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Abstract— Sensor networks are becoming increasingly perva-
sive. Existing methods of aggregation in sensor networks offer
mostly standard mathematical operators over homogeneous data
types. In this paper, we instead focus on supporting emerging
scenarios in which applications will need to extract abstracted
measurements from diverse sets of sensor network nodes. This
paper introduces the virtual sensors abstraction that enables an
application developer to programmatically specify an applica-
tion’s high-level data requirements. This paper reports on our
initial work with the virtual sensors and the results of our
prototype implementation.

I. INTRODUCTION

In existing deployments of sensor networks, data collection
schemes commonly require sensors to relay raw data to
sink nodes to perform further processing. This is not very
efficient considering the resource constraints (e.g., battery and
bandwidth) of sensor networks. Furthermore, the throughput
at each node decreases as the network scales, due to the broad-
casting of redundant data. Sensor network aggregation mech-
anisms [1]–[4] offer in-network data processing algorithms
that are successful in limiting resource usage. However, these
approaches support only standard mathematical operators (e.g.,
MIN, COUNT, and AVG) over homogeneous data types. The
sensor networks of tomorrow will need to support localized
cooperation of sensor nodes to perform complicated tasks and
in-network data processing to transform raw data into high-
level domain-dependent information.

Another challenge facing sensor networks is reusability.
Current efforts create application-specific solutions, but the
future will see multipurpose nets deployed to support numer-
ous applications. The cost of physically visiting each sensor
to reprogram it is prohibitive, and therefore the ability re-
motely reprogram sensor networks to tailor them to particular
applications will be essential. This paper tackles exactly this
challenge through the introduction of virtual sensors.

A virtual sensor is a software sensor as opposed to a
physical or hardware sensor. Virtual sensors provide indirect
measurements of abstract conditions (that, by themselves, are
not physically measurable) by combining sensed data from
a group of heterogeneous physical sensors. For example, on
an intelligent construction site, users may desire the cranes
to have safe load indicators that determine if a crane is
exceeding its capacity. Such a virtual sensor would take
measurements from physical sensors that monitor boom angle,

load, telescoping length, two-block conditions, wind speed,
etc. [5]. Signals from these individual sensors can be used in
calculations within a virtual sensor to determine if the crane
has exceeded its safe working load.

The middleware described in this paper implements a pro-
gramming interface that enables applications to define tailored
aggregation through virtual sensors. The power of virtual
sensors lies in the fact that the physical sensors used by
the virtual sensor may be heterogeneous (in the case of our
example, angle and wind speed), and the virtual sensor can
combine these different types of data to compute an abstract
measurement. Another benefit of the virtual sensor is that it
can be used to mask the explicit data sources (sensors) that
provide data. A simple example would be a virtual position
sensor that uses GPS when available on the local device but
can switch to providing a position estimate based on the
relative positions of other nearby (physical) location sensors
if GPS is unavailable (e.g., inside a building).

The specific novel contributions of this work are twofold.
First, we describe a new virtual sensor model designed to
abstract data from physical sensors. This abstraction allows
a developer to precisely specify the operations that are to be
performed in the network over a set of data from different data
sources. Second, we describe a prototype implementation of
this middleware that includes the creation of virtual sensors
enabling adaptive and efficient in-network processing that
dynamically responds to an application’s needs.

Section II of this paper examines related work. Then,
Section III describes our virtual sensor model. In Section IV,
we provide a detailed description of the middleware supporting
this model. In Section V, we discuss an example of specifying
a virtual sensor. Section VI concludes.

II. RELATED WORK

Several recent research efforts have focused on simple in-
network data aggregation techniques. Projects targeted directly
for sensor networks have often explored representing the
sensor network as a database. Two demonstrative examples are
TinyDB [2] and Cougar [4]. Generally these approaches enable
applications with data requests that flow out from a central
point (i.e., a base station) and create routing trees to funnel
replies back to this root. These approaches focus on perform-
ing intelligent in-network aggregation and routing to reduce



the overall energy cost while still keeping the semantic value
of data high. In both approaches, data aggregation is specified
using an SQL-like language. Queries cannot be used to merge
different data types, i.e. only homogeneous data aggregation is
possible. In contrast, the virtual sensors approach offers simple
programming interface, supports multiple access points, and
offers raw and heterogeneous in-network data processing.

Compared to these approaches, directed diffusion [6] is a
less centralized data-centric system. It is based on attribute-
based naming and filtering to access sensor network data
from multiple points inside or outside the network. Directed
diffusion uses filtering for in-network data aggregation. A
disadvantage of directed diffusion is that it requires gradients
to be set up from all the sources (that will be used in an
aggregation) to the sink that requests this information.

TinyLIME [7] offers the option for continuous, periodic
sampling of data over which an aggregation can be computed,
in addition to on-demand access to data. However, TinyLIME
provides only single-hop connections to sensors and assumes
that the sensors do not communicate among themselves. This
effectively places all of the burden of aggregation on the
shoulders of an application running on a more powerful device
(e.g., a laptop) that is immersed in the sensor network.

The Sensor Model Language (SensorML) [8] provides an
XML schema for defining the geometric, dynamic, and ob-
servational characteristics of a sensor. The language intro-
duces a “sensor group” composed of multiple sensors that
together provide a collective observation. However, SensorML
is targeted for satellite-based high-power sensor systems. Data
processing is not defined very rigorously, and it is not very
flexible with respect to accessing heterogeneous devices.

A more lightweight implementation designed specifically
for wireless sensor networks is TinyML [9]. It follows some
of the SensorML ideas that are built on XML and has
the important concept of virtualizing physical components.
TinyML places an interface on a gateway (a more powerful
and standard system) to the outside that translates XML to
and from the application specific-sensor network format. The
sensor field proxy is implemented on this external interface,
which is chosen to be TinyDB.

Our virtual sensor approach differs from those in SensorML
and TinyML, in that it offers raw, heterogeneous in-network
data processing. Our virtual sensor focuses on forming a
generic device to convert heterogeneous data. Furthermore, the
virtual sensors do not rely entirely on an infrastructure or on
a powerful gateway at which to perform aggregation.

III. VIRTUAL SENSOR MODEL

A client application runs with the support of the virtual
sensor abstraction. In this section, we first describe how a
developer defines the application’s data requests using the
virtual sensors. We then detail how programs dynamically
interact with data from virtual sensors through an intuitive
programming interface.

Figure 1 depicts the connection to an application-defined
virtual sensor (represented by the dashed blue ellipse) on a

tower crane. This virtual sensor uses data from three physical
sensors (represented by blue dots). The virtual sensor aggre-
gates the information from these sources into a higher-level
reading that represents the effective load on the crane.

Tension 
sensor

Accelerometer
Position 
sensor

Fig. 1. Connection from an application running on the user’s device to the
virtual sensor on a tower crane

The software implementing this virtual sensor may run on
the user’s handheld device or, to reduce network commu-
nication, be deployed to one of the sensors depicted. The
mechanics of the infrastructure supporting this deployment are
discussed in Section IV. First, we describe how programmers
create virtual sensors through our middleware.

A. Declarative Specifications of Virtual Sensors

In our model, several sensors required to supply the de-
sired application-level data are encapsulated in an abstraction
called a virtual sensor. This offers generality and flexibility
and provides a higher level of abstraction to the application
developer, in comparison to programming in nesC directly. A
virtual sensor’s declarative specification allows a programmer
to describe the behavior he wants to create, without requiring
him to specify the underlying details of how it should be
constructed. This is especially important considering the fact
that in an instrumented sensor network, a user’s operational
context is highly dynamic. While the actual data sources
change over time based on the user’s location and movement,
the application’s data needs do not change as much, and one
of the benefits of a virtual sensor is that it hides the changes
in data sources from the application. Our approach assumes
applications and sensors share knowledge of a naming scheme
for the low-level data types the sensor nodes can provide
(e.g., “location,” “temperature,” etc.). These data types are
determined by the types of sensors deployed in a network.
The programmer, then, only needs to specify the following
four parameters for the virtual sensor:

• Input data types: Physical (low-level) data types required
to compute the desired abstract measurement.

• Aggregator: A generic function defined to operate over
the specific (possibly heterogeneous) input data types to
calculate the desired measurement.

• Resulting data type: The abstract measurement type that
is a result of the aggregation.



Operation Description
public VirtualSensor(DataType[] inputs, Constructor for the VirtualSensor. The parameter aggfreq impacts how

Aggregator a, up-to-date the readings are.
DataType result,
int aggfreq)

void query(ResultListener r) Sends a one-time query to the VirtualSensor. The result listener receives
results from this query.

int register(ResultListener r, Registers a persistent query on the VirtualSensor. The request frequency,
int reqfreq) reqfreq indicates how often the application demands the data value from the

virtual sensor. The method returns a receipt that can be used to cancel the
registration when desired.

void deregister(int receipt) Stops the registered query referenced by the receipt.

Fig. 2. VirtualSensor API operations

• Aggregation frequency: The frequency with which this
aggregation should be made. This frequency determines
how consistent the aggregated value is with actual con-
ditions (i.e., more frequently updated aggregations reflect
the environment more accurately but generate more com-
munication overhead.).

To present the dynamic virtual sensor construct to the
application developer, we build a simple API that includes
built-in general-purpose data types (e.g., temperature, location,
angle, etc.) and provides a straightforward mechanism for
developers to insert additional data types.

By providing these virtual sensor specifications, an applica-
tion delegates sensor discovery to the virtual sensor (and to the
framework that supports the virtual sensor). Therefore, if the
data sources supporting the virtual sensor change over time,
the virtual sensor adapts, but the application does not notice.

B. Interacting with Virtual Sensors

The types of queries enabled on a virtual sensor can be
classified into one-time queries (which return a single result
from the virtual sensor) and persistent queries (which return
periodic results from the virtual sensor). To support these
types, we provide two different methods for posing queries:
query() and register(), respectively.

These operations and brief descriptions of their behavior
are shown in Figure 2. To provide the functionality described
in the API, the VirtualSensor object keeps a list of live
queries and a list of listeners as its private members. This
allows a single virtual sensor to support multiple applications,
in the same way that a single physical sensor can provide
data for multiple applications. A virtual sensor is deployed
only when there are active queries, and the information from
the virtual sensor is accessed on-demand.

The virtual sensor query model also introduces a
ResultListener, which is registered to receive the results
of each query. When the result is ready, the middleware calls
the resultReceived(QueryResult) method for the result
listeners to forward the results to the application. This achieves
an asynchronous and nonblocking implementation, so that the
application can perform other tasks in case no response comes
back to the query or the response for the query is delayed.
The query model uses the result listener for both one-time
and persistent queries, the difference being that it calls the

result listener only once in the former case and periodically
(as dictated by the reqfreq) in the latter case.

IV. MIDDLEWARE SUPPORTING VIRTUAL SENSORS

In this section, we describe the implementation of the infras-
tructure underneath the virtual sensors abstraction described
above. We first give brief details of the top layers of this de-
sign, relating them to our discussion of the API in Section III.
Then, we discuss the communication infrastructure, sensor
discovery, and virtual sensor deployment. Figure 3 depicts the
middleware’s simplified object diagram.

Application Programming Interface

Routing Protocol (simple unicast)

Directed 
Diffusion CDR

Virtual Sensor Proxy

Result Listener

QueryResult

Virtual Sensor

Physical Sensors

Virtual Sensor Specification

Fig. 3. Simplified object diagram for the virtual sensor middleware

A. Application Programming Interface

When the application needs to query the sensor network
for a data type that is not provided intrinsically by the
physical sensors, the developer constructs and deploys a virtual
sensor using his knowledge of the available data types. The
application subsequently queries this virtual sensor directly.

If the virtual sensor happens to be running remotely, a
remote handle to the listener needs to be set up. In such cases,
the middleware creates a proxy for the virtual sensor on the
user’s device. This proxy object runs within our middleware
and uses a unicast routing protocol to connect to the remote
virtual sensor and collect the information desired by the



application. When the query’s result is ready, this proxy makes
a callback to the user’s result listener either once (for a one-
time query) or periodically (for a persistent query).

B. Sensor Discovery and Communication with Data Sources

The application delegates discovery of physical sensors to a
middleware that locates actual (physical) sensors based on the
specified input data types. To be used by a VirtualSensor,
a node must be able to supply at least one of the input data
types specified in the creation of the virtual sensor.

Existing routing implementations such as directed diffu-
sion [6] or CDR [10] can be used to achieve sensor discovery
and communication. Different protocol implementations can
be swapped into our middleware, as long as they provide the
necessary data-centric communication interface. Abstractly,
the communication protocol used by the middleware initially
broadcasts a data type requirement across the local sensor
network, and sensors that can provide that data type respond.
Heuristics such as least latency, shortest path, etc., can be used
to select a particular data source from many. This selection can
be refreshed if the data source selected becomes unavailable.
As a specific example, when the communication protocol
in use is directed diffusion, the virtual sensor propagates
an interest message for each of the data types it requires,
creating gradients for funneling information back to the virtual
sensor. A similar process is used in CDR, but, once a source
is selected, unicast alone is used to communicate with it.
The middleware uses the (consistency) frequency, aggfreq,
to determine how often the sensor selections need to be to
refreshed and whether or not to use CDR, directed diffusion,
or some other available protocol. For one time queries (or
long aggfreqs), the directed diffusion approach is not very
efficient, since gradients have to be set up for queries which
use the path only once [11]; in such cases CDR is used.

C. Deploying Virtual Sensors

As demonstrated by example in the next section, an applica-
tion’s high-level specification of a virtual sensor is translated
into low-level code (written in nesC [12]) that provides the
virtual sensor’s functionality and communication and can run
on TinyOS [13]. This code can then either run locally or be
deployed to a resource-constrained sensor within the network.
When deployed remotely, this code is dynamically received
by a listener on the remote sensor and executed. While this
approach does require a small amount of our (general-purpose)
middleware to run on every sensor in the network, we believe
this is a small price for dynamic reprogrammability.

The decision about where to deploy a virtual sensor is based
on the expense of communicating with the physical sensors
that it comprises. If all of the physical sensors are in a cluster,
and that cluster is several hops away from the user’s device,
then it may make sense to send the virtual sensor out to
the cluster. On the other hand, if each of the sensors that
make up the virtual sensor is within one hop of the user, then
the virtual sensor should run on the user’s device. For now,
our middleware enables applications to deploy virtual sensors

remotely, but does not take a hand in making this decision on
behalf of the application. Future work will create heuristics
within the middleware for automatically determining when the
virtual sensor should be deployed remotely and where it should
optimally be placed. We conjecture that remotely deploying
virtual sensors when appropriate will be more efficient (require
less communication) than creating all of the communication
flows back to the user’s device. This savings is precious in
sensor networks as the nodes that have to route the messages
contain limited battery power.

V. EVALUATING AN EXAMPLE VIRTUAL SENSOR

In this section we provide a simple example of the specifica-
tion of a virtual sensor. As shown in Figure 3, this specification
is provided to the middleware, which translates it into two
components: the virtual sensor proxy and the virtual sensor.
The former runs on the user’s device; the latter is written in
nesC and can be deployed to a sensor in the network. The
virtual sensor we describe here allows the user to sense data
of type CraneDangerCircle for nearby cranes. This circle
represents the area nearby a crane where it is unsafe to walk
and is centered at the base of the crane (which may move)
and has a radius defined by the position of the boom (which
is even more likely to move). See Figure 1 for reference. As
the boom moves along the crane arm, the size of the danger
circle should expand and contract accordingly. An application
can use this information to maintain a map of the construction
site to ensure vehicles and workers are always safe and to
display warnings to a worker when he enters a danger circle.

This example has been simplified to make the explanation
easier; other examples on the construction site like the one
introduced in Section I require sophisticated physical cal-
culations that muddle our discussion of the virtual sensor
specification. In any case, the virtual sensor programmer (a
domain expert) possesses the application knowledge to create a
virtual sensor. Using our middleware, this programmer can use
a high-level language to create tailored sensing capabilities.

Our example virtual sensor (CraneVS) uses two data
types available in the sensor network: BasePosition and
BoomPosition. This, too, is a simplification, as these data
types may themselves be the result of a virtual sensor that
aggregates basic location data with nearby identity data
(e.g., from an RFID tag) to determine that a particular location
sensor is located at the base of a crane. The CraneVS generates
abstract data of the type CraneDangerCircle which is deliv-
ered to the application. The code the application programmer
must write to construct such a sensor looks like:

VirtualSensor craneVS =
new VirtualSensor({new BasePosition(),

new BoomPosition()},
new CraneAggregator(),
new CraneDangerCircle());

BasePosition, BoomPosition, and CraneDangerCircle

are data types within the application that extend the
DataType class. The application may have to cre-
ate the CraneDangerCircle, but BasePosition and



BoomPosition are likely to be common to the domain
and therefore reusable across applications. In the constructor
above, new instances of the classes representing the types are
constructed as placeholders. The domain programmer must
also specify the mechanics behind the aggregation within the
CraneAggregator. This is accomplished by implementing
the Aggregator interface and providing an implementation
of the aggregate() method:

class CraneAggregator implements Aggregator {
CraneDangerCircle aggregate(DataType[] inputs){

int radius squared = (input[0].x - input[1].x) *
(input[0].x - input[1].x) +
(input[0].y - input[1].y) *
(input[0].y - input[1].y);

return new CraneDangerCircle(input[0],
radius squared)

}
}

The middleware supporting virtual sensors translates this
complete specification into nesC. For this reason, we require
the aggregation function to be written in terms of simple
arithmetic operations (i.e., no square or square root func-
tions). Future work will include translation of more complex
operations. The virtual sensor created to support this spec-
ification does two things. First, it calculates the square of
the radius as specified by the function. Second, it returns
(in a single message) values for anything referenced in the
return statement (i.e., the calculated radius squared and
the (x,y) coordinates of the base of the crane, as dictated
by the use of input[0] in the return statement). The virtual
sensor proxy, running on the user’s device, post-processes the
message returned to encapsulate it as the object the application
expects (e.g., the CraneDangerCircle in the example) and
invokes the application’s registered ResultListener. In this
virtual sensor, the circle is specified by its center (the location
of the crane base) and its radius. We return the square of the
radius for now (due to the difficulty of using a non-primitive
operation) but intend to revisit this issue either in the post-
processing in the proxy or by deploying additional operations
with the virtual sensor (as done in Maté [14]).

The only difference in our initial implementation of the
virtual sensor from that described in the previous section
is that it uses basic broadcast for data types (instead of a
more sophisticated mechanism based on directed diffusion or
other communication protocols). These broadcasts request data
from sensors of the appropriate types, receive the information,
then process it according to the virtual sensor’s Aggregator,
which has been translated to nesC as described above. The
virtual sensor code translated into nesC for this example
occupies 15KB in ROM when compiled for TinyOS, which is
comparable with other applications written for this operating
system. Future work will include further measurements about
the benefit of building sophisticated virtual sensors and the
performance characteristics in terms of overhead and latency
with respect to alternatives.

VI. CONCLUSION

In this paper, we have described virtual sensors that allow
measurements of abstract data types. Virtual sensors abstract
a set of physical sensors and the operations that are per-
formed on them, providing a new way of extracting data
from heterogeneous wireless sensors. The separation of the
specification of the sensing task from the sensing behavior
allows a programmer to describe the behavior of a virtual
sensor, without having to specify the underlying details of how
it should be constructed. Virtual sensors also offer a way to
tailor a generic sensing environment to specific applications.
This will be especially necessary as sensor networks become
more widespread and general purpose.

Future work will include a complete network performance
evaluation that measures query response times, energy usage,
and overall communication overhead. Other future work will
include “mobile” virtual sensors, i.e., virtual sensors that can
move with an event of interest or in response to the user’s
movement.
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