
A Secure Modular Mobile
Agent System

TR-UTEDGE-2006-003

Adam Pridgen
Christine Julien

© Copyright 2006
The University of Texas at Austin

A Secure Modular
Mobile Agent System

Adam Pridgen and Christine Julien
The Center for Excellence in Distributed Global Environments

The Department of Electrical and Computer Engineering
The University of Texas at Austin

{atpridgen, c.julien}@mail.utexas.edu

ABSTRACT
Applications in mobile multi-agent systems require a high
degree of confidence that code that runs inside the system
will not be malicious and that any agents which are mali-
cious can be identified and contained. Since the inception of
mobile agents, this threat has been addressed using a multi-
tude of techniques, but many of these implementations have
only addressed concerns from the position of either the plat-
form or the agent, and very few approaches have attempted
to approach the problem of mobile agent security from both
perspectives simultaneously. Furthermore, no middleware
exists that facilitates provision of the required security qual-
ities of mobile agent software while extensively focusing on
easing the software development burden. In this paper, we
introduce a middleware system that eases the integration of
core software assurance qualities into the mobile agent soft-
ware development process by addressing perspectives from
positions the of both the platform and the agent.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: [Computer-aided
software engineering]; K.5 [Security and Protection]: [];
K.6.3 [Software Management]: [Software development]

General Terms
Design, Security, Standardization

Keywords
Mobile Agents

1. INTRODUCTION
Mobile agent systems and applications are becoming highly
prominent for tasks such as information sharing, analysis,
evaluation, and response. Before these systems fulfill their
promise, they must overcome the challenging obstacles of
effective software development and security [12]. In general,
agents are regarded as highly autonomous processes which

can perform tasks ranging from simple queries to complex
computations. In all cases, a major component of a mobile
agent system is the platform that hosts the agents.

Motivating applications for mobile agents range across many
domains, and the benefit of using mobile agents can far out-
weigh traditional approaches. In epidemic updates, agents
carry firmware upgrades to remote clients by intelligently
propagating through a network. As computer systems be-
come increasingly pervasive, an effective means for propa-
gating updates to these systems will be required, especially
when physical contact with a device is infeasible. Epidemic
updates also provide relief to manufacturers who require
their vehicles to upgrade to a new firmware version without
instantiating a massive recall. A dealership could strategi-
cally deploy updates on a few vehicles, and, when vehicles
stop in public areas such as a market, the update can spread
to nearby systems to which it applies.

Another distributed information application that could ben-
efit from secure mobile agents focuses on collecting and com-
paring events in a distributed surveillance sensor network.
In this system, agents can be utilized to help monitor ar-
rays of many sensors like cameras, acoustics, and pressure
sensors. Furthermore, these systems could be integrated
look for elaborate acts of sabotage. The network monitoring
agents could even be leveraged as a channel for comparing
network-wide events among different organizations without
disclosing sensitive or proprietary data.

As mobile agent deployments become more prominent and
sophisticated, programming mobile agent components and
applications needs to be simplified. A modular mobile agent
platform could help capture this desired flexibility for easy
integration, but the system must also incorporate trusted
computing functions and must facilitate the integration of
future technologies. A simple middleware that permits do-
main programmers to develop these components and allows
expert programmers to extend the system is essential. Since
mobile agents and their respective applications have a signif-
icant degree of variance, strategies such as cross-layer design
should be employed in many situations.

In this paper, we introduce the Secure Modular Mobile
Agent System.H (SMASH), which provides modularity for
agent and platform components, information assurances,
and mechanisms to assist mobile agents as they move be-
tween platforms. SMASH is also designed to address

context-based agent execution and security, enable coordi-
nation among agents and platforms, and, overall, improve
programmablity, security, and extensibility for highly ver-
satile mobile agent applications. SMASH seeks to allow a
wider range of authentication methods, rather than restrict
agent authentication to code signing as employed in Java-
based approaches. To support unpredictable travel patterns,
SMASH supports strict authorization and resource control
measures yet eliminates the burden of excessive authentica-
tion for transient agents as they move to their destinations.

The rest of this paper is organized as follows. Section 2
reviews previous research Section 3 provides an overview
of our architecture. Details about implementation and the
programming interface will be further discussed in Section 4.
Future work is in Section 5, and Section 6 concludes.

2. RELATED WORK
Information assurance for mobile agents is a daunting task
because security threats arise from agents attacking other
agents or platforms and from platforms attacking agents.
The ultimate challenge is to manage trust between compo-
nents of the agent system. Providing middleware for such
systems is non-trivial because it must forecast and abstract
implications which may arise in the various roles and actions
of remote agents and platforms. Issues such as software ex-
ceptions, resource availability, etc., can open subtle holes for
exploitation or even cause a system to fail.

In the area of software assurance, a number of projects have
increased the probability of dynamically detecting data or
code tampering. One such framework [6] re-arranges code
at compile time to obtain a unique binary and then em-
beds a unique watermark created from standard encryption
algorithms. This dramatically suppresses the ability of an
adversary to manipulate any portion of the code and can
also be useful in maintaining a light-weight agent.

Page et. al. [11], explore a method in which each agent
performs a randomly periodic self-examination to ensure
no modifications have been made while the agent was ex-
ecuting. Other methods use reference states [5], state ap-
praisals [2], and even agent execution traces [18]. These
methods can add weight to the agent code and payload,
require a priori knowledge or consistent connectedness of
platforms for verification, and, under some circumstances,
data appended to the agent can be forged.

Most mobile agent systems have been built on Java or
varying scripting languages. Projects using Java utilize
the JVM’s Security Manager, but this management sys-
tem can be intractable due to an excessive number of secu-
rity policies and unscalable as mobile agent systems become
more complex. On the flip side, Java offers more robust,
object-oriented programming, an elaborate API library, and
portable code. Mobile agent systems implemented in script-
ing languages are also portable and have stronger mobility,
but they do not provide extensive security management and
they tend not to be as object-oriented.

There are a number of middleware projects for secure mobile
agents, and we sample only a small fraction of them here.
MARS [1] explicitly separates the data an agent can access

from the host’s file system through a novel coordination ap-
proach, but this reduces flexibility and requires significant a
priori knowledge to populate the agent accessible data space.
In addition, MARS is dramatically limited in the granular-
ity of access control it can provide. Nomads [15] implements
many promising features such as fine-grained access control,
strong mobility, and flexible execution profiles based on ap-
plication and context; however, Nomad agents run in a cus-
tom execution environment that dramatically reduces the
code portability of the agents. D’Agents [4] supports multi-
ple agent implementation languages and also differentiates
anonymous and authenticated agents. Aglets [8] are applet
agents based on Javascript. They provide conditional access
rights and moderate access control based on aglet “identity.”

Ajanta [9] is another mobile agent system built on Java, that
implements extensive access control measures, rather than
relying entirely on Java’s Security Manager. Ajanta suffers
due to Java’s constrained policy system. Ajanta introduces
containers for appending read-only data and a stronger se-
curity manager that controls access to resources by requir-
ing agents to set-up resource proxies that access resources
through the manager as established by the platform’s poli-
cies. In an effort to make agents lightweight, each agent
carries an address for a trusted code server, from which it
can dynamically load supplemental Java classes.

Java has been a very important tool in the mobile agent
community. Java’s portability, type safety, automated mem-
ory management, serialization, and built-in security man-
agement have made it the language of choice for many de-
velopers. However, for the purposes of strict information
assurance, Java has fundamental inadequacies. For exam-
ple, the JVM is not intended as a multi-user execution en-
vironment, so a Java-based mobile agent system has limited
ability to govern all resources of agents and threads [10].
A second issue with Java-based systems is that they were
meant typically for on-platform management in which an
agent derives its platform access rights from those estab-
lished locally on the platform. There is no method for the
platform to dynamically check access policies within a local
domain. Also, because access controls are issued per do-
main, either each visiting agent must have its own domain
or agents must share domain privileges. The former is un-
scalable and unfriendly to open systems. The latter neglects
The Principle of Least Privilege allowing dissimilar agents
to have the same permissions even when those privilege are
unnecessary [14]. Additionally, Java cannot authorize access
based on a particular task or goal, dramatically restricting
the potential for context-based authorization and privileges.

SMASH strives to enhance the software engineering of mo-
bile agents by introducing a modular and adaptable sys-
tem, so application developers can quickly customize mo-
bile agents and platforms to their needed specifications and
security requirements. SMASH emphasizes security by de-
sign but provides modularity so future application designers
do not need to design around the architecture, but rather
design for their application.

3. SMASH: AN OVERVIEW
In this section we introduce our middleware, the Secure
Modular Mobile Agent System.H (SMASH), which facil-

Figure 1: Depiction of a Mobile Agent in SMASH

itates openness, security, and modularity in mobile agent
systems. SMASH fosters openness by allowing anonymous
mobile agents to move freely through platforms while still
coordinating with other agents. Additionally, SMASH en-
ables coordination among these anonymous entities. Secu-
rity is provided for more robust agents by integrating hard-
ware and software assurance methods to prevent tampering,
enhance authentication, and to authorize agents and plat-
forms through traditional and contextual means. SMASH’s
core design principle is modularity, which improves mobil-
ity, eases the programming effort, and allows customization.
Thus, SMASH focuses on adapting the system to an appli-
cation not an application to the system.

3.1 SMASH Agents and Functionality
To adhere to an open architecture, SMASH supports two
types of agents, anonymous and authenticated agents, in a
manner similar to [4]. An anonymous agent is simply one
that has not authenticated with the platform. When an
agent is unauthenticated, its functionality on the platform
is restrained. Such an agent may access only designated
read-only data, read and write to a Blackboard, perform
simple computations, or leave. This anonymous classifica-
tion allows agents to move through intermediate platforms
without having to authenticate with each of them, which
can improve performance and reduce the latency caused by
unnecessary authentication. An authenticated agent, on the
other hand, is one that has sufficiently proven its identity to
the platform. An agent’s identity refers to with whom the
agent is associated (e.g. user, group, platform, etc.). Once
an agent’s identity is verified, it is awarded rights based on
that identity and/or the context of its task(s).

Figure 1 represents the components of a SMASH agent. All
agents are composed of modules, which are simply defined
architectural types, methods, and functions of the mobile
agent. SMASH agents contain an immutable main module
shown at the top of the figure. This main module comprises
the following submodules: an agenda, code, credentials, ap-

<Goal>
<Task>

<Upgrade>
<attribute>

Description = "Upgrade Firmware"
</attribute>
<type=Firmware>

<attribute> Version = "3.0 Beta" </attribute>
<attribute> PreviousVersion = "2.99" </attribute>
<attribute> SystemArch=any </attribute>
<attribute> ApplyAt="12:00a" </attribute>
<attribute> EstimatedTime="3 minutes" </attribute>

</Firmware>
</Upgrade>

<Task>
<Resources>

<Internal>
<attribute> UpgradeData = "./Firmware3.bz2"</attribute>

</Internal>
<Network>

<attribute> BandwidthRate = 10Kb </attribute>
<attribute> BandwidthUsage = 5MB </attribute>
<attribute> PortUsed = 80 </attribute>
<attribute> PortHandle = "NHandle" </attribute>

<attribute> RemoteHost = "foo.bar.org" </attribute>
</Network>
<WorkingDirectory>

<attribute> Directory = "" </attribute>
<attribute> FileAccessRights = "rwx" </attribute>
<attribute> DirectoryHandle = "FHandle" </attribute>

</WorkingDirectory>
</Resources>
<AuthorizationRequirements>

<attribute> User = "operator" </attribute>
<attribute> Directory = "/usr/bin" </attribute>
<attribute> FileAccessRights = "rw" </attribute>

</AuthorizationRequirements>
</Goal>

Figure 2: Model of an Update Goal

plication data, itinerary, and a time-to-live. The agent’s
agenda contains the agent’s goals, described in more detail
in Figure 2, which shows the goal definition for an agent
performing a firmware upgrade. There are at least three
required fields for any goal: the Task, Resources, and Au-
thorizationRequirements. The Task is functionality of the
specified goal, and the Resources list what resources the
agent needs to use to complete the task, which may con-
sist of system resources, remote resources or data, and even
external functions. Finally, the AuthorizationRequirements
provide a recommended set of privileges to accomplish the
task; however the final determination of actual privileges
is left to the platform. The code is the executable portion
of the agent, and the application data contains static data
accessed throughout the agent’s execution.

The itinerary submodule contains the agent’s travel plan
and designates the platforms the agent plans to visit. An
itinerary includes several components associated with each
target platform. First, if the agent intends to use privi-
leged services, the itinerary includes a checksum of the ex-
pected software the platform should be running. Second,
the itinerary also includes information unique to each plat-
form, so the agent can authenticate with it. Finally, the
itinerary designates whether the agent will allow a particu-
lar platform to refer it to another trusted platform. A refer-
ral occurs if a platform does not have a resource, but knows

of another platform with the agent’s required resources. If
the agent accepts referrals, then the agent will go to the re-
ferred platform and honor the trust relationship between the
platforms; this relies on a third party authentication service
that enables the agent and platform to verify each other’s
identity.

The final submodule in the agent’s main module contains
the agent’s credentials. This component provides a tamper
detector comprising a public key, a signature, and the agent’s
prescribed authentication methods, authentication submod-
ules, which describe how an agent can authenticate with
platforms it encounters. Each authentication sub-module
contains the information necessary to complete the pre-
scribed authentication method. The platform must support
at least one of an agent’s prescribed methods, or the two
will not be able to mutually authenticate.

The tamper detector protects all sub-modules within the
main module. When the agent is completely assembled and
prepared for dispatch, the creating entity will select a private
key to use to sign the agent. Before signing the main module,
the creator will place the public key into the credentials and
identify the asymmetric algorithm being used. The agent
then signs the main module using the selected private key.

In addition, an agent may contain an additional dynamic
module, shown in the lower portion of the agent in Figure 1.
This module stores vital state and process data with a high
degree of confidence as the agent moves from platform to
platform. The execution state includes information about
the variables in memory and the instruction where the agent
left off on the previous platform. The data refers to any com-
putation results, accumulation of logs, etc., that the agent
generates throughout its tasks and wishes to maintain. An
effort is made to protect this data from tampering using a
digest. Before departing a platform, the agent creates a hash
of the execution state and application data (using a function
like MD-5) and passes this hash to the platform. The plat-
form signs the combination of the hash and the platform’s
public key. The agent receives the signed hash and the pub-
lic key from the platform, which it stores as a digest and
the digest public key. When the agent initializes on a new
platform, it verifies the data and state information using the
reverse process. The public key is also matched against the
public key of the previous platform in the agent’s itinerary.
If a the key cannot be found or the digest is wrong, the agent
will self-destruct.

3.2 SMASH Platform and Functionality
Like SMASH agents, the host platform is engineered to pro-
vide support for an open architecture, extensibility, and var-
ious levels of security. As shown in Figure 3, we use a layered
approach to compartmentalize our architecture’s functional-
ity and to prevent an outbreak of malicious activity. At the
lowest level of the architecture, the operating system han-
dles issues like communication, system level access controls,
etc. When an agent arrives at the platform, an integrity
check is administered, and, upon successful completion, the
agent is moved to the Untrusted Layer. The agent then
moves through the Authentication and Authorization Layer,
where the agent and platform mutually authenticate to be-
come a trusted entity. After successful authentication and

Figure 3: SMASH Platform Architecture

authorization, the agent is placed into the Trusted Contain-
ment Zone (TCZ). From here up, the agent will interact
directly with the Security Manager to obtain the required
resources and be executed. Within the Security Manager,
The Task Manager determines if the platform can provide
useful services to the agent (based on the agent’s goals), and
the Resource Manager sets-up proxies so the agent can ac-
cess resources external to the execution environment. The
Agent Manager tracks all agents on the platform.

SMASH’s final components, shown to the right in Figure 3,
represent publicly accessible platform resources. The Black-
board is a memory-constrained FIFO queue that is available
to any agent (authenticated or anonymous) for read-write
access. Agents can use this space to coordinate tasks. Since
agents are kept completely isolated, this is one of two ways
that they may interact with each other; the other method
will be discussed later. This data space also allows agents
to mark a platform as visited. The platform also has the
ability to make other parts of memory public and read-only
(similar to a glass-enclosed bulletin board).

Figure 4 shows the entire process of admitting an agent to
a platform. When an agent first arrives at the platform the
agent and platform perform initial integrity checks. The
platform will use the tamper detector located in the agent’s
credentials discussed earlier. The agent queries a special
hardware chip that provides the agent with a checksum of
the currently running system software. The agent compares
the hardware module’s result with the one stored in the
agent’s itinerary. If they match, the platform’s check has
passed and the agent will register with the Agent Man-
ager (AM) as an anonymous agent and proceed to the Un-
trusted Containment Zone (UCZ).

The agent receives few privileges in the UCZ. Here the agent
has limited processing power, may read and write to the
platform’s Blackboard, has access to the platform’s read-
only memory, or leave the platform. The agent may also
piggyback on the platform to get to some physical location.
When the agent is registered with the Agent Manager (AM),
it is scheduled to receive minimal processing time in a low-
priority queue. The AM also monitors agents, and, if they
die unexpectedly, removes them from the UCZ. If an agent
simply needs to obtain some public data from the platform,

Figure 4: Decision Tree Used by the SMASH Platform.

it can use its processing time to query and then leave. On
the other hand an agent may also use this processing time
to inform the AM that it wishes to authenticate with the
platform.

After the agent signals the AM that it wishes to authen-
ticate, the AM moves the agent into the Authentication
and Authorization Layer (AAL). In the AAL, the agent
and the platform mutually authenticate each other. The
platform queries the agent about how it can authenticate,
and the agent does the same for the platform. If the two
possess some method necessary of authentication in com-
mon, then they can mutually authenticate. If this is not the
case the agent is removed from the AAL and flagged in the
AM, meaning it can no longer attempt to authenticate. If
mutual authentication succeeds an authorization service is
launched. The authorization service will look locally, to a
remote server, and even employ another mobile agent ser-
vice [13] to grant the agent access privileges. The autho-
rization source is platform-dependent, but it must establish
whether the agent can use the platform, at what privilege
level, and which resources should be accessible. The agent
can leverage the same services to authorize the platform
to ensure no revocations have taken place since it was dis-
patched. Once these authorizations complete, the status of
the agent is updated to authenticated in AM, and the agent
is moved into the Trusted Containment Zone (TCZ).

After the agent is given an initial set of privileges, it passes
its agenda to the Security Manager (SM). From here, the
agent will interact only with the SM. The SM passes the
agenda to the Task Manager (TM), which analyzes the
agenda, the agent’s privileges, and which of the agent’s tasks
are currently permissible. If the TM sees a possible match,
(i.e. some task is permissible and requires equal or less ac-
cess than the agent’s currently assigned privileges), the TM

passes the agent’s requested resource list to the Resource
Manager (RM), which locates the desired resources and in-
tiates proxies for the agent to use to access those resources.
The RM adheres to the order in which resources are re-
quired, if the agent provides such information. This expe-
dites the agent’s execution, reduces idle time, and helps re-
lease resources in a timely manner for other agents running
on the platform.

When the necessary resources become available, the agent
is moved into the Agent Staging Area (ASA), and the sta-
tus of the agent is updated in the AM. In the ASA, the
agent’s Bootstrap Code (BC) is identified and loaded into
the staging area. The BC first goes through all of the agent’s
modules to ensure no tampering or corruption has occurred
in the agent’s immutable sections. The BC then loads the
agent into memory. The agent checks all execution environ-
ment parameters such as handles and variables and initial-
izes them appropriately for this platform. This allows an
agent to resume execution at the point it previously left off.
If any failure occurs, the BC aborts and self-destructs or re-
turns home. Finally, the BC updates the agents status with
the AM to executing.

While the agent executes, the SM monitors the agent for any
deviant behavior like excessive bandwidth usage or attempts
to access restricted resources. Depending on the severity of
the violation, the SM can kill the agent, make the agent
leave, downgrade the agent, or throttle the agent. When
the agent’s execution ends, the BC moves the agent back
to the agent staging area. Here, the BC checks the agent’s
integrity and inventories the modules. The BC will obtain
a digital signature for the data and execution state (the
digest). After the BC completes the clean-up, it will signal
to the AM its intention to leave, and the AM will provide it
with a means to leave the platform.

4. SMASH INTERNALS
SMASH eases programming of secure mobile agent appli-
cations by providing a modular and extensible program-
ming framework for anonymous and authenticated agents.
SMASH also provides the support necessary for these agents
to authenticate and validate the platforms they visit and
vice versa.

4.1 SMASH Implementation Details
In this section, we explore aspects of the implementation de-
tails of the SMASH middleware. To enable several aspects
of tamper detection in SMASH, our implementation utilizes
Security Enhanced Linux (SELinux [16]) which is a Linux
kernel modified and partly maintained by the National Se-
curity Agency. SELinux enables granular access controls
and provides a powerful but securable multi-user environ-
ment. In addition, we require each platform to incorporate
a Trusted Platform Module (TPM), a hardware chip speci-
fied by the Trusted Computing Group [17]. In combination,
this hardware and operating system enable our implemen-
tation of the security and trust mechanisms outlined in the
previous section.

As described in Section 2, we avoid using the Java program-
ming language for creating agent systems due to its many
restrictions in securing application interactions. Instead, our
middleware is implemented on the platform described above
using C++. On top of this, we use Python to provide a more
flexible and easy-to-use programming interface to the appli-
cation developer. The next section describes this interface in
a bit more detail. Python is a powerful object-oriented lan-
guage whose features make it attractive for rapid application
development. C++, on the other hand, is more amenable
to interaction with SELinux operating system services, has
better performance, and makes many of the subtle aspects of
the system described in Section 3 possible. Finally, SMASH
assumes network communication to be handled by the op-
erating system, and the middleware simply handles agent
movement between platforms at the application level.

4.2 SMASH Application Details
Because our goal is to simplify the process of programming
secure mobile agents, SMASH provides much of the agent’s
reusable functionality within the middleware. The program-
ming interface through which developers create SMASH
agents is presented in Python, an intuitive object-oriented
language. Specifically, the middleware provides an agent
base class (agent) that any application agent must derive.
This base class contains an init method to which the
deriving agent can provide the aspects of the main mod-
ule depicted in Figure 1. Each of these submodules except
the agent’s code (i.e., the agenda, the itinerary, the creden-
tials, the creator key, the TTL, and the application data)
are represented by additional Python classes in the SMASH
middleware that the developer can instantiate. Ultimately,
when an application developer’s agent is created, its init

method is invoked, and, within this method, the submod-
ule components are either received as parameters or cre-
ated, and the method agent. init (...) is called with
the submodule components as parameters. This successfully
initializes an agent.

One thing worth noting about this organization of the pro-

gramming interface is the ease with which the submodules
can be initialized. Take as an example the XML-style defi-
nition of goals (shown in Figure 2). To initialize its agenda,
the agent needs only to pass the XML file(s) defining the
agenda to the Python agenda class, and the mechanics for
parsing and properly storing the details of the goals are
implemented within the middleware. The agent’s itinerary
(which includes not only the ids of the target platforms but
also keys and other cryptographic information used for agent
admission) is also defined via a standard XML format that
can be automatically processed by the middleware. Similar
standard approaches for representing the other submodules
module are used; details are omitted here for brevity.

SMASH is engineered to provide both strong and weak mo-
bility. As such, the agent base class in the middleware con-
tains two methods; an agent overrides one or the other de-
pending on whether it desires strong or weak mobility. In
addition, the deriving agent sets a flag in the base class in-
dicating its selection. The two methods, strong run and
weak run have no functionality defined in the base class,
but in the former case, when the derived agent decides it is
time to move to a new platform, the exact execution state is
saved and later restored on the new platform. This means
that the agent actually records how much processing has
occurred and restarts itself on the new platform in exactly
that location. In the case of weak mobility, when the agent
moves, its weak run method simply restarts from the begin-
ning. To move, a derived agent calls the move method in
the agent base class, which first determines which mobility
method is being used and (if necessary) saves the agent’s
execution state. Then the move method hooks in to the
remainder of the middleware to find the next platform in
the itinerary and move there. Functionality implemented
within the middleware handles the admission of the agent
as described in Section 3, and eventually, if all checks pass
successfully, the Python derived agent class is restarted.

5. FUTURE WORK
The SMASH middleware infrastructure as described in Sec-
tion 4 is currently under development. Future work will see
the completion of the middelware as described here and the
development of several agent-based applications using the
middleware to demonstrate not only the range of security
concerns the middleware covers but also the range of appli-
cation domains in which it can be applied. This evaluation
will be an important point in the process of SMASH devel-
opment because we hope to gain insight into the languages
and representations we have chosen for modules and sub-
modules (e.g., the representation of the agent’s tasks and
resources using XML).

At the model level, SMASH currently incorporates con-
text information into security decisions by accounting for
an agent’s intended tasks and requested resources. In the
future, we plan to extend this framework to incorporate
the use of more context information into security processes.
This work will build on our previous work in construct-
ing context-sensitive access controls [7]. We envision that
context information such as the other agents present on a
host, available resources, network connectivity, and quality
of service will be able to positively influence agents’ and
platforms’ admission and authorization decisions to provide

efficient behavior to the platforms and the best possible level
of service to the mobile agents.

6. CONCLUSION
In this paper, we have presented SMASH, a secure mo-
bile agent middleware that builds on past research efforts
to create a secure, open, and modular mobile agent system
that can be used to experiment and develop robust appli-
cations. SMASH embraces openess by directly considering
agents’ goals and requests in the security process, allowing
anonymous agents to move freely through intermediary plat-
forms onto their final destinations, and providing a means
for agents to coordinate or compute without being authen-
ticated to a platfrom. Security is provided by integrating
hardware and software techniques to protect, detect, and
identify tampering, and to a high degree, provide increased
flexibility with respect to agent authentication and autho-
rization. Finally, SMASH’s design modularity enhances the
extensibility of mobile agent applications, eases the devel-
opment burden associated with mobile agent systems, and
empowers developers with tools to create a new generation
of mobile agent applications.

7. REFERENCES
[1] G. Cabri, L. Leonardi, and F. Zambonelli. Mars: A

programmable coordination architecture for mobile
agents. IEEE Internet Computing, 4(4):26–35, 2000.

[2] W. Farmer, J. Guttman, and V. Swarup. Security for
Mobile Agents: Authentication and State Appraisal.
In Proc. of the 4th European Symp. on Research in
Computer Security, pages 118–130, Springer-Verlag,
September 1996.

[3] C.-L. Fok, G.-C. Roman, and C. Lu. Rapid
development and flexible deployment of adaptive
wireless sensor network applications. In Proc. of the
25th IEEE Int’l. Conf. on Distributed Computing
Systems, pages 653–662, 2005.

[4] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus.
D’agents: Security in a multiple-language,
mobile-agent system. In Mobile Agents and Security,
pages 154–187, London, UK, 1998. Springer-Verlag.

[5] F. Hohl. A Framework to Protect Mobile Agents by
Using Reference States. Proc. of the 20th IEEE Int’l.
Conf. on Distributed Computing Systems, pages
410–419, 2000.

[6] M. Jochen, L. Marvel, and L. Pollock. A Framework
for Tamper Detection Marking of Mobile Applications.
In Proc. of the 14th Int’l. Symp. on Software
Reliability Engineering, pages 143–152, 2003.

[7] C. Julien, J. Payton, and G.-C. Roman. Adaptive
access control in coordination-based mobile agent
systems. In Software Engineering for Large-Scale
Multi-Agent Systems III, volume 3390 of LNCS, pages
254–271, February 2005.

[8] G. Karjoth, D. B. Lange, and M. Oshima. A security
model for aglets. IEEE Internet Computing,
1(4):68–77, 1997.

[9] N. M. Karnik and A. R. Tripathi. Security in the
Ajanta mobile agent system. Software—Practice and
Experience, 31(4):301–329, 2001.

[10] P. Marques, N. Santos, L. Silva, and J. G. Silva. The
security architecture of the M&M mobile agent
framework. In Proc. of the SPIE’s Int’l. Symp. on The
Convergence of Information Technologies and
Communications, 2001.

[11] J. Page, A. Zaslavsky, and M. Indrawan. Countering
Security Vulnerabilities in Agent Execution Using a
Self Executing Security Examination. Proc. of the 3rd

Int’l Joint Conf. on Autonomous Agents and
Multiagent Systems, pages 1486–1487, 2004.

[12] V. Roth. Obstacles to the Adoption of Mobile Agents.
In Proc. of the IEEE Int’l. Conf. on Mobile Data
Management, pages 296–297, January 2004.

[13] A. Seleznyov, M. O. Ahmed, and S. Hailes.
Agent-based middleware architecture for distributed
access control. In Proc. of the 22nd Int’l. Multi-Conf.
on Applied Informatics: Articial Intelligence and
Applications, pages 200–205, 2004.

[14] Sun Microsystems. The Java 2 Platform.
http://java.sun.com/j2se, January 2006.

[15] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth,
G. A. Hill, R. Jeffers, T. S. Mitrovich, B. R. Pouliot,
and D. S. Smith. NOMADS: toward a strong and safe
mobile agent system. In Proc. of the 4th Int’l. Conf.
on Autonomous agents, pages 163–164, 2000.

[16] The SELinux Project.
http://selinux.sourceforge.net/, December 2005.

[17] Trusted Computing Group. Trusted Computing
Group Hompage.
https://www.trustedcomputinggroup.org/home,
November 2005.

[18] G. Vigna. Cryptographic Traces for Mobile Agents. In
Mobile Agents and Security, volume 1419 of LNCS
State-of-the-Art Survey, pages 137–153.
Springer-Verlag, June 1998.

