply constant data that does
not change throughout the execution lifetime of the agent. If the agent does need
to modify this data, this modified data is placed in a secondary module (“data”
in the figure), described in more detail below. The TTL, or time-to-live, is a time
metric for specifying the lifetime of an agent. Since agents may get lost or the
lifetime of data may expire, it is necessary to protect against agents that may
loop through a network or possibly corrupt data caches with expired data.

The agenda contains the agent’s application-level goals, including informa-
tion about the agent’s intended task(s), the resources required to perform those
tasks (e.g., file or network access), and the expected cost of performing the tasks.



4

(e.g., in terms of communication bandwidth or CPU time). An agent provides
descriptions of its intended task and resource requirements, and these specifica-
tions are used as part of the authentication process between the agent and the
platform. In addition, agenda information can aid the platform in determining
the appropriate privileges to award an authenticated agent. To protect in transit
information, the agent may encrypt portions or all of the agenda to ensure the
secrecy of its tasks. In such cases, the target platforms for the agent must already
be in possession of the proper key to use in decrypting the agent’s agenda.

The itinerary submodule contains the agent’s travel plan, designates the plat-
forms the agent intends to visit, and also grants permissions to clone the agent.
For each target host platform, the itinerary contains the host’s unique identifier,
the host’s public key, material for authenticating the host, and, finally, a check-
sum of the software expected to be running on the host. The platform’s unique
identifier and public key are used by the agent to authenticate the platform,
but other authentication materials, such as session tokens, may also be available
to augment these more standard materials. The checksum is used by the agent
to verify that the platform has not been modified from the expected execution
environment, which could indicate a recent update or a compromise in the sys-
tem. In addition to the above components, the itinerary is also used to designate
whether an agent will permit platforms to refer it to another trusted platform. A
referral occurs if a platform does not have a resource, but knows of another plat-
form with the agent’s required resources. If the agent accepts referrals, then the
agent will go to the referred platform and honor the trust relationship between
the platforms. Finally, the agent’s true destinations can be obscured to hide an
agent’s association with a platform or prevent observers from understanding the
purpose of the agent. This protection can be applied to individual entries of the
itinerary without impacting an intended recipient’s ability to receive the agent.
The mechanisms behind this encryption are discussed in Section 2.2.

The final submodule in the agent’s main module contains the agent’s creden-
tials, which define a tamper detector comprising a public key, a signature, and
the agent’s prescribed authentication methods, authentication submodules, which
describe which algorithms an agent can use to authenticate with platforms. The
platform must support at least one of an agent’s prescribed methods, or the two
will not be able to authenticate. Credentials are used to capture the identity of
the agent, and the entries in this component allow the agent to be authenticated
across domains with dissimilar authentication mechanisms.

The creator key shown in Fig. 1 is used to help protect all sub-modules
within the main module. When the agent is completely assembled and prepared
for dispatch, the creating entity will create an asymmetric key pair. The public
key will be added to a list of keys used to sign the agent, and the private key will
be used to sign the agent. In order to allow for agent cloning, the agent carries
a signing keys list, and as the name suggests, the list will contain a list of all
platforms that have cloned and signed an instance of the agent. This method
of cloning is used for two reasons. First, the agent’s main module must remain
intact, so future platforms the agent reaches can validate the integrity of the



5

agent. The second reason is more of a trust issue. Since the itinerary contains
platform identifiers and public keys as well as permission to clone the agent,
future target platforms can easily verify the validity of a cloned agent. If an
agent is cloned but the platform did not have the proper permissions, the agent
is considered illegitimate and can be destroyed and reported once it is discovered.

In addition to its main module, an agent may contain a dynamic module,
the lower rectangle in Fig. 1. This module stores vital state and process data
with a high degree of confidence as the agent moves from platform to platform.
Its explicit separation from the main module also protects the crucial informa-
tion described above from modifications that can occur in the dynamic module.
Within the dynamic module, the execution state includes information about the
variables in memory and the instruction where the agent left off on the previous
platform. The data refers to any computation results, accumulation of logs, etc.,
that the agent generates throughout its tasks and wishes to maintain. A digest
provides a mechanism of verification for this data. Before departing a platform,
the agent creates a hash of the execution state and application data (using a
function like SHA-512) and passes this hash to the platform. The platform signs
the combination of the hash and the platform’s public key. The agent receives the
signed hash and the public key from the platform, which it stores as a digest and
the digest public key. When the agent initializes on a new platform, it verifies
the data and state information using the reverse process. The public key is also
matched against the public key of the previous platform in the agent’s itinerary.
If the key does not match or the digest is wrong, the agent will self-destruct.

2.2 Implementing Secure Modular Agents

SMASH agents are designed to be resilient against many of the security at-
tacks found in modern day systems yet remain flexible through platform in-
teraction. Our framework builds on past work in agent systems, but integrates
multi-directional security into the design from the ground up. SMASH is a multi-
agent system built on top of the Security Enhanced Linux and uses Python as
the execution environment for the agents.

General Agent Implementation. Agents are written in the Python script-
ing language to provide an easy-to-use interface to the application developer.
Python is a powerful object-oriented language whose features make it attractive
for rapid application development. In addition, the separation of the agent im-
plementation (written in Python) from the platform implementation (described
in the next section and written in C++) provides a layer of abstraction between
the agent’s security policies and the platform’s implementation of those policies.

The Python interface for defining a SMASH agent provides an agent base
class (agent) that any application agent must derive. This base class contains an
init method to which the deriving agent can provide the aspects of the main

module. Each of these submodules except the agent’s code (i.e., the agenda, the
itinerary, the credentials, the TTL, and the application data) are represented by
additional Python classes provided in the SMASH middleware implementation.
When a SMASH agent is first created, its init method is invoked, and, within



6

this method, the submodule components are either received as parameters or
created. When a SMASH agent arrives on a new platform, the Python interpreter
uses boot-strapping methods within the agent to load essential environment
variables and to prepare the agent for the platform’s admission process. This
entire process is described in more detail in Section 3.

One final aspect worth noting about this programming interface is the ease
with which the developer can specify initialization of the submodules. For ex-
ample, as described next, an agent’s agenda is represented using an XML-like
definition. To initialize the agenda submodule, the agent needs only to pass the
XML file(s) defining the agenda to the Python agenda class, and the mechan-
ics for parsing and properly storing the agenda’s details are implemented within
the middleware. The agent’s itinerary (which includes various information about
each of the agent’s target platforms) is also defined via a standard XML format
and can also be automatically processed. Similar standard approaches for rep-
resenting the other submodules are used; details are omitted here for brevity.

SMASH is engineered to provide both strong and weak mobility. As such, the
agent base class in the middleware contains two methods; an agent overrides one
or the other depending on whether it desires strong or weak mobility. In addition,
the deriving agent sets a flag in the base class indicating its selection. When using
the strong run method, when the derived agent decides it is time to move to
a new platform, the exact execution state is saved and later restored on the
new platform. The agent records how much processing has occurred and restarts
itself on the new platform in exactly that location. In the case of weak mobility,
when the agent moves, its weak run method simply restarts from the beginning.
To move, a derived agent calls the move method in the agent base class, which
first determines which mobility method is being used and (if necessary) saves
the agent’s execution state. Then the move method hooks into the remainder of
the middleware to find the next platform in the itinerary and move there.

Defining Expressive Agent Agendas. An example agent agenda is de-
picted in Figure 2, which shows the goal definition for a network event monitoring
agent. The agent collects any of the high severity events that occur on network
sensors. After identifying an event, it is hashed by the destination port and
event name, so similar events on various sensors can be correlated. During the
correlation, the agent counts similar events, and if any of the counts surpass the
threshold, then the agent will retain these events. In this case (with a threshold
of one), the agent will carry all events that are identified from the past 24 hours.

In cases where the agent would like to protect the goals, tasks, or resources
from observers, the agenda entries can be encrypted for particular platforms
using either symmetric or asymmetric cryptography. While other methods can
be incorporated into our framework, we have defined the Secure Agent Container
Transport Method (SACTM). SACTM is a single-use cryptographic container
that allows both the agent and platform to validate the contents. The container
is embedded in the agent before the agent is deployed, and the container is
created with a symmetric key created during a secure key agreement between
the agent’s creator and the target platform. The creator also creates a random



7

<GoalType = NetworkStatusReport>

<Task>

<NIDSQuery>

<attribute> Description = "NIDS Event Query"</attribute>

<type=HashedQuery>

<attribute> EventType= "ANY,HIGH" </attribute>

<attribute> HashBy = "DstPort,EventName" </attribute>

<attribute> TimePeriod="Last Day" </attribute>

</HashedQuery>

<type=EventCorrelation>

<attribute> GetCount = "TRUE" </attribute>

<attribute> TrackTime = "FALSE" </attribute>

<attribute> KeepHostId= "FALSE" </attribute>

</EventCorrelation>

<type=EventFilter>

<attribute> EventThreshold = 1 </attribute>

<attribute> = "FALSE" </attribute>

<attribute> KeepHostId= "FALSE" </attribute>

</EventFilter>

</NIDSQuery>

</Task>

<Resources>

<Internal>

<attribute> ProcessingTime = "300s" </attribute>

<attribute> SensorDBAccess = "TRUE" </attribute>

</Internal>

</Resources>

</NetworkStatusReport>

<GoalType = SACTM>

<attribute> PublicKey= AKey </attribute>

<attribute> Nonce = 8686868 </attribute>

<attribute> Data = ...DATA... </attribute>

</SACTM>

Fig. 2. Model of an Network Event Monitor and Encrypted Goal



8

nonce and an asymmetric key pair, which are used to create a seal that is used
by both the agent and platform to validate the SACTM. Essentially, the private
key is used to sign the nonce and data, and the resulting seal is appended to
the data and encrypted with the key. The agent creator then appends the public
key and nonce to finish the SACTM, and after the container is created, the
creator destroys the container key, leaving the only copy in the possession of
the platform. The SACTM is verified after the agent and platform mutually
authenticate. The platform will decrypt the SACTM data with the stored key
and use the nonce, the public key, and the decrypted data to check the seal. If
the check succeeds, the platform can ensure the SACTM retains its integrity.
Next, the agent performs the same check. The novel feature of this container is
that if either element tries to lie, the other will be able to detect the lie through
the integrity check, so the platform cannot pass-off data not in the SACTM to
the agent, and the platform will be able to detect a masquerading agent.

Finally, the agenda can also be used as a dossier or condition upon which
the agent is admitted to the platform, and, if the agent violates the agenda
constraints, the agent can be removed from platform.

An agent’s itinerary is also implemented as XML-like specifications, and por-
tions of it (e.g., single destinations) can also be partially secured in much the
same manner. The details of these approaches are omitted for brevity.

3 Platform Components and Security Measures

Like SMASH agents, the host platform is engineered to provide support for an
open architecture with high levels of security. This section describes the details of
the platform that support the mobile SMASH agents, starting with a description
of the model, including the flow of agents and information through the model,
and concluding with a brief description of some implementation details.

3.1 The SMASH Platform Model

As shown in Fig. 3, we use a layered approach to compartmentalize our archi-
tecture and to prevent an outbreak of malicious activity. At the lowest level, the
operating system handles issues like communication, system level access controls,
etc. When an agent arrives at the platform, an integrity check is administered,
and, upon successful completion, the agent is moved to the Untrusted Layer.
At this point the agent is considered to be an admitted anonymous agent. The
agent then moves through the Authentication and Authorization Layer, where
the agent and platform mutually authenticate to become a trusted entity. After
successful authentication and authorization, the agent is placed into the Trusted
Containment Zone (TCZ) and is considered an authenticated agent. From here
up, the agent will interact directly with the Security Manager to obtain the re-
quired resources and be executed. Within the Security Manager, the Task Man-
ager determines if the platform can provide useful services to the agent (based
on the agent’s goals), and the Resource Manager sets-up proxies so the agent



9

can access resources external to the execution environment. The Agent Manager
tracks all agents on the platform. The remainder of this section describes these
layers and an agent’s movement through them in more detail.

SMASH’s final components, shown

Fig. 3. SMASH Platform Architecture

to the right in Fig. 3, represent pub-
licly accessible platform resources.
The Blackboard is a memory-constrained
FIFO queue available to any agent
(authenticated or anonymous) for read-
write access. Agents can use this space
to coordinate tasks. Since agents are
kept completely isolated, this is one
way that they may interact with each
other. This data space also allows
agents to mark a platform as vis-
ited. The platform also has the abil-
ity to make other parts of memory
public and read-only (similar to a glass-enclosed bulletin board).

Fig. 4. Decision Tree Used by the SMASH Platform.

Fig. 4 shows the entire process of admitting an agent to a platform. When
an agent first arrives at the platform, the agent and platform perform initial



10

integrity checks. The platform will use the tamper detector located in the agent’s
credentials to check the list of signatures and ensure the agent’s integrity. The
agent verifies the integrity of a platform by querying the TPM, which provides
a signed hash of the platform’s software, and the agent will compare this value
with the one in its itinerary. If they match, the platform’s check has passed and
the agent will register with the Agent Manager (AM) as an anonymous agent
and proceed to the Untrusted Containment Zone (UCZ).

The agent receives few privileges in the UCZ. Here the agent has limited
processing power, may read and write to the platform’s Blackboard, may access
the platform’s lesser privileged services, or may leave the platform. The agent
may also piggyback on the platform to get to some physical location. When
the agent is registered with the Agent Manager (AM), it is scheduled to receive
minimal processing time in a low-priority queue. The AM also monitors agents,
and, if they die unexpectedly, removes them from the UCZ. If an agent simply
needs to obtain some public data from the platform, it can use its processing time
to query and then leave. On the other hand an agent may also use this processing
time to inform the AM that it wishes to authenticate with the platform.

After the agent signals the AM that it wishes to authenticate, the AM moves
the agent into the Authentication and Authorization Layer (AAL). In the AAL,
the agent and the platform mutually authenticate. The platform queries the
agent about how it can authenticate, and the agent does the same for the plat-
form. If the two possess some method of authentication in common, then they
can mutually authenticate. If this is not the case the agent is removed from the
AAL and flagged in the AM, meaning it can no longer attempt to authenticate.
If mutual authentication succeeds, an authorization service is launched. The au-
thorization service will look locally, to a remote server, or even employ another
mobile agent service [3] to identify and grant the agent access privileges. The
authorization source is platform-dependent, but it must establish whether the
agent can use the platform, at what privilege level, and which resources should
be accessible. The agent can leverage the same services to authorize the platform
to ensure no revocations have taken place since it was dispatched. Once these
authorizations complete, the status of the agent is updated to authenticated in
the AM, and the agent is moved into the Trusted Containment Zone (TCZ).

After the agent is given an initial set of privileges, it passes its agenda to
the Security Manager (SM). From here, the agent will interact only with the
SM. The SM passes the agenda to the Task Manager (TM), which analyzes
the agenda, the agent’s privileges, and which of the agent’s tasks are currently
permissible. If the TM identifies a task that is permissible and requires equal or
lesser access than the agent’s currently assigned privileges, the TM passes the
agent’s requested resource list to the Resource Manager (RM), which locates
the desired resources and initiates proxies for the agent to use to access those
resources. The RM adheres to the order in which resources are required, if the
agent provides such information. This expedites agent execution, reduces idle
time, and helps release resources in a timely manner.



11

When the necessary resources become available, the agent is moved into the
Agent Staging Area (ASA), and its status is updated in the AM. In the ASA,
the agent’s Bootstrap Code (BC) is identified and loaded. The BC first goes
through all of the agent’s modules to ensure no tampering or corruption has
occurred in the agent’s immutable sections. The BC then loads the agent into
memory. The agent checks all execution environment parameters such as handles
and variables and initializes them appropriately for this platform. If any failure
occurs, the BC aborts, and the agent self-destructs or returns home. Finally, the
BC updates the agent’s status within the AM to executing.

While the agent executes, the SM monitors the agent for any deviant be-
havior like excessive bandwidth usage or attempts to access restricted resources.
Depending on the severity of the violation, the SM can restrict or kill the agent,
or force the agent to leave. When the agent’s execution ends, the BC moves the
agent back to the agent staging area. Here, the BC checks the agent’s integrity
and inventories the modules. The BC will obtain a digital signature for the data
and execution state (the digest). After the BC completes the clean-up, it will
signal to the AM its intention to leave, and the AM will provide a means to leave
the platform.

3.2 Implementing a Secure Agent Platform

To enable several aspects of tamper detection in SMASH, our implementation
utilizes Security Enhanced Linux (SE Linux [4]), which is a Linux kernel modi-
fied and partly maintained by the National Security Agency. SE Linux enables
granular access controls and provides a powerful but securable multi-user envi-
ronment. In addition, we require each platform to incorporate a Trusted Platform
Module (TPM), a hardware chip specified by the Trusted Computing Group [5].
In combination, this hardware and operating system enable our implementation
of the security and trust mechanisms outlined above.

As described in Section 2.2, we use the Python programming language to pro-
vide a programming interface for defining agents. For the platform, we use C++,
on top of which the Python agents run. C++ is more amenable to interaction
with the SE Linux operating system services, has better performance, and makes
many of the subtle aspects described above possible. Finally, SMASH assumes
network communication to be handled by the operating system, and the mid-
dleware simply handles agent movement between platforms at the application
level.

4 Meeting a Wide-Range of Security Requirements

Multi-agent systems are very difficult to secure, simply because they invite for-
eign pieces of code to execute and fulfill a goal or objective. Even under the
most ideal situations, security becomes highly complicated and requires apply-
ing not only cryptographic but also procedural measures to overcome threats
and vulnerabilities in a system. A secure system typically satisfies properties of



12

accountability, authentication, availability, confidentiality, and integrity [6]. The
system must be able to authenticate users of the system, and in doing so ensure
the user is who they say they are, commonly using any of the following factors:
“what you know,” “what you have,” and “who you are.” The next issue is avail-
ability, which implies that required services and resources will be available at
least when they are needed. Confidentiality refers to the fact that information
must remain secret through out the security cycle, and no information is leaked
by processes acting on the data. The final property is integrity, and this implies
two elements, data integrity and source integrity. Data integrity means that any
data being processed via a security system should not be modified by unautho-
rized users whether intentional or unintentional. The second element is Source
Integrity, and this item implies that the source of the given data or message is
untainted and represents their true identity.

The underlying goals of accountability are to disallow deniability both on
the part of the agent and the part of the platform and to be able to recon-
struct events. SMASH ensures accountability by requiring mutual authentica-
tion, tracking an agent’s states and resources on a platform, and governing an
agent’s access throughout its stay on a platform. If the platform detects abnor-
mal behavior (e.g., an agent operating outside of its stated goals or resource
requirements), the platform can intervene. Accountability of platforms may not
be as exact, in part because, as the agent moves from platform to platform, it
becomes difficult to determine exactly by which platform an agent was modi-
fied. Our use of the digest and its sequential keys helps in this process, but the
approach may still suffer from a risk of rogue platforms attempting to modify
agents en route to other platforms.

Authentication is the process of identifying an entity and asserting with a high
probability that this is the entity it claims to be and not an impersonator. In a
dynamic environment, authentication is complicated due to the lack of persis-
tent connectivity to a central authority. Common approaches to authentication
require a central host or certificate authority to provide information about the
identity bound to the key in question. Currently, SMASH relies on a model in
which platforms and agents alike have a priori information about other entities
that enable authentication. Such an approach incurs a good deal of initialization
or setup costs that may be unreasonable in a mobile environment. Other ap-
proaches in dynamic environments handle this authentication requirement in a
different manner, for example through quorum-based authentication [7]. Future
work will investigate the feasibility of incorporating similar approaches into the
SMASH architecture. To implement the actual authentication process, SMASH
uses Pluggable Authentication Modules (PAM), which interface with the Plug-
gable Authentication Service, to perform the authentication on the platform.

Availability emphasizes how components and the system as a whole address
incidental and intentional failures. Incidental failures may occur when an agent
loses a network connection, and the agent does not handle the resulting excep-
tion created by the incident. An intentional failure is due to a malicious entity
actively engaging the system in an attempt to disrupt or compromise services



13

and resources in the system, resulting in instability. SMASH focuses on ensuring
stability from within and accomplishes this feat by applying a layered security
approach. The first line of defense begins with the agent and its creator. In this
layer, agents are coded in a defensive manner such that exceptions are caught
and, to some extent, data and code are validated before being executed. The
next line of defense falls within the platform. First of all, to prevent collateral
damage, agents are executed in their own execution contexts using SE Linux [8].
Under this condition along with the principle of least privilege and SE Linux’s
access controls, agents are contained and unable to escalate their privileges, and
once the platform detects the abnormal behavior, the agent is killed and system
checks are performed to ensure everything is in order. If the platform becomes
unstable, SE Linux is also used to contain this system, so it can actually be
halted, reinitialized, and restarted into the last known good state.

In SMASH, confidentiality and integrity focus on keeping messages secret
and intact. Confidentiality is typically accomplished through cryptographic mea-
sures, but methods like obfuscation can also be utilized to embed secret mean-
ings into the existing messages, without changing the cover message. SMASH
embraces current cryptographic techniques to accomplish secrecy, since these
methods are proven secure and practical in real world environments, using al-
gorithms like RSA, ECC, AES, etc. The SACTM is a slight exception. While
it has not yet been proven secure, SACTM makes use of secure algorithms and
protocols to help reinforce its security. Integrity is accomplished by using di-
gest functions in conjunction with asymmetric cryptography. Digest functions
are are non-invertible functions, meaning outputs can not be used to derive the
inputs. This property allows information to be given a probabilistically unique
value, where collisions (e.g., another input with the same output) are highly un-
likely. To ensure information pertaining to the digest and the digest itself cannot
be modified en route to a platform, asymmetric cryptography is applied to the
digest, thus retaining the originality of the message.

5 Modeling Agent Interactions

The previous sections introduced SMASH’s components, their respective func-
tionalities, and their security guarantees. This section presents a real world exam-
ple in which SMASH can be used to securely transmit mobile agents among plat-
forms, providing an improved implementation of a common application. Specifi-
cally, we present the use of SMASH to support epidemic updates on, for example,
commercial automobiles. As discussed in Section 1, epidemic updates can be used
to intelligently propagate software updates to distributed platforms.

The implementation of this application begins on the factory floor, when
the automobiles are originally manufactured. When the manufacturer creates
a new automobile, it loads the vehicle with specific cryptographic keys, and
the keys for the device are saved in the manufacturer’s database as well. This
initial “centralization” removes the need for a third party to be involved in
verification processes at a later date. At some later time, the manufacturer may



14

identify a (non-critical) software update that it would like to distribute to certain
automobiles. While a dealership is servicing one of these automobiles, the vehicle
can be given a mobile agent (or set of mobile agents) that can clone itself and
move through vehicles, supplying the necessary software update. In this process,
the maintenance personnel at the dealership loads a carrier agent onto the vehicle
under service. As their name indicates, carrier agents carry the software updates
to platforms targeted by the update. Carrier agents are given a specified TTL
after which the carrier agents will self-destruct. If a carrier agent reaches an
automobile that requires the update but has not yet received it, the carrier
agent loads the new software (when the car is parked), and sends a verification
agent back to the manufacturer. When the TTL for the initial carrier agents
has expired, the manufacturer sends traditional recall slips to all un-verified
automobiles requiring the software update. When a vehicle supporting a carrier
agent reaches an idle state (e.g., is parked in a parking lot), it attempts to clone
itself and send its clone to nearby SMASH platforms. Upon arriving at a SMASH
platform, if the vehicle supporting the platform is not of the type impacted by
the recall, or the vehicle has already been updated, the agent self-destructs. If
it is, the carrier agent deposits the update and sits on the platform, proceeding
to pass the new software to un-updated vehicles.

The first carrier agent is composed of the following material. The agenda
describes the type of update being applied and the intended firmware version to
update. The itinerary contains a list of (the platforms of) all vehicles impacted
by the recall. When an agent clones itself to send to a new platform, it decreases
the itinerary by the platform(s) it has already visited. Rather than specifically
identifying the other platforms by unique id (in this case, likely the Vehicle
Identification Number, or VIN), a carrier agent could identify properties of the
vehicles it needs to visit. Adding such expressiveness to an agent’s itinerary is left
for future work. The admission process for a carrier agent from the anonymous
status to the authenticated status uses the pre-loaded manufacturer’s keys, and
appropriate counterparts are carried by the carrier agent. The code and app data
for the carrier agent contain the code for uploading the update, the update itself,
and diagnostic scripts to test and ensure that the update was correctly installed.
To indicate that a platform has successfully been updated, the installation also
causes a marker to be written to the platform’s blackboard that indicates success.
Upon arriving at a new platform, any carrier agent first checks this blackboard,
and, if the marker is apparent, the carrier agent self-destructs.

After an attempt to update the platform is made, a verification agent is sent
back to the closest dealership or manufacturer. This verification agent carries
information like log files and the diagnostic test results back to the manufacturer
for records keeping and assurance that the update was successful. The files and
logs sent back to the sender are encrypted with the their public key, which is
already loaded on the platform or embedded in the carrier agent. The verification
agent’s agenda describes the agent as a courier, but the more revealing details
about the agent are protected with encryption. While the use of an agent in this
case at first seems unreasonable, the use of an agent will enhance the probability



15

that the agent will reach its destination because the agent can travel in an ad-hoc
and intelligent fashion. A message sent in a traditional manner may not reach
its destination due to the network dynamics.

6 Related Work

Information assurance for mobile agents is a daunting task because security
threats arise from agents attacking other agents or platforms and from platforms
attacking agents. The ultimate challenge is to manage trust between components
of the agent system. Providing middleware for such systems is non-trivial because
it must forecast and abstract implications which may arise in the various roles
and actions of remote agents and platforms. Issues such as software exceptions,
resource availability, etc., can open subtle holes for exploitation or even cause a
system to fail.

In the area of software assurance, a number of projects have increased the
probability of dynamically detecting data or code tampering. One such frame-
work [9] re-arranges code at compile time to obtain a unique binary and then
embeds a unique watermark created from standard encryption algorithms. This
dramatically suppresses the ability of an adversary to manipulate any portion
of the code and can also be useful in maintaining a light-weight agent.

Page et. al. [10], explore a method in which each agent performs a ran-
domly periodic self-examination to ensure no modifications have been made
while the agent was executing. Other methods use reference states [11], state
appraisals [12], and even agent execution traces [13]. These methods can add
weight to the agent code and payload, require a priori knowledge or consistent
connectedness of platforms for verification, and, under some circumstances, data
appended to the agent can be forged.

Most mobile agent systems have been built on Java or varying scripting
languages. Projects using Java utilize the JVM’s Security Manager, but this
management system can be intractable due to an excessive number of security
policies and unscalable as mobile agent systems become more complex. On the
flip side, Java offers more robust, object-oriented programming, an elaborate
API library, and portable code. Mobile agent systems implemented in scripting
languages are also portable and have stronger mobility, but they do not provide
extensive security management and they tend not to be as object-oriented.

There are a number of middleware projects for secure mobile agents, and we
sample only a small fraction of them here. MARS [14] explicitly separates the
data an agent can access from the host’s file system through a novel coordination
approach, but this reduces flexibility and requires significant a priori knowledge
to populate the agent accessible data space. In addition, MARS is dramati-
cally limited in the granularity of access control it can provide. Nomads [15]
implements many promising features such as fine-grained access control, strong
mobility, and flexible execution profiles based on application and context; how-
ever, Nomad agents run in a custom execution environment that dramatically
reduces the code portability of the agents. D’Agents [2] supports multiple agent



16

implementation languages and also differentiates anonymous and authenticated
agents. Aglets [16] are applet agents based on Javascript. They provide condi-
tional access rights and moderate access control based on aglet “identity.”

Ajanta [17] is another mobile agent system built on Java that implements
extensive access control measures rather than relying entirely on Java’s Security
Manager. Ajanta suffers due to Java’s constrained policy system. Ajanta intro-
duces containers for appending read-only data and a stronger security manager
that controls access to resources by requiring agents to set-up resource prox-
ies that access resources through the manager as established by the platform’s
policies. In an effort to make agents lightweight, each agent carries an address
for a trusted code server from which it can dynamically load supplemental Java
classes.

Java has been a very important tool in the mobile agent community. Java’s
portability, type safety, automated memory management, serialization, and built-
in security management have made it the language of choice for many developers.
However, for the purposes of strict information assurance, Java has fundamental
inadequacies. For example, the JVM is not intended as a multi-user execution
environment, so a Java-based mobile agent system has limited ability to govern
all resources of agents and threads [18]. A second issue with Java-based systems
is that they were meant typically for on-platform management in which an agent
derives its platform access rights from those established locally on the platform.
There is no method for the platform to dynamically check access policies within
a local domain. Also, because access controls are issued per domain, either each
visiting agent must have its own domain or agents must share domain privileges.
The former is unscalable and unfriendly to open systems. The latter neglects The
Principle of Least Privilege allowing dissimilar agents to have the same permis-
sions even when those privileges are unnecessary [19]. Additionally, Java cannot
authorize access based on a particular task or goal, dramatically restricting the
potential for context-based authorization and privileges.

SMASH strives to enhance the software engineering of mobile agents by intro-
ducing a modular and adaptable system, so application developers can quickly
customize mobile agents and platforms to their needed specifications and security
requirements. SMASH emphasizes security by design but provides modularity so
future application designers do not need to design around the architecture, but
rather design for their application.

7 Conclusion

In creating and implementing this SMASH concept framework, we have created
a flexible and expressive approach to defining secure mobile agent systems. This
process has also elucidated several research issues for future work within the
scope of improving the SMASH framework. As described earlier, a replacement
language for the XML-like specifications of agendas and itineraries would help
agents more flexibly define their plans and travel schedules. In addition, we plan
to revamp the models of agent interactions within SMASH platforms to under-



17

stand whether any relaxation of behaviors can be allowed without sacrificing the
stringent security guarantees we have provided. The current restrictions placed
on interactions among agents restricts the degree to which emergent behavior can
be codified, possibly limiting the applicability of the current SMASH framework.

Another major undertaking is the formalization of the SMASH security guar-
antees and an evaluation of these guarantees against formalized security require-
ments. Section 4 provided an informal discussions of such issues, but a more rig-
orous evaluation will aid in arguing the system’s robustness to common threats.
Such a model will also help us assess the impact of future changes to the frame-
work both in terms of expressiveness and security. Within this formalization, we
will represent not only the secure architectural components but also the agents,
their structure, and their interactions. This will help us more clearly explicate
the manner in which we obfuscate agents’ agendas and itineraries.

In this paper, we have defined SMASH, a mobile agent system with a unique
combination of openness and security. SMASH affords agents confidence about
the platforms with which they interact and platforms confidence about the agents
they choose to support. In addition, SMASH makes it possible for an agent to
move among platforms in a limited fashion without having to authenticate with
platforms where the agent does not require access to privileged services. When
an agent does authenticate with a platform, the two-directions of security help
the platform ensure the agent is safe and helps the agent ensure that the platform
is legitimate and that it can provide services required by the agent. As a final
innovation, to support robust but simplified agent creation, SMASH agents are
created using the Python scripting language. These agents are then supported
by a middleware implemented in C++ and supported by a Trusted Platform
Module (TPM) to provide the underlying stringent security guarantees.

In summary, multi-agent systems have the potential to improve current ap-
plications and open the door for new applications. Over the course of this paper,
we have discussed how to improve the security in multi-agent systems, while
allowing for an open architecture. SMASH is a new multi-agent system model
that builds on past system innovations and incorporates new and existing se-
curity technologies. The paper discussed not only what SMASH can do, but it
also showed that a multi-agent system can provide and implement an infrastruc-
ture based on information assurance. The paper also illustrated an application
for epidemic updates build on the SMASH middleware. Overall, SMASH has the
potential to improve the programmability of highly secure mobile agent systems.

Acknowledgments

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded, in part, by the NSF, Grant # CNS-0620245. The views
and conclusions herein are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.



18

References

1. Roth, V.: Obstacles to the Adoption of Mobile Agents. In: Proc. of the IEEE Int’l.
Conf. on Mobile Data Management. (2004) 296–297

2. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: D’Agents: Security in a Multiple-
Language, Mobile-Agent System. In: Mobile Agents and Security, London, UK,
Springer-Verlag (1998) 154–187

3. Seleznyov, A., Ahmed, M.O., Hailes, S.: Agent-based Middleware Architecture for
Distributed Access Control. In: Proc. of the 22nd Int’l. Multi-Conf. on Applied
Informatics: Artificial Intelligence and Applications. (2004) 200–205

4. The National Security Agency: The SELinux Project.
http://selinux.sourceforge.net/ (2005)

5. Trusted Computing Group: Trusted Computing Group Hompage.
https://www.trustedcomputinggroup.org/home (2005)

6. Stallings, W.: Cryptography and Network Security: Principles and Practices. 4
edn. Prentice Hall, Englewood Cliffs, NJ, USA (2006)

7. V. Pathak and L. Iftode: Byzantine fault tolerant public key authentication in
peer-to-peer systems. Computer Networks, Special issue on Management in Peer-
to-Peer Systems: Trust, Reputation and Security 50(4) (2006)

8. McCarty, B.: SELinux NSA’s Open Source Security Enhanced Linux. 1 edn.
OŔeilly Media, Inc., Sebastobol, CA, USA (2004)

9. Jochen, M., Marvel, L., Pollock, L.: A Framework for Tamper Detection Marking
of Mobile Applications. In: Proc. of the 14th Int’l. Symp. on Software Reliability
Engineering. (2003) 143–152

10. Page, J., Zaslavsky, A., Indrawan, M.: Countering Security Vulnerabilities in Agent
Execution Using a Self Executing Security Examination. Proc. of the 3rd Int’l Joint
Conf. on Autonomous Agents and Multiagent Systems (2004) 1486–1487

11. Hohl, F.: A Framework to Protect Mobile Agents by Using Reference States. Proc.
of the 20th IEEE Int’l. Conf. on Distributed Computing Systems (2000) 410–419

12. Farmer, W., Guttman, J., Swarup, V.: Security for Mobile Agents: Authentication
and State Appraisal. In: Proc. of the 4th European Symp. on Research in Computer
Security, Springer-Verlag (1996) 118–130

13. Vigna, G.: Cryptographic Traces for Mobile Agents. In: Mobile Agents and Secu-
rity. Volume 1419 of LNCS. Springer-Verlag (1998) 137–153

14. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A Programmable Coordination
Architecture for Mobile Agents. IEEE Internet Computing 4(4) (2000) 26–35

15. Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R., Mitro-
vich, T.S., Pouliot, B.R., Smith, D.S.: NOMADS: Toward a Strong and Safe Mobile
Agent System. In: Proc. of the 4th Int’l. Conf. on Autonomous Agents. (2000) 163–
164

16. Karjoth, G., Lange, D.B., Oshima, M.: A Security Model for Aglets. IEEE Internet
Computing 1(4) (1997) 68–77

17. Karnik, N.M., Tripathi, A.R.: Security in the Ajanta mobile agent system.
Software—Practice and Experience 31(4) (2001) 301–329

18. Marques, P., Santos, N., Silva, L., Silva, J.G.: The Security Architecture of the
M&M Mobile Agent Framework. In: Proc. of the SPIE’s Int’l. Symp. on The
Convergence of Information Technologies and Communications. (2001)

19. Sun Microsystems: The Java 2 Platform. http://java.sun.com/j2se (2006)


