
EgoSpaces: Facilitating
Rapid Development of
Context-Aware Mobile

Applications

TR-UTEDGE-2005-004

Christine Julien
Gruia-Catalin Roman

© Copyright 2005
The University of Texas at Austin

1

EgoSpaces: Facilitating Rapid Development of
Context-Aware Mobile Applications

Christine Julien and Gruia-Catalin Roman

Abstract— Today’s mobile applications require constant adap-
tation to their changing environments, or contexts. Technological
advancements have increased the pervasiveness of mobile com-
puting devices such as laptops, handhelds, and embedded sensors.
The sheer amount of context information available for adaptation
places a heightened burden on application developers as they
must manage and utilize vast amounts of data from diverse
sources. Facilitating programming in this data-rich environment
requires a middleware that provides context information to
applications in an abstract form. In this paper, we demonstrate
the feasibility of such a middleware that allows programmers to
focus on high-level interactions among programs and to employ
declarative abstract context specifications in settings that exhibit
transient interactions with opportunistically encountered compo-
nents. We also discuss the novel context-aware abstractions the
middleware provides and the programming knowledge necessary
to write applications using it. Finally, we provide examples
demonstrating the infrastructure’s ability to support differing
tasks from a wide variety of application domains.

Index Terms— context-awareness, middleware, mobile ad hoc
networks, programming abstraction

I. INTRODUCTION

With the increasing popularity of mobile computing de-
vices, users find themselves living and interacting in environ-
ments characterized by the ability to coordinate with a variety
of wirelessly networked resources. Imagine a network that
forms on a highway among vehicles communicating directly
with one another. Such ad hoc networks form opportunistically
and change rapidly in response to the movement of the devices,
or mobile hosts, resulting in a network topology that is both
dynamic and unpredictable. Because communicating parties
may be constantly moving, their interactions are inherently
transient. Routing protocols have been devised to create and
maintain communication pathways among mobile hosts even
as the network topology changes but do not sufficiently ab-
stract communication to the level of applications’ operations.

Consider an automobile network. An individual driver might
first want to keep track of all cars likely to collide with him.
If another car comes too close, a light warns the driver, and
he can attempt to avoid the collision. The driver might also
monitor traffic conditions for his specified route. As a second
example, imagine a building with a fixed infrastructure of
sensors that provide information about the building’s structural
integrity, occupants’ movements, etc. Engineers and inspectors
carry PDAs that interact with the sensors. As an engineer

Christine Julien is with the Department of Electrical and Computer En-
gineering at the University of Texas at Austin, 1 University Station, C5000,
Austin, TX 78712, Email: c.julien@mail.utexas.edu

Gruia-Catalin Roman is with the Department of Computer Science and
Engineering at Washington University in Saint Louis, Campus Box 1045,
One Brookings Drive, St. Louis, MO 63130, Email: roman@wustl.edu

moves, he wishes to see structural information determined
by his task or location. He may also want to respond to
events, e.g., the arrival of an inspector. As support for pervasive
computing devices builds, the possibility for such applications
in various domains abounds.

In this paper, we apply lessons learned within context-aware
computing to the unique mobile computing challenges. With
this approach, applications need not have explicit knowledge
of other mobile hosts, and the application developer’s level of
awareness rises to an environment with which his application
interacts. This abstraction of networked components as a
context encompasses information that can be collected from
hosts throughout the network and facilitates the provision of
intuitive programming constructs.

Mobile application programming difficulties can be gener-
alized to the need to manage large amounts of distributed and
transiently available context data. This challenge motivated
us to hide the details of mobility, distribution, and transient
connectivity. The resulting middleware, EgoSpaces, allows an
individual application to limit the portion of the context it
interacts with. An application may define different contexts
that reflect diverse concurrent and changing needs and which
encompass data from multiple sources. EgoSpaces manages
this information for the application, relieving the developer
from having to handle network connections and disconnections
common in mobile environments.

This work represents a significant step in creating a context-
aware computing infrastructure for simplifying adaptive mo-
bile application development. Specifically, our contributions
include: 1) a redefinition of context-awareness in mobile envi-
ronments, 2) the elucidation of a conceptual model amenable
to dynamic applications and tailored to a novice programmer’s
capabilities, and 3) the implementation of a middleware that
enables simplified context-aware application development.

In this paper, we first examine the state of the art in
context-aware computing. Section III uses this foundation to
develop a novel model of emerging context-aware mobile
applications. The following section demonstrates how applica-
tions operate within that model to exchange and interact with
dynamic data. In Section V, we use this mode to develop
a middleware specifically designed to reduce the software
engineering burden in mobile ad hoc networks. Section VI
provides examples from varying application domains, while
Section VII experimentally evaluates the middleware’s per-
formance through simulation. Related work and conclusions
appear in Sections VIII and IX, respectively.

2

II. CONTEXT-AWARE COMPUTING

In context-aware computing, the applications’ behavior is
determined by the circumstances in which they find them-
selves. The environment has a powerful impact on an appli-
cation component either because the latter needs to adapt to
changing external conditions or because it relies on resources
whose availability continuously changes.

A. Collecting and Adapting to Context

Context-aware computing became prevalent with the emer-
gence of mobile devices. Active Badge [46] uses infrared
communication between users’ badges and sensors placed in
a building to forward telephone calls. PARCTab [47] also
enables adaptive applications which, for example, can attach a
file directory to a room for use as a blackboard. More recent
work [20] in ubiquitous computing uses CORBA and operates
over a wired network that supports localization and commu-
nication. These systems require constant maintenance and do
not address issues inherent in ad hoc networks, including the
need to scale to large and unpredictable networks.

Context-aware tour guides [1], [11] present information
about the user’s current environment. Fieldwork tools [35]
automatically attach context information (e.g., time) to re-
searchers’ field notes. Memory aids [38] record notes about
the current context that might later be useful to the user. These
applications collect their own context information and focus
on a specific context types, while mobile applications share
characteristics that set them apart. Specifically, mobile hosts
do not have a priori knowledge of the parties with which they
interact. These new applications instead rely on opportunistic
interactions. For example, an application for vehicles on a
highway interacts with other cars locally to collect traffic
information. A particular driver has no advance knowledge
about which cars will provide the traffic information.

Generalized software built to support context-aware com-
puting in mobile environments has also become a focus of
much research [18], [21], [43]. Among the best known systems
is the Context Toolkit [43], which provides abstractions for
representing context through widgets that collect low-level
sensor information and aggregate it to be more easily handled
by application developers. While these approaches offer much
needed building blocks for constructing applications, they do
not address an application’s need to dynamically discover and
operate over a constantly changing context.

B. A Novel Notion of Context-Awareness

While the above approaches demonstrate that context-aware
computing provides abstractions useful in supporting mobile
applications, they do not directly address the distinguishing
characteristics of ad hoc networks and their desired applica-
tions. Specifically, we build on the above context definitions
but take an application-level approach to adaptation, focusing
on how applications specify and use context elements:

• Context should be generalized so that applications inter-
act with different context types (e.g., location, bandwidth,
etc.) in a similar manner.

• Different applications require contexts tailored to their
individual and changing needs.

• An application’s context includes information collected
from a distributed network, which must be specified
without significant a priori knowledge.

• Due to the large-scale environment, applications require
decentralized context interaction.

• High-level abstractions ease the programming burden.
In this paper, we use this new definition to design and de-

velop a middleware infrastructure that supports rapid context-
aware application development in mobile ad hoc networks.

III. A CONCEPTUAL MODEL OF CONTEXT-AWARE
APPLICATIONS

Armed with this new perspective on context-awareness, we
developed a conceptual model to describe mobile application
behavior and to provide support for their rapid development.

A. Computational Model

We assume a computing model in which hosts move in
physical space, and applications are structured as a community
of mobile software agents that can migrate among hosts. An
agent is the unit of modularity and mobility, while a host is
a container that is characterized by, among other things, its
location in physical space. Communication among agents and
agent migration can take place whenever the hosts involved
can communicate. A closed set of connected hosts forms an
ad hoc network.

Since context is relative to a particular application on a
particular host, we use the term reference agent to denote the
agent whose context we are considering, and we will refer to
the host on which this agent is located as the reference host.
In principle, an agent’s context consists of all the information
available in the network. Such broad access to information
is costly to implement and undesirable in large networks.
Consider the application in which a driver collects traffic
information. Automobiles may be transitively connected for
hundreds of miles, but only local traffic information is of
interest to the driver. For these reasons, we structure the
context in terms of fine-grained units called views.

Local
Tuple Tuple

Local

SpaceSpace

Location Profile Location

Access Control Function

v_n=view+credentials v_n=view+credentials

v_1=view+credentials

Host 1

Agent 2

Profile Location

Access Control Function

Agent 1

Profile

v_1=view+credentials

Fig. 1. The computational model

3

Fig. 1 shows our computational model whose components
are discussed in detail throughout this section. A host has
a physical location and a profile describing its properties.
An agent has a profile and a logical location, the host on
which it is running. Each agent can define multiple views by
providing a specification, whose construction is described in
more detail in Section III-C. Finally, every agent stores its data
in a local tuple space. While all these aspects are essential to
our computational model, successful asymmetric coordination
through the view concept is our middleware’s cornerstone. We
next explore this concept in more detail before continuing with
the access operations in Section IV.

B. Data Representation

Our model intentionally does not separate the notions of
data and context. That is, given our redefinition of context
from Section II, we envision that any data available in the
network has the potential to impact an agent’s behavior and
is therefore context. The manner in which an agent perceives
data has ramifications on the ease of programming and the
efficiency of operations. Therefore we explicitly separate the
specific data items an application can access from the manner
in which they are presented to the application. That is, we
assume a single data representation as a basis for coordination.
Other interaction forms can be swapped in for our choice;
the investigation of such context-sensitive data structures [36],
[37] is outside the scope of this paper.

In our model, applications perceive the network as an
underlying database of tuples. Tuple space representations
based on Linda [16] enjoy a great deal of popularity due to the
use of content-based data access. Several mobile computing
systems have found success using shared tuple spaces [7],
[33]. We support transient tuple space sharing, combine it
with a flexible tuple representation, and allow an agent to use
a declarative view specification to indicate with which other
components it wants to share data.

To support tuple spaces, we developed ELIGHTS, in which
a tuple is an unordered set of triples of the form:

〈(name, type, value), (name, type, value), . . .〉

For each field, name is the name given to the field, and type
is the data type of each value. In any tuple, the field names
must be unique. The name allows us to relax the ordering
restrictions seen in traditional tuples. Fundamentally, users
access tuple spaces by matching a pattern against a tuple’s
contents. An ELIGHTS pattern has the form:

〈(name, type, constraint), (name, type, constraint) . . .〉

In patterns, name and type are identical to their counterparts
in tuples. The constraints are functions that provide require-
ments that the value in a field must match for the tuple’s
field to match the pattern’s field. The matching function M is
defined over a tuple θ and a pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p :: 〈∃f : f ∈ θ ∧ f .name = c.name
∧ f .type instanceof c.type

:: c.constraint(f .value)〉〉

In the three-part notation 〈op quantified vars : range ::
exp〉, the variables from quantified vars take on all values
permitted by range. If range is missing, the domain of the
variables is restricted by context. Each instantiation of the
variables is substituted in exp, producing a multiset of values
to which op is applied, yielding the value of the three-part
expression. If no instantiation satisfies range, the value of the
expression is the identity element for op, e.g., true when op
is ∀ or zero if op is “+.” For each constraint in the pattern,
the tuple must have a field with the same name, the same type
or a derived type, and a value that satisfies the constraint.
The function requires that each constraint is satisfied, but it
does not require every field to be constrained. In enabling
coordination among distributed application components, it
is assumed that some meta-knowledge about the type and
representation of the context is shared among the components.
This assumption enables the model to be more flexible in
allowing any data types to be stored as context but makes
application development slightly more complex by leaving the
definition of a naming scheme to the developer.

C. The View Concept

A view is a projection of all data available to the reference
agent. An agent can define multiple views (which can be
redefined over time as needs change). In the remainder of
this section, we first define the view and the components
of its specification and behavior informally. We end with a
formalization of the view and its contents.

Declarative View Specifications. The view concept is
egocentric in that every view is defined with respect to a
reference agent and its needs for resources from its environ-
ment. An agent requests a view by providing a declarative
specification which controls the scope of the view (a larger
or smaller network neighborhood) and the size of the view
(the range of entities included). The former is accomplished
by providing constraints over the properties of the network,
hosts, and agents, while the latter is achieved through the
use of constraints on the data. For example, an automobile’s
collision avoidance agent might declare the following view:

All location data (reference to data) owned by col-
lision warning agents (reference to agents) on cars
(reference to hosts) within 100 meters (restriction of
the network neighborhood) of my current location
(property of the reference host).

Fig. 2 shows an evaluation of the declarative view specifica-
tion. The figure shows cars on a highway; the arrows indicate
their approximate movement patterns. The “X” represents the
reference agent. To simplify the picture, we assume only a
single agent per car. In the picture on the left, the reference
agent provides a restriction of the cars that participate in the
view. The center picture shows how data items (circles in the
picture) map to cars. Because the reference agent is interested
only in location data (black circles in the picture on the right),
the actual view contains only these data items.

Network Constraints. We extend the availability of context
information beyond a host’s immediate scope, i.e., a host can
gather context from a subset of the entire ad hoc network.

4

X

One View of One Agent
on Car Xon Each Car

Mobile Hosts and Data Highway Environment

Fig. 2. View used by a collision warning agent on car X

Doing so requires an abstraction of the network topology and
its properties. After specifying some constraints, including an
individualized definition of distance, an application desires a
qualifying list of acquaintances. That is,

Given a host α and a positive bound D, find the
set of all hosts Qα such that the cost of the shortest
path from α to each host in Qα is less than D.

To provide such an abstraction of the ad hoc network, we
use the Source Initiated Context Construction (SICC) protocol
and its network abstraction [23], [27], [39]. SICC provides an
abstraction of the network as a tree that contains only those
hosts that are within a specified distance from the reference
host, where the distance can be calculated via an application-
specified metric. Using this abstraction, applications delegate
responsibility for low-level communication and focus instead
on application-level adaptation and coordination. To use SICC,
the application agent must include three things:

• the mechanism for calculating the weight of a link,
• the cost function used to determine the cost of the path,
• and a bound on that cost function.

The computation results in a tree rooted at the reference node
and spanning a subnet of the network. The path to every
node satisfies the restrictions imposed by the cost function and
bound, and the tree is maintained as long as needed. As hosts
move, the properties defining the tree change, thus changing
both the contents and the topology of the tree. Building on
the automobile example from above, the network constraints
portion of the view specification would restrict context hosts
to only those within 100 meters.

Host Constraints. While the network constraints deal with
physical properties, the host constraints handle logical prop-
erties. Examples include the host’s id, the identity of the
device’s owner, or services the device provides. A host stores
the properties in a host profile, which is a special private tuple
where the fields of the host are attributes:

〈(att name, type, value), (att name, type, value), . . .〉

An example profile for a car might be:

〈(vehicle type, enumeration, car),
(direction, string , NORTH),
(speed , integer , 65)〉.

Host constraints are a pattern over this profile. For example,
the following constraints restrict the view to only vehicles

moving in the same direction at nearly the same speed:

〈(direction, enumeration, = mydirection),
(speed , integer , < myspeed + 2),
(speed , integer , > myspeed− 2)〉.

The example constraint does not restrict the type of vehicle
because that property does not interest the specifying host.
This constraint also refers to three local variables (that start
with “my,” which refer to values stored in the specifying
host’s profile. In Section VI-B, we show a complete example
in which such a specification is useful because it provides a
relatively consistently connected set of hosts.

Agent Constraints. Every agent defines another profile con-
taining agent properties. Providing constraints over agent pro-
files allows application agents to restrict the set of agents that
contribute data to the view. Restricting operations to one type
of agent or another increases the efficiency of coordination
by decreasing the number of parties involved. Revisiting the
car example from above, the agent profiles would be defined
similarly to the car’s profile above, but with agent properties
(e.g., the profile may contain a service of type traffic or
weather that the particular agent offers).

Data Constraints. In the same way that agent constraints
restrict the agents contributing to the view, the data constraints
restrict individual data items. The application agent simply
supplies a data pattern that all data in the view must satisfy.
The use of this constraint can be extended if an application
attaches “meta-data” by inserting extra fields in the applica-
tion’s tuples that can be used in matching data constraints.
With respect to the automobile example, the data constraints
could select only location data no more than 30 seconds old.

Transparent View Maintenance. Applications use the
above process to define views in a relatively static manner
(although applications are allowed to redefine views and
their constraints at any time). As hosts and agents move
and the available data changes, the view is automatically
updated. From the application’s perspective, these changes are
transparent and manifest themselves only in changes in the
set of available data. Therefore, an agent can operate over
a view without explicit regard for context dynamics. This
update occurs only at a perceptual level; views and the data
belonging to them are not actually calculated until or unless
an application uses the view. The overhead of constructing and
maintaining a view is incurred only when the application is

5

d1

d2

d1

d2

d1
d2

d3

d1
d2 d1

d2

a1

a2 a3

d3

a1

a2

h1

h2

d1

d1

d1d2

d2

d2

d3

a1
a3

a2

h3

h1 d1
d2
d1
d3h2

a1
a2

a1

Contents of a1's view

d1
d1

d1d2

d2

d2

d3

a1
a3

a2

h3

d1
d2

d1

d2

d1
d2

d3

d1
d2 d1

d2

a1

a2 a3

d3

a1

a2

h1

h2

d1
d1

d1d2

d2

d2

d3

a1
a3

a2

h3

h1 d1
d2
d1
d3h2

a1
a2

a1

h3 a2 d2
d3

Contents of a1's view

(a) (b)

Fig. 3. View dynamics.

actively using the view, but the application benefits from the
perception of a persistent data structure that reflects the view’s
current contents.

The dynamic nature of the view is illustrated in Fig. 3,
where the depicted view of agent a1 changes as the distance
between hosts h1 and h3 decreases. Hosts, agents, and data
that contribute to the view have darkened borders. In (a), due to
a1’s specification, only h1 and h2 qualify to contribute agents
to the view. Because of the restrictions on agent and data
properties, only certain data items on certain agents on these
hosts appear in the view. The balloon pointing to a1 shows a
table of the view’s contributors. In (b), when h3 moves closer
to h1, it satisfies the view’s constraints, and its qualifying
agents can contribute qualifying data.

Formal View Definition. Given the four types of con-
straints, a view specification consists of three patterns (over
data, agent profiles, and host profiles) and the network con-
straints (consisting of a link weight metric, a cost function,
and the function’s bound). Given these constraints, the view
is informally defined as the set of all tuples that satisfy the
data constraints, are owned by agents that satisfy the agent
constraints, and are located on hosts that satisfy the host
constraints. Finally, these hosts must lie within the boundaries
defined by the network constraints.

Given a reference host r, we define η, the subnet of the
network that satisfies the network constraints (n) to be a subset
of the closure of r’s network. η must be a tree, r must belong
to η, and η must satisfy n. Given the network constraints (n),
the host constraints (h), the agent constraints (a), and the data
constraints (d), a view specified by a reference agent r contains
the tuples defined by:

viewr(n, h, a, d ,) ,
〈set η, γ, α, θ : η ⊆ Closure(r) ∧ tree(η) ∧ r ∈ η ∧ η sat n

∧ γ ∈ η ∧M(γ.profile, h) ∧ α.loc = γ
∧M(α.profile, a) ∧ θ ∈ α.T ∧M(θ, d)
:: θ〉.

γ is a host, α is an agent, and θ is a tuple. α.T refers to the
agent α’s local tuple space. loc refers to an agent’s host. This
definition has been extended to allow agents to control access
to the tuples they own. For brevity, details have been omitted
from this paper, but the interested reader is pointed to [24]
for further details. Throughout the remainder of the paper, we
will refer to a view as ν.

IV. INTERACTING WITH VIEWS

An agent interacts with the world by specifying views that
are presented to the application as tuple spaces. This section
overviews the operations allowed within the view concept.

A. Basic Operations

Basic tuple space operations can be divided into two cate-
gories: tuple generation that places new tuples in the agent’s
local tuple space and on-demand access operations that allow
a reference agent to read and remove tuples in its views. These
operations and descriptions of their behavior are shown in
Table I; complete operational semantics can be found in [25].

B. Consistency Concerns

The above operations act over a view atomically, which
requires a transaction over all view participants. In some
applications (e.g., those involving money), this transactional

6

Operation Description
out(T, t) Places the tuple t in the agent’s local tuple space (designated, for completeness, as T).
t := rd(ν, p) Returns in t a copy of a tuple that satisfies the view ν’s specification and the pattern p. If no such tuple

exists in ν, the agent blocks until one does.
t := in(ν, p) Returns in t a tuple that satisfies the view ν’s specification and the pattern p, and also deletes the tuple

returned. If no such tuple exists in ν, the agent blocks until one does.
t := rdp(ν, p) Returns in t a copy of a tuple that satisfies the view ν’s specification and the pattern p. If no such tuple

exists in ν, ε (a null value) is returned.
t := inp(ν, p) Returns in t a tuple that satisfies the view ν’s specification and the pattern p, and also deletes the tuple

returned. If no such tuple exists in ν, ε (a null value) is returned.
tset := rdg(ν, p) Returns in tset the set of copies of all tuples that satisfy the view ν’s specification and the pattern p. If no

such tuple exists in ν, the agent blocks until one does.
tset := ing(ν, p) Returns in tset the set of all tuples that satisfy the view ν’s specification and the pattern p, and deletes the

tuples returned. If no such tuple exists in ν, the agent blocks until one does.
tset := rdgp(ν, p) Returns in tset the set of copies of all tuples that satisfy the view ν’s specification and the pattern p. If no

such tuple exists in ν, ε (a null value) is returned.
tset := ingp(ν, p) Returns in tset the set of all tuples that satisfy the view ν’s specification and the pattern p, and also deletes

the tuples returned. If no such tuple exists in ν, ε (a null value) is returned.

TABLE I
BASIC OPERATIONS ON VIEWS

Operation Description
t := rdsp(ν, p) Returns in t a copy of a tuple that satisfies the view ν’s specification and the pattern p. If no such tuple can

easily be found in ν, ε (a null value) is returned.
t := insp(ν, p) Returns in t a tuple that satisfies the view ν’s specification and the pattern p, and also deletes the tuple

returned. If no such tuple can easily be found in ν, ε is returned.
tset := rdgsp(ν, p) Returns in tset the set of copies of all tuples that satisfy the view ν’s specification and the pattern p.

If no such tuple can easily be found in ν, ε (a null value) is returned.
tset := ingsp(ν, p) Returns in tset all tuples that satisfy the view ν’s specification and the pattern p, and also deletes the tuples

returned. If no such tuple can easily be found in ν, ε is returned.

TABLE II
SCATTERED PROBING OPERATIONS ON VIEWS

behavior is required. From a different perspective, the pre-
viously discussed operations come with strict guarantees—
if a matching tuple (or tuples) exists in the view it (or
they) will be returned. In certain conditions, we can provide
such transactional guarantees, even in the face of mobility.
Section VII provides some performance characterizations that
demonstrate how well this assumption holds. As described
in more detail in Section V, transactional semantics can be
provided by relying on a second protocol that defines legal
links for “safe” communication. However, as the number of
participants increases, this can become costly and difficult. To
more efficiently accommodate applications that do not require
these strong guarantees, we introduce scattered probes that
provide a best-effort alternative.

Different implementations of scattered probes apply in dif-
ferent scenarios. The general intuition is a simple one-at-a-time
polling of agents contributing to a view. The operation keeps
track of which agents have been polled, and if it has covered
all contributing agents without finding a matching tuple, the
operation returns ε (or an empty set). Table II shows these
operations, their operational semantics can be found in [25].

C. Active Views

Using the previous constructs, to wait for a piece of data,
an agent must either block or poll, which prevents it from

performing other work. To provide expressive, application-
centered constructs, we augment the view model to integrate
transactions, reactions, and generic behaviors with views.
These new operations are summarized in Table III.

Transactions. Performing several operations sequentially
is not atomic because other operations can interleave. For
example, if an agent performs a successful rdp operation
and immediately attempts to in the same tuple, it may be
unsuccessful if another agent has, in the meantime, removed
the tuple. An application may want a sequence of operations
to be atomic with respect to other operations on the involved
views. To support this, we introduce transactions that must
explicitly specify the views over which they will operate,
and they are restricted to acting only on those views. In the
collision detection example, it may be imperative that if a car
is present, its current location is reflected in the tuple space.
In this situation, the car could use a transaction to remove an
old location and replace it with a new location as a single
atomic action (so that it never appears to any other car that
the location reading was not available).

Reactions. Coordination systems [7], [33] and publish-
subscribe systems [8], [14] have found the ability to react
to data essential for adaptation. In the highway example, an
application may react to the presence of a location tuple
that is “too close” as defined by application level properties.

7

Operation Description
T = transaction Performs the specified operations (op1, op2, . . .) as a transaction over the specified views

over v1, v2, . . . (v1, v2, . . .). Any attempt by the operations inside the transaction to use views not
begin op1, op2, . . . end included in the list results in an exception.

ρ = react to p Basic reaction triggered by the presence of a tuple matching the pattern p within the view
[remove] on which the reaction is registered (not shown). A basic reaction can remove (delete) the
[and out(tuple modifiers(τ))] basic trigger tuple, and/or output a permutation of the trigger using tuple modifiers.

ρ = react to p Extended reaction triggered by the presence of a tuple matching the pattern p within the
[remove] view on which the reaction is registered (not shown). In addition to optionally removing
[and out(tuple modifiers(τ))] the trigger and outputting a modified tuple, an extended reaction can include a transaction
extended by T (τ) that is executed in the same atomic step as the triggering. To ensure the behavior’s

atomicity, the trigger tuple must be local.
ρ = react to p Followed reaction triggered by the presence of a tuple matching the pattern p within the

[remove] view on which the reaction is registered (not shown). In addition to optionally removing
[and out(tuple modifiers(τ))] the trigger and outputting a modified tuple, a followed reaction can include a transaction
followed by T (τ) that executes after the triggering (but not in the same atomic step).

M = migrate p Migration moves any tuple matching the pattern p that appears in the view on which the
[tuple modifiers(τ)] behavior is registered. The trigger is moved to the agent that created the behavior,

altered according to the tuple modifiers.
D = duplicate p Duplication creates a copy of any tuple matching the pattern p that appears in the view on

[tuple modifiers(τ)] which the behavior is registered. The copy of the trigger is altered according to the
tuple modifiers and placed in the specifying agent’s local space.

E = event(p) Event registrations are triggered when a matching event occurs in the view on which the
followed by Te(τ) event behavior was registered. A single event tuple is generated for each registration. The

triggering of an event registration is followed by the specified transaction.

TABLE III
ACTIVE VIEW CONSTRUCTS

In the view model, a Basic Reaction associates a pattern
with actions to perform when a tuple in the view matches
the pattern. We further augment reactions to allow them to
execute a transaction in response to a trigger. An Extended
Reaction couples the triggering and response as a single atomic
action but, to ensure atomicity, requires that the trigger tuple
is local. A Followed Reaction treats the triggering and the
response as separate atomic actions, the implication being that
the triggering tuple may not be available to the responding
transaction. In all cases, each agent maintains a list of the
reactions registered on it on behalf of other agents. If the agent
leaves a view, the associated reactions are deregistered. If the
agent returns, the reactions are reregistered as new reactions,
which may cause them to fire again for data items that have
already been reacted to. Details of the three types of reactions
can be found in [26].

Behaviors. In our use of the basic model, we discovered
that many applications create generic behaviors using the basic
constructs. Capturing these behaviors as built-in programming
constructs reduces the programming burden in common cases
and provides powerful high-level abstractions that promote
reuse and reduce programming errors. We have classified three
such behaviors: automatic data duplication, data migration, and
event generation. The use of these behaviors enables novice
programmers to create applications that involve sophisticated,
repetitive coordination activities with minimal added overhead.

A mobile agent may want to collect data without explicitly
having to read each piece. When data consistency is important,
a common solution is data replication and associated replica
management, where copies of the data are kept consistent. This
solution is impractical in ad hoc environments where agents

carrying originals and duplicates meet unpredictably. Instead
of attempting to resolve this issue, we avoid the excessive
overhead of replica management by providing two alternatives:
data migration, in which only one copy of a tuple persists, and
data duplication, in which independent copies of data items
are made. The application is left with the responsibility of
managing consistency in these situations. Duplicated tuples
may match the view specification and be infinitely duplicated.
They may also appear in other agents’ views. Applications deal
with these concerns individually, e.g., by tagging all duplicates
and preventing duplication of tagged tuples.

All of the previously described constructs act over state.
Many applications also benefit from reacting to events. Events
include an agent’s arrival, another agent’s data access opera-
tions, etc. We introduce an event generation mechanism to
our model (see Section V), represent events as special tuples,
and register an agent’s interest in an event via patterns. To
allow multiple registrations for the same event yet prevent
superfluous event generation, we raise events only when a
matching registration exists. A unique event tuple is created
for each specific registration, and each callback consumes the
event tuple created for it.

V. EGOSPACES MIDDLEWARE

The programming constructs described above enable novice
programmers to build complex applications. In this section,
we describe EgoSpaces, the middleware that provides the
programming abstractions. Fig. 4 shows the middleware’s
high-level architecture. Gray boxes represent components we
assume to exist (message passing and the ad hoc physical
network) or components the programmer provides (the ap-

8

plication). White boxes represent pieces of our architecture.

Fig. 4. The EgoSpaces system architecture

A. Supporting Packages
To build EgoSpaces, we implemented three support pack-

ages that provide lightweight implementations of necessary
services.

1) Discovering Network Neighbors: In ad hoc networks,
all hosts serve as routers. To distribute messages, a host must
maintain up-to-date knowledge of its current neighbors. We
utilize a discovery service with periodic beaconing parameter-
ized with policies for neighbor addition and removal. The error
associated with neighbor knowledge is directly dependent on
the beaconing period. The impact of this error is explored in
detail in Section VII.

2) Monitoring Environmental Conditions: We developed
CONSUL [18], a general-purpose monitoring framework
which maintains a registry of sensors available locally and
on neighboring hosts (within one hop). An application tailors
CONSUL to its needed capabilities. As an example, to add a
location monitor, the application provides code that interacts
with, for instance, a GPS device. In general, a monitor contains
its current value (e.g., the value of a GPS monitor might be
represented by a variable of type Location) and allows
an application to access the value or react to changes. The
information EgoSpaces gathers from CONSUL is essential in
enabling communication to adapt to the changing context.

3) Defining Network Metrics: To provide network con-
straints, we use the SICC protocol [27], [39] to construct a
subnet of the ad hoc network based on network properties.
As it processes queries in a distributed fashion, SICC uses
local sensor information from CONSUL and the view’s metric
and bound to build a tree over the subnet of the network
that contains exactly the hosts that satisfy the view’s network
constraints. When the application accesses the view, the system
routes over this tree to service queries. The protocol also
maintains the tree as hosts move and paths change. The
protocol allows EgoSpaces to send messages to exactly the
hosts in the context, i.e., those hosts that contribute to the
view.

B. Application Interaction with EgoSpaces
EgoSpaces reduces programming context-aware mobile ap-

plications to simple operations tailored to novice program-

mers’ capabilities. An application developer extends the
Agent base class, which allows access to view specification
mechanics and communication capabilities.

public abstract class Agent {
protected final AgentID aID;
protected AgentProfile profile;
public Agent();
public AgentProfile getProfile();
protected final void register();
protected final void out(ETuple tuple);

}

Fig. 5. The API for the Agent class

1) Agent Extension: Fig. 5 shows the API of the abstract
Agent class. An application’s agent inherits two fields: the
unique AgentID and the AgentProfile. An AgentID
consists of the unique id of the host on which it was created
coupled with a counter incremented by that host. Even if the
agent moves within the network, it retains an id associated
with the host where it was first created. An agent’s profile
fosters coordination by allowing other agents to include or
exclude the agent from coordination based on its properties
(via agent constraints). Initially, the profile contains two fields
named “Agent ID” and “Host ID” that contain the AgentID
and the id of the agent’s host. An agent can add, remove, and
modify properties in its profile (except for the AgentID and
the HostID, which are controlled by the system).

In extending the Agent base class, an application agent
receives two methods. The first registers the Agent with the
local EgoManager which delegates responsibility for data
management and communication. The second method, out,
allows an agent to create tuples. When the agent is registered,
these data items are available for coordination.

2) View Definition and Use: Once registered with the
EgoManager, an agent can define views. The View API
includes a constructor, data access operations, and the ability
to enable behaviors. The constructor requires the agent to
provide the four constraints that define a view. The network
constraints are provided via a metric and bound as required
by SICC. Because EgoSpaces represents profiles as tuples, the
remaining constraints can be provided as patterns over tuples.
Once a View is defined, the reference agent sees it as the set of
data items that satisfy the restrictions and uses the constructs
discussed in Section III to access data.

C. EgoSpaces Implementation

Agent Registration and Migration. When an agent is cre-
ated, a data structure is initialized to hold any tuples the agent
creates. If the agent generates tuples via out operations before
it registers with the EgoManager, the tuples are placed in this
local storage. These tuples are not yet available for access by
other agents. When the agent calls the register method, the
EgoSpaces system registers the agent with the EgoManager,
and the contents of the agent’s local storage are placed in a
host-level tuple space. During the transfer to the host-level
tuple space, each tuple is annotated with the owning agent’s id.

9

We use a single host-level tuple space to reduce the overhead
of remote operations.

The registration mechanism described above reduces agent
migration to a few simple steps. Upon migrating, an agent is
deregistered from the current EgoManager. This moves the
agent’s tuples from the host-level tuple space to the agent’s
local storage. The agent’s code and state are then moved to
the destination host, where the agent is registered with the
local EgoManager.

View Creation and Maintenance. Any registered agent
can define views. For each view, the EgoManager uses
SICC to construct the subnet of hosts over which the view’s
operations are issued. The EgoManager only builds and
maintains views when operations are issued to avoid unneces-
sary communication.

View Operation and Agent Interaction. When the refer-
ence agent issues an operation on a View, the operation and
view constraint information are passed to the EgoManager,
which creates a dedicated operation thread for the request.
From this point, the steps necessary to implement each oper-
ation depend on the operation’s semantics.

Fig. 6. Sequence diagram of an in

Atomic Blocking Operations. Fig. 6 shows a sequence
diagram of an in operation. The calling thread blocks until
the operation thread finds a match. The operation thread uses
SICC to distribute a query to every host in the context, and
the query remains registered on those hosts until the operation
thread deregisters it. If new hosts move into the context while
the query remains active, they receive the query. Similarly, as
hosts move out of the context, the query is removed.

Two things can happen when the operation is registered.
First, a tuple in the host’s tuple space may immediately match
(not shown). If so, the context host notifies the operation
thread. If not, the context host stores the registration and
checks every tuple generated to see if it matches. When a tuple
matches the request, the context host reserves the matching
tuple for the requesting agent until either the operation thread
requests it be removed and returned or the query is deregistered
(indicated as the blackened period in Fig. 6). A match may

also be triggered by a new host with a matching tuple
moving into the view. When the operation thread receives
notification of a match, it sends a message to the owning
host to remove the tuple. It is possible that the operation
thread will receive multiple matches for an in; it chooses one
nondeterministically. Once the operation is ready to return, the
query is deregistered from all of the context hosts.

When a context host finds a match to a rd, it simply
returns it and waits for the operation thread to deregister the
query. Aggregate operations perform the same steps as their
counterparts, but to ensure they return all matching tuples,
when the operation finds the first match, it issues an aggregate
atomic probe to complete the operation.

Fig. 7. Sequence diagram of a rdp

Atomic Probing Operations. The sequence diagram in Fig. 7
shows a rdp. When the reference agent issues its operation,
the EgoManager spawns an operation thread; the reference
agent waits for a response. The operation thread first collects
the ids of the view’s hosts using a SICC query. Every host in
the context responds with its id and the ids of its children in
the tree. The EgoManager on the reference agent’s host uses
this information to ensure that it hears from every contributor
before continuing. At this point, the set of hosts for the
operation is fixed. If new hosts move into the view, their
addition is delayed until this operation completes. Once the
operation thread has gathered the ids of all context hosts,
it locks them in order of increasing id. Locking a tuple
space prevents other threads from modifying the tuple space’s
contents; ordered locking prevents deadlock. When a host
receives a locking request, it waits until its tuple space is not
locked by another thread, then returns positively.

The need for locking is not immediately obvious. Consider
the case shown in Fig. 8, in which four tuple spaces contain
tuples in the reference agent’s view. The ellipse inside each

10

Fig. 8. Locking example

tuple space contains the tuples that satisfy the view constraint.
The black tuples also satisfy the operation’s template. In this
figure, the operation queries the tuple spaces for matching
tuples in order without locking them; the outlined rectangle
indicates the tuple space being queried. In part (a), the
operation queries Host 1. Being unsuccessful, the operation
thread then queries Host 2 (part (b)). At the same time, a
different operation moves tuple x from Host 3’s tuple space to
Host 1’s tuple space. In part (c), because the operation thread
did not find a matching tuple, it queries Host 3, while the
tuple y is moved to Host 2. The operation thread finds no
match at Hosts 3 or 4. This violates the operation’s semantics
because a match existed for the duration of the operation.

After locking every host in the context, the operation thread
requests a matching tuple from each host in order. For the rdp,
as soon as the operation thread finds a single match, it returns
the tuple. For an inp, the operation thread returns the first
match, but also removes the matching tuple. For aggregate
operations, the operation thread must query every host tuple
space instead of halting once it finds a match.

Scattered Probing Operations. These operations provide
weaker semantics than the previous two in that the operations
are allowed to miss matching tuples in the view. That is, the
case shown in Fig. 8 is acceptable. The weakened semantics
of these operations allow more efficient implementations. The
sequence of events in executing a scattered probing operation
follows those of an atomic probing operation, without the need
to lock the context hosts. Thus, context hosts are active only
while responding directly to the operation thread.

Transactions. A transaction operates over several views. As
such, transactions are inherently costly. EgoSpaces reduces
this cost by requiring a reference agent to explicitly declare
which other agents need to be locked for the transaction by
providing a list of views. Because the agents contributing to
each view are known, EgoSpaces can lock the transaction’s
participants (including the reference agent) in order (by id).
If a new agent moves into the view while a transaction is in
progress, its arrival is ignored until the transaction completes.
If a contributing agent moves out of the view while a trans-
action is locking agents, it is unlocked before departing. If
the transaction’s operations are already executing, the agent’s
departure must be delayed until the transaction completes.
We guarantee enough time to complete the transaction before
the agent disappears from communication range using safe
distance [22]. The latter is defined as a function over the speed
and direction of the nodes involved in the communication

and the maximum time necessary to complete a requested
transaction. If transactions can have longer durations, the safe
distance that defines allowable network links becomes shorter.

Reactions. Because reactions are the core of the EgoSpaces
behaviors, an efficient implementation is essential. This imple-
mentation is similar to blocking operations with added book-
keeping for maintaining the registrations. Each agent keeps
a reaction registry (containing all reactions it has registered)
and a reaction list (containing all reactions this agent should
fire on behalf of other agents, including itself). A reaction
registry entry contains a reaction’s id, the tuple to output when
the reaction fires (if any), and the transaction that extends or
follows this reaction (if any). A reaction list entry contains
the reaction issuer’s id, the reaction’s pattern, the view’s data
pattern, and a boolean indicating whether or not to remove
the trigger. Upon registration, the reaction is inserted in each
view participant’s reaction list. For all matching tuples, the
reaction fires, sending a notification (containing a copy of
the trigger) to the registering agent. If specified, the tuple
is deleted. As long as the reaction remains enabled, new
tuples are checked against the pattern. For each match, the
registering agent receives a notification and locates the reaction
in its reaction registry. If necessary, it performs the appropriate
out operation and schedules any associated transaction. In

BA

lower priority
reaction

reaction that
removes trigger

extended by

followed by

t n
(only possible if A=B)

(always possible)

transaction 2

transaction 1

C

Fig. 9. The Reaction Mechanism

Fig. 9, agents B and C register reactions, which both match
t. The reaction with the highest priority (B’s reaction) fires
first, generating notification n. Because this reaction removes
t, C’s lower priority reaction will not fire. B’s reaction can
be extended or followed by a transaction. The former is only
allowed when the trigger is local (i.e., A=B). As agents move
out of the view, they remove information regarding registered
reactions. If these agents return, they receive the registrations
and fire the reactions again for matching tuples.

Behaviors. Because the semantics of behaviors are written
as reactions (see [26]), their implementations rely on the
reaction’s implementation. We build these behaviors into the
system to provide common actions as simple operations and
to allow for code encapsulation and reuse.

Event Generation. To implement event capture, we add an
event raising mechanism. Each type of event has a defined
string (e.g., hostArrival) and some secondary information (e.g.,
the HostID for a host arrival event). Upon generation, special
event tuples are created for each registered agent, and these
tuples are transmitted to the agent and trigger the event’s
callback.

11

VI. SIMPLIFYING APPLICATION DEVELOPMENT

The best demonstration of the middleware’s ability to ease
context-aware application development is by example. We
present three applications that show different uses of the view
concept in varying application domains.

A. Emergency Vehicle Warning System

Our first application warns cars of nearby emergency vehi-
cles. When a driver needs to clear the road for the emergency
vehicle, a light on the dashboard turns on.

View Definition. Key to this application is the ability to
notify the car in time for it to give way for the emergency
vehicle. The car’s view constraints are:

• Network constraint. The network is restricted based on
physical distance between hosts.

• Host constraint. Only emergency vehicles’ hosts con-
tribute to the view.

• Data constraint. The view contains only emergency warn-
ing tuples.

Agent Interaction. An emergency vehicle creates a tuple
when it turns its siren on and removes the tuple when it turns
its siren off. The access controls for the emergency vehicle
prevent any other agent from removing the warning tuple
(i.e., no in operations are allowed except by the emergency
vehicle’s agent).

A car issues a rd operation on its view. This operation
will match any warning tuple and blocks until a warning
tuple appears in the view, indicating an emergency vehicle’s
presence, at which time, the light on the dashboard warns
the driver. The application can probe the view (with periodic
rdp operations) to wait for the disappearance of the warning
tuple. After the emergency vehicle has passed, the application
can reissue the rd, and the driver can continue. If multiple
emergency vehicles appear, this implementation ensures that
the driver remains pulled over until all emergency vehicles
have passed.

Lessons Learned. The key to successful implementation of
this application lies in the definition of the view. Because both
the cars’ and the emergency vehicles’ speeds are variable, the
scope of the view depends on their velocities. Given a well-
defined view, the application agent’s minimal interaction with
EgoSpaces involves only simple view operations. The car is
guaranteed to be notified as soon as possible of the approach of
an emergency vehicle. Notification that the emergency vehicle
has departed may not be as timely. This latter behavior could
be further accomplished using the reactive constructs.

B. Subscription Music Service

The second application enables music sharing on a network
of cars. Users subscribe to a music service which allows
them to share music with other subscribers they meet on the
highway. The application allows a user to manage his music
files, search a region of the highway for music, and download
files. If a download only partially succeeds, the application
remembers the user’s desire for the song, and, when the file
is encountered again, the download picks up where it left off
and completes. Fig. 10 shows the user interface.

Fig. 10. The subscription music service

View Definition The constraints the user can manipulate
include:

• Network constraint. The span of the view is defined by
network hops.

• Host constraint. Restricting the hosts to those traveling
in the same direction provides stability in the view’s
contents, making successful downloads more likely.

• Data constraint. The user can limit potential downloads
based on file size.

The following code builds the data constraint based on the
file size, where LTConstraint requires data items to have
values in the size field less than maxSize:

LTConstraint lt =
new LTConstraint(new Integer(maxSize));

EConstraint ec =
new EConstraint(‘‘Size’’,

Integer.class, lt)
dc.addConstraint(ec);

EConstraint builds a pattern over tuples; dc represents the
set of patterns that define the agent’s data constraints.

Agent Interaction. The application represents each song in
multiple tuples. One tuple holds information about the song,
and multiple additional tuples hold the song data. The data
is divided into multiple tuples to facilitate the ability of the
application to continue interrupted downloads. The following
code generates an information tuple:

12

ETuple song = new ETuple();
song.addField(new EField("Filename",

file));
song.addField(new EField("Title",

title));
song.addField(new EField("Artist",

artist));
song.addField(new EField("Album",

album));
song.addField(new EField("Size",

size));
song.addField(new EField("Length",

length));
out(song);

To perform searches, the user enters restrictions in the
search panel, which the application constructs into a template.
The user can select a file based on its title, artist, or album.
Because a music subscription service does not require atomic-
ity guarantees, we use scattered probing operations. To query
the view, the agent uses the following code:

ETemplate t = new ETemplate();
t.addConstraint(titleConstraint);
t.addConstraint(artistConstraint);
t.addConstraint(albumConstraint);
ETuple[] results = searchView.rdgp(t);

Lessons Learned. Using the view abstraction and co-
ordination constructs, EgoSpaces allows the programmer to
focus on how the music subscription application uses the
information collected instead of having to explicitly discover
and communicate with other agents in the network.

C. Collaborative Puzzle Game

The final application demonstrates how EgoSpaces can
be useful to cooperative work applications. In this example,
several users collaborate to complete a distributed puzzle.
Fig. 11 shows the screens of two puzzle participants.

View Definition. This application uses the view constraints
to limit the amount of data displayed based on properties of the
puzzle. This view is logical and can be as simple as to contain
only data constraints. The specific constraints used depend on
a particular user’s goals; as one example, the view might be
defined to contain only edge pieces. An example of such a
data constraint is:

EqualConstraint e =
new EqualConstraint(new Boolean(true));

EConstraint ec =
new EConstraint(‘‘edgePiece’’,

Boolean.class, e);
dc.addConstraint(ec);

The EqualConstraint function included in EgoSpaces
requires the field’s value to equal the designated value.

Puzzle players may find many different view definitions
useful. If players have an idle status, a player might define
a view that contains only pieces owned by idle players. If a
player is facing a hole of a certain shape, he might specify

his view to contain only the partially assembled piece he is
working on and any pieces that are the shape of the hole.

Agent Interaction. The pieces of the puzzle are represented
by tuples in the data space of the agent initializing the puzzle.
Each agent (a player in the puzzle game), can define views
that determine which puzzle pieces are displayed at a given
time. A user can select a piece by clicking on it. When the user
does so, the tuple corresponding to the puzzle piece is moved
to user’s local data space. To all users, this change appears as
a change in the color of the border of the displayed puzzle
piece. Players can assemble their pieces, and these changes
are reflected in the displays of connected players.

When a user defines a different view, his display changes.
For example, if the user defines a view to contain only edge
pieces, all of the interior pieces are hidden (the view at the
left of Fig. 11). Changes made by the player on the left are
displayed to the player on the right, but the reverse is not
necessarily true. This is because the player on the right may
make changes that affect only interior pieces not included in
the other player’s view.

Lessons Learned. In the previous two application scenarios,
the view definitions were based on obvious notions of distance
and relative location. In this example, we see that the same
abstractions can be used to define logical views in smaller
scale networks. In the puzzle game only properties of the data
or agents matter. Other applications that involve cooperative
work by distributed parties can be implemented in a similar
way. If the collaborative project does span a large-scale
network, the application can be extended to account for the
relative locations of the data items.

VII. PERFORMANCE EVALUATION

EgoSpaces’s goal is to simplify the development of context-
aware mobile applications. While the programming interface
and its use described in the previous sections are important to
this goal, the performance of the middleware must also be a
concern to ensure that the overhead associated with using the
middleware is not detrimental to applications’ operations. In
this section, we quantify the performance characteristics of the
operations described in Section IV under varying environmen-
tal and application conditions. The goal of this evaluation is to
provide application developers that use EgoSpaces information
about the performance they can expect from the middleware
and the overhead of employing, for example, operations with
transactional semantics.

A. Simulation Settings

For the purposes of this evaluation, we used the open source
OMNeT++ discrete event simulator [44] and its mobility
framework extension [29]. All of the results we report are
for 50 node networks in which the nodes are dispersed in
a rectangular area of size 3000x600m2. The nodes move
according to the random waypoint mobility model [6], in
which each node is initially placed randomly in the space,
chooses a random destination within that space and moves in
the direction of the destination at a given speed. Once the node
reaches the destination, it pauses for a specified interval (the

13

Fig. 11. Two views of a puzzle game

pause time) then repeats the process. In all of our simulations,
we use a pause time of 0 seconds to provide relatively dynamic
networks. We used the 802.11 MAC protocol with a bandwidth
of 1Mbps. The results we present here are for simple views
whose network constraints are based on a hop count metric,
but, because the packets carry all information for calculating
views with them, simulating views based on other properties is
straightforward. We chose the simple metric for presentation
purposes because it makes the views and their scopes easier
to visualize. In addition, because more of the overhead of
view construction is dependent on the communication costs
than on computation costs, a hop count-based view provides
more generalizable results. Data availability was modeled
randomly as each node having a 10% probability of possessing
a requested data item. Queries were assumed to consume
no more than 64 bytes (including the constraints and the
operation’s pattern), and the data carried in the reply was
assumed to fit in 1024 bytes. All results below are reported
with 99% confidence intervals.

B. Comparing Operations with Differing Semantics

Our first set of results compares basic performance metrics
for the six standard operations: rd, in, rdp, inp, rdsp, and
insp. The evaluation of these basic operations can be gener-
alized to express the performance of the more sophisticated
operations as well. In the worst (i.e., most expensive) case,
a transaction is a sequence of atomic probing operations,
and the performance for a transaction is the aggregation of
the performance for the operations that it comprises. Our
implementation of a reaction is based on the implementation
of the atomic blocking operations (in fact, a reaction is
implemented as an atomic blocking operation augmented with
additional bookkeeping and persistence). Finally, as described
in Section V, behaviors (i.e., migration, duplication, and event
capture) have been implemented as reactions.

For this initial set of simulations, we set the node speed to
be 20m/s (a fairly dynamic scenario; equivalent to automobiles
on a city street). The host constraints and agent constraints
were unrestrictive and, as indicated above, each agent had a
10% chance of having the requested data item. The network

constraints defined a cost function based on hop count with
a bound of two hops (i.e., any host within two hops of the
reference agent was included in the view). For each data point,
50 runs lasting 900 seconds were performed. In each run,
five hosts were randomly selected to be requesters, and they
issued a new operation every half second. This is a high-
level of traffic when considering a user’s interaction with
an application, but corresponds to an application that may
periodically monitor a condition in its environment (e.g., the
positions of nearby automobiles). In the case of the blocking
operations, the operation was registered for the full half
second, when it was deregistered and a new operation was
issued. While the operation remains registered, the view is
maintained, though no new data items are introduced during
the registration, so a blocking operation is never unblocked.

Fig. 12(a) shows the operation latency for the six operations.
In the case of the probing operations (both scattered probes
and atomic probes), the time reported is the time to return a
result, whether it be the actual data or a null value. In the case
of the blocking operation, the average reflects only instances
when the data was actually available, ignoring cases when
the operation did not return a result before the application
canceled it. The in(∗) operations take slightly longer than
the rd(∗) operations because they require an extra round of
communication between the requester and the data provider to
ensure that the data item is removed. As expected, the atomic
operations take significantly more time to complete than the
scattered probing operations, but, perhaps surprisingly, the
atomic probing operations take more than twice as long as
the blocking operations. This is due to the fact that, to be
able to reliably return a null value assuring the application
that the data item did not exist, an atomic probe must perform
a two-phase commit protocol. These transactional semantics
are expensive, but, as discussed previously, necessary for
some applications. A final thing to notice about Fig. 12(a)
relates to the expense of an EgoSpaces transaction. Recall
that a transaction can be made up of any sequence of non-
blocking operations. Given the results displayed in the figure,
a transaction consisting of five dependent operations (meaning
each operation must wait for the previous one to finish before

14

 0

 0.02

 0.04

 0.06

 0.08

 0.1

inrdinprdpinsprdsp

A
ve

ra
ge

 la
te

nc
y

of
 r

es
po

ns
e

(s
ec

on
ds

) operation latency (s)
99% confidence intervals

 0

 500

 1000

 1500

 2000

inrdinprdpinsprdsp

N
or

m
al

iz
ed

 o
ve

rh
ea

d
(b

yt
es

)

overhead per operation (bytes)
99% confidence intervals

(a) (b)

Fig. 12. (a) Operation latency for the six single operations in EgoSpaces (in seconds). (b) Overhead per operation issued for each operation type (in bytes).

being issued) takes less than half of a second. For applications
that demand this added consistency, this latency represents a
reasonable tradeoff for the strengthened semantics.

Fig. 12(b) shows the amount of overhead (in bytes) gener-
ated for each request that is sent. In counting the overhead,
we counted everything except the one-way transmission of
the data item. Also, each propagation of the same packet is
counted as another packet of overhead. What is important,
then, in this characterization, is not necessarily the number
assigned to the overhead but the relationship between the
overhead for different operations. First, as in the latency, the
overhead for the in(∗) operations is slightly larger than for
the rd(∗) operation because the former require extra control
communication to confirm the removal of a data item. The
overhead for the atomic operations is greater than for the
non-atomic because they require a beaconing mechanism that
enables each node to keep track of its neighbors. The effect
of the beacon interval on overhead is explored in more detail
below. For the probing operations, the beacon is used to
ensure the transactional semantics (i.e., to ensure that every
participant in the view has been queried before returning).
In the blocking operations, the beacon ensures that nodes
moving into the view are notified of an operation while nodes
moving out of the view can remove the operation. As above,
the overhead for a transaction is dependent on the number
of operations it comprises, and the overhead of a reaction is
similar to the blocking operations.

C. Impact of Environmental and Network Factors

To be able to perform transactions on changing views and
to maintain views as they change over time, it is necessary
for hosts to have an up-to-date knowledge of its neighboring
(one-hop) nodes. This is accomplished through a beaconing
mechanism in which each node periodically broadcasts a
“hello” message. Nodes that hear other nodes’ beacons add
them to their neighbor lists. After not hearing a node’s beacon
for three beacon intervals, a node removes the departed node
from its neighbor list.

Fig. 13 shows two measurements on the same graph. The
simulation settings are the same as above, and a rdp operation
was used to generate these results. First, the dashed line
indicates how the measured overhead changes with changing
beacon interval. Not surprisingly, as the beacon interval in-
creases, nodes send fewer beacons, so less overhead traffic
is generated. This decrease in overhead comes at a cost,
however, with respect to the consistency guarantees that can
be provided. The solid line measures the degree with which
EgoSpaces could guarantee the consistency of an atomic
operation. The distance of this line from 1 indicates the
percentage of times that a rdp operation had to abort, i.e., it
could not return a data value, but it could also not guarantee
that one did not exist. For example, with a beacon interval of
one second, 91.5% of rdp operations completed successfully
(either with a matching data item or with a guaranteed null
value). The value compounds in a transaction consisting of
multiple atomic probes; a transaction of five dependent rdp
operations would complete successfully only 64.1% of the
time. This value decreases with increasing beacon intervals
due to the fact that the neighbor lists are increasingly in-
consistent. Two other important points should also be noted.
First, in inp operations, we did not encounter any instances
in which a discovered data item could not subsequently be
removed. Second, every time the consistency assumption was
not met (even in inp operations), it was possible to notify
the application and rollback the operation. However, the same
would not necessarily be true in a transaction consisting of
multiple operations. These simulations did not incorporate
the safe distance algorithm [22] described earlier. Doing so
would further restrict the size of the view but provide greater
reliability to the application.

We next evaluate the scalability of the view with respect to
increasing the size of the view (i.e., the number of participants
in the view). Fig. 14 compares a view’s size (in number of
hops) along the x-axis to both the latency of operations issued
on the view (in this case, rd operations) and the overhead
incurred in both issuing the request, and, in the case of the
rd operation shown, maintaining the view until the request is

15

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 0.5 1 1.5 2 2.5 3 3.5 4

 1

 0.95

 0.9

 0.85

 0.8

 0.75

N
or

m
al

iz
ed

 o
ve

rh
ea

d
(b

yt
es

)

pe
rc

en
t a

to
m

ic
ity

 h
ol

ds

beacon interval (seconds)

percent atomicity holds
overhead per packet (bytes)

99% confidence intervals

Fig. 13. The tradeoff between guaranteed consistency and overhead for
changing beacon intervals (for rdp operations).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5 4 3 2 1

 5000

 4000

 3000

 2000

 1000

 0

A
ve

ra
ge

 la
te

nc
y

of
 r

es
po

ns
e

(s
ec

on
ds

)

N
or

m
al

iz
ed

 o
ve

rh
ea

d
(b

yt
es

)

Context size (number of hops)

operation latency (s)
overhead per operation (bytes)

95% confidence intervals

Fig. 14. The relationship between the size of the view and the latency of
the operations (solid line) and the overhead incurred (dashed line).

satisfied or canceled. The latency of the operation increases
significantly from the one-hop case to the multi-hop case,
but only marginally thereafter. This is due to the fact that
the one-hop case requires only a single broadcast, while the
multi-hop cases require the request to be rebroadcast, resulting
in interference and the need for the lower protocol layers
to backoff to ensure message delivery. The overhead for
distributing view requests increases a bit faster than linearly,
but the increase is proportional to the increasing number of
view participants.

Our final measurements, shown in Fig. 15, compare the
impact of changing the average node speed on the overhead
of issuing operations. We use a blocking operation (rd) for
this measurement since it requires maintaining the view until
a matching data item is found or the operation times out
(whichever is first). In this example, the view’s size was
still two hops, but we varied the duration of the registration
between .5 seconds (the value used above) and 60 seconds
(indicating a significantly longer registration, and therefore a
significantly longer portion of time over which the operation
remained registered). Fig. 15(a) compares the overhead for
the two registration durations. As expected, a longer duration

registration incurs significantly more overhead. In both cases,
the overhead associated with maintaining the view while the
operation is registered increases as the speed of the nodes
increases (i.e., as the network becomes more dynamic), but
the increase is very gradual. Fig. 15(b) shows the same
information, but amortizes the overhead incurred over the
duration of the registration. In this case, the overhead for
a longer duration registration is much lower than for the
short registration, indicating that most of the overhead stems
from the initial multicast, and the subsequent overhead of the
distributed algorithm that maintains the view is comparatively
small.

The view concept’s use of asymmetric coordination repre-
sents such a significant deviation from existing coordination
mechanisms that it is difficult to compare its performance to
alternatives. Through this evaluation, we have shown that our
implementation of the view concept is manageable within rea-
sonable traffic and mobility assumptions. In addition, Fig. 15
shows that the maintenance aspect of the view is inexpensive
in comparison to distribution of multicast messages over
a dynamic network, which is the approach that underlies
most other coordination approaches. We have also shown that
maintaining the consistency assumption required for providing
atomic operations is feasible to a certain extent, with two
benefits worth repeating. First, when the atomicity assumption
does fail for a particular operation, the application can be
notified, and, for single operations, data was never left in an
inconsistent state (i.e., the removal portion of an in operation
never failed). Second, combination of the view’s construction
mechanism with our consistent group membership can guaran-
tee consistency for transactions of a longer duration, but may
require further restricting the view’s participants according to
the calculated safe distance.

VIII. RELATED WORK

Our experiences and the above applications have shown that
EgoSpaces’s programming abstractions dramatically simplify
the development of mobile applications. These abstractions are
founded on the observation that representing the dynamic en-
vironment through an egocentric data structure allows natural
interactions for any novice programmer and reduces the need
for complex and error-prone network programming.

EgoSpaces is not the first programming environment to
use such abstractions for mobile computing. LIME [33] aims
to simplify the software development process and has been
shown to facilitate context interactions [32]. LIME enables mo-
bile coordination by abstracting communication into a global
virtual data structure, the tuple space. At any instant, a device’s
perception of the world is through this tuple space which con-
tains the data available on all connected devices. LIME requires
strong assumptions about the operating environment that fail
to hold as the number of devices, connections, and the degree
of mobility grows. Limone [15] centers the coordination tasks
around acquaintances, and knowledge of specific coordinating
partners is essential to Limone’s functionality. EgoSpaces, on
the other hand, takes a device agnostic view, favoring complete
abstraction of the network and its devices in to the available
context or data items.

16

 0

 2000

 4000

 6000

 8000

 10000

 30 25 20 15 10 5 0

N
or

m
al

iz
ed

 o
ve

rh
ea

d
(b

yt
es

/o
pe

ra
tio

n)

Average node speed (m/s)

overhead per operation (bytes) 500 millisecond registration
overhead per operation (bytes), 60 second registration

99% confidence interfals

 0

 500

 1000

 1500

 2000

 2500

 30 25 20 15 10 5 0N
or

m
al

iz
ed

 o
ve

rh
ea

d
(b

yt
es

/o
pe

ra
tio

n/
re

gi
st

ra
tio

n
se

co
nd

)

Average node speed (m/s)

overhead per operation per registration second (bytes) 500 millisecond registration
overhead per operation per registration second (bytes) 60 second registration

95% confidence intervals

(a) (b)

Fig. 15. (a) Overhead per rd operation for varying node speed (in bytes) (b) Normalized overhead per rd operation per second of registration (in bytes).

Reactive tuple space approaches like MARS [7], TuC-
SoN [34], and TOTA [30] augment tuple spaces with reactive
capabilities. Mars and TuCSoN focus on coordination among
co-located mobile agents but do not enable coordination
across the networks, requiring agents to move to hosts where
resources are located to perform their computation. TOTA pro-
vides an alternative to EgoSpaces, but instead of EgoSpaces’s
egocentric pull-based interactions, TOTA propagates tuples
away from a reference node based on context properties, in
a manner similar to content based multicast [50].

Recent middleware have been developed to enable the
rapid development of pervasive or ubiquitous computing ap-
plications. GAIA [41] introduces Active Spaces as immersive
computing environments for context-aware applications. Users
move from one Active Space to another, seamlessly integrating
into new spaces. GAIA functions in small networked envi-
ronments where the available resources in the space can be
centrally managed by a kernel. This approach does not map
well to large-scale applications in mobile ad hoc networks that
necessitate an entirely decentralized solution. CORTEX [45]
proposes an infrastructure for context-awareness in nomadic
mobile environments and focuses on quality of service guar-
antees within a region of the network. Similarly, Solar [10]
provides an infrastructure to support context acquisition and
operation for nomadic wireless networks. The goals of these
systems are in line with our goals—to support large-scale
mobile computing—but the target environment differs in that
the solutions apply only to nomadic networks.

While EgoSpaces abstracts all of the context as data items
stored in a distributed tuple space, other context-aware mid-
dleware approaches use the service abstraction to represent
available resources. Context-aware resource bindings update
the connections between clients and services as processing or
environment dictates [4], [28]. Context-sensitive bindings [19],
[40] use a follow-me session to transfer a service connection
from one provider to another. This approach builds on the
EgoSpaces notion of an asymmetric definition of context.
Service-oriented network sockets [42] provide a similar ab-
straction but use existing service discovery mechanisms to

gather all matching services locally before deciding which
services to connect to. This can incur significant amounts of
overhead in environments that are highly dynamic. iMash [2]
presents a dynamic application session handoff scheme that
relies on a knowledgeable intermediary to handle service
switches on behalf of applications. Similarly, Atlas [12] uses
a central server to mediate the transfer of a service binding
from one provider to another.

A complementary approach to coordination relies on event
based interactions. Context-aware publish subscribe sys-
tems [5], [8], [13], [14], [31], [48] generate events and prop-
agate them through the network towards matching subscrip-
tions. EgoSpaces’s event generation mechanism is analogous
to these approaches, yet it allows an application to express
its interest in an event based on the view concept, further
restricting the network over which a subscription must be
propagated.

Other middleware approaches adapt services within the
infrastructure to changing context properties, allowing appli-
cations to become relatively ignorant of the restrictions their
environment might impose. MobiPADS [9] employs adaptive
fidelity techniques to tailor services based to a particular
device’s capabilities or network properties like available band-
width. CARMEN [3] uses mobile agents that track client
devices, providing customized services based on user profiles
and environmental conditions. ReMMoC [17] similarly at-
tempts to simplify the development of applications that rely on
distributed services by unifying the discovery and interaction
mechanisms through a single web-services based interface.
Satin [49] uses encapsulation and component mobility to
dynamically reconfigure services to adapt to applications’
changing needs on-demand. These approaches have a signif-
icantly different goal than our work. EgoSpaces focuses on
enabling applications to adapt to changes while these systems
place the adaptation in the middleware, making the application
and user experiences the same regardless of the environment.

In addition to the differences highlighted above, EgoSpaces
focuses specifically on enabling context-aware coordination
through data sharing. Our approach chooses to abstract avail-

17

able context information into a data structure that we allow ap-
plications to access and respond to. We have explicitly favored
application-awareness over transparency in an effort to enable
applications to dynamically respond to their environments in
manners that are tailored to the applications’ instantaneous
needs.

IX. CONCLUSIONS

This paper describes a simplified application development
process for programmers in mobile ad hoc networks. The
investigation began with a careful study of emerging appli-
cations and the classification of these needs into a redefinition
of context-awareness. Given the lessons learned from this
exploration, we built a conceptual model of mobile applica-
tions. The use of context-awareness within mobile computing
and for the purpose of simplifying development for novice
programmers has shown significant promise. It is coupled
with the introduction of asymmetric coordination (via the view
construct). The need for asymmetry is based on the observation
that mobile applications tend to be egocentric in that they
define their needs from the environment independent of the
needs of other applications. The usefulness of the EgoSpaces
middleware has been demonstrated through the successful and
simple construction of dynamic applications from varying do-
mains and its performance characterized through simulation.

ACKNOWLEDGMENTS

The EgoSpaces prototype implementation and further doc-
umentation are available at http://www.ece.utexas.
edu/˜julien/egospaces.html. This research was sup-
ported in part by the National Science Foundation under Grant
No. CCR-9970939 and by the Office of Naval Research MURI
Research Contract No. N00014-02-1-0715. Any opinions,
findings, and conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect
the views of the sponsoring agencies.

REFERENCES

[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinker-
ton. Cyberguide: A mobile context-aware tour guide. ACM Wireless
Networks, 3(5):421–433, October 1997.

[2] R. Bagrodia, S. Bhattacharyya, F. Cheng, S. Gerding, R. Guy, Z. Ji,
J. Lin, T. Phan, E. Skow, M. Varshney, and G. Zorpas. iMASH:
Interactive mobile application session handoff. In Proc. of the 1st Int’l.
Conf. on Mobile Syst., App., and Services, pages 259–272, May 2003.

[3] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Context-aware
middleware for resource management in the wireless internet. IEEE
Trans. on Software Eng., 29(12):1086–1099, December 2003.

[4] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Dynamic
binding in mobile applications. IEEE Internet Comput., 7(3):34–42,
2003.

[5] R. Boyer and W. Griswold. Fulcrum: An open-implementation approach
to internet-scale context-aware publish/subscribe. In Proc. of the 38th

Hawaii Int’l. Conf. on System Sciences, 2005.
[6] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A

performance comparison of multi-hop wireless ad hoc network routing
protocols. In Proc. of the ACM/IEEE MobiCom, pages 85–97, October
1998.

[7] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable
coordination architecture for mobile agents. Internet Comput., 4(4):26–
35, July–August 2000.

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation
of a wide-area event notification service. ACM Trans. on Computer
Syst., 19(3):332–383, August 2001.

[9] A. Chan and S.-N. Chuang. MobiPADS: A reflective middleware
for context-aware mobile computing. IEEE Trans. on Software Eng.,
29(12):1072–1085, December 2003.

[10] G. Chen and D. Kotz. Solar: An open platform for context-aware mobile
applications. In Proc. of the 1st Int’l. Conf. on Pervasive Comput., pages
41–47, March 2002.

[11] K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou.
Experiences of developing and deploying a context-aware tourist guide:
The GUIDE project. In Proc. of the 6th Int’l Conf. on Mobile Comput.
and Networking, pages 20–31, August 2000.

[12] A. Cole, S. Duri, J. Munson, J. Murdock, and D. Wood. Adaptive service
binding middleware to support mobility. In Proc. of the ICDCS Wkshps.,
pages 396–374, May 2003.

[13] P. Costa and G. Picco. Semi-probabilistic content-based publish-
subscribe. In Proc. of the 25th Int’l. Conf. on Dist. Comput. Syst.,
pages 575–585, June 2005.

[14] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based
infrastructure and its application to the development of the OPSS
WFMS. IEEE Trans. on Software Eng., 27(9):827–850, September 2001.

[15] C.-L. Fok, G.-C. Roman, and G. Hackmann. A lightweight coordination
middleware for mobile computing. In Proc. of the 6th Int’l. Conf. on
Coordination Models and Languages, February 2004.

[16] D. Gelernter. Generative communication in Linda. ACM Trans. on
Programming Languages and Syst., 7(1):80–112, January 1985.

[17] P. Grace, G. Blair, and S. Samuel. A reflective framework for discovery
and interaction in heterogeneous mobile environments. ACM SIGMO-
BILE Mobile Comput. and Commun. Review, 9(1):2–14, January 2005.

[18] G. Hackmann, C. Julien, J. Payton, and G.-C. Roman. Supporting
generalized context interactions. In T. Gschwind and C. Mascolo,
editors, Software Eng. and Middleware: 4th Int’l. Wkshp., Revised
Selected Papers, volume 3437 of LNCS, pages 91–106. March 2005.

[19] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman. Context-aware
session management for services in ad hoc networks. In Proc. of the
Int’l. Conf. on Services Comput., pages 113–120, July 2005.

[20] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application. Wireless Networks, 8(2/3):187–197,
March–May 2002.

[21] J. Hong and J. Landay. An infrastructure approach to context-aware
computing. Human Computer Interaction, 16(2–4), 2001.

[22] Q. Huang, C. Julien, and G.-C. Roman. Relying on safe distance to
achieve strong partitionable group membership in ad hoc networks. IEEE
Trans. on Mobile Comput., 3(2):192–205, April–June 2004.

[23] C. Julien. Supporting Context-Aware Application Development in Ad
Hoc Mobile Networks. PhD thesis, Washington University in Saint
Louis, 2004.

[24] C. Julien, J. Payton, and G.-C. Roman. Adaptive access control in
coordination-based mobile agent systems. In R. C. et al, editor, Software
Eng. for Large-Scale Multi-Agent Syst. III, volume 3390 of LNCS, pages
254–271, February 2005.

[25] C. Julien and G.-C. Roman. Egocentric context-aware programming in
ad hoc mobile environments. In Proc. of the 10th Int’l. Symp. on the
Foundations of Software Eng., pages 21–30, November 2002.

[26] C. Julien and G.-C. Roman. Active coordination in ad hoc networks. In
Proc. of the 6th Int’l. Conf. on Coordination Models and Languages,
volume 2949 of LNCS, pages 199–215, February 2004.

[27] C. Julien and G.-C. Roman. Supporting context-aware interaction in
dynamic multi-agent systems (invited paper). In Environments for
Multiagent Syst., volume 3374 of LNCS, February 2005.

[28] M. Klein and B. Konig-Ries. Combining query and preference: An
approach to fully automize dynamic service binding. In Proc. of the
Int’l. Conf. on Web Services, pages 788–791, July 2004.

[29] M. Loebbers, D. Willkomm, and A. Koepke. The Mobility
Framework for OMNeT++ Web Page. http://mobility-fw.
sourceforge.net.

[30] M. Mamei, F. Zambonelli, and L. Leonardi. Tuples on the air: A
middleware for context-aware computing in dynamic networks. In Proc.
of the ICDCS Wkshps., pages 342–348, 2003.

[31] R. Meier and V. Cahill. STEAM: Event-based middleware for wireless
ad hoc networks. In Proc. of the 22nd Int’l. Conf. on Distib. Comput.
Wkshps., pages 639–644, July 2002.

[32] A. L. Murphy and G. P. Picco. Using coordination middleware for
location-aware computing: A LIME case study. In Proc. of the 6th

Int’l. Conf. on Coordination Models and Languages, volume 2949 of
LNCS, pages 263–278, February 2004.

18

[33] A. L. Murphy, G. P. Picco, and G.-C. Roman. LIME: A middleware for
physical and logical mobility. In Proc. of the 21st Int’l. Conf. on Distib.
Comput. Syst., pages 524–533, April 2001.

[34] A. Omicini and F. Zambonelli. TuCSoN: A coordination model for
mobile information agents. In Proc. of the 1st Int’l. Wkshp. on
Innovative Internet Information Syst., pages 177–187, June 1998.

[35] J. Pascoe. Adding generic contextual capabilities to wearable computers.
In Proc. of the 2nd Int’l. Symp. on Wearable Computers, pages 92–99,
October 1998.

[36] J. Payton, C. Julien, and G.-C. Roman. Context-sensitive data structures
supporting software development in ad hoc networks. In Proc. of the
3rd Int’l. Wkshp. on Software Eng. for Large Scale Multi-Agent Syst.,
pages 42–48, 2004.

[37] J. Payton, C. Simon, and G.-C. Roman. A query-centered perspective
on context-awareness in mobile ad hoc networks. Technical Report
WUCSE-05-8, Washington University in Saint Louis, Department of
Computer Science and Eng., 2005.

[38] B. Rhodes. The wearable remembrance agent: A system for augmented
memory. In Proc. of the 1st Int’l. Symp. on Wearable Computers, pages
123–128, October 1997.

[39] G.-C. Roman, C. Julien, and Q. Huang. Network abstractions for
context-aware mobile computing. In Proc. of the 24th Int’l. Conf. on
Software Eng., pages 363–373, May 2002.

[40] G.-C. Roman, C. Julien, and A. L. Murphy. A declarative approach
to agent-centered context-aware computing in ad hoc wireless envi-
ronments. In Software Egineering for Large-Scale Multi-Agent Syst.,
volume 2603 of LNCS, pages 94–109, 2003.

[41] M. Roman, C. Hess, R. Cerqueira, A. Ranganat, R. Campbell, and
K. Nahrstedt. A middleware infrastructure for active spaces. IEEE
Pervasive Comput., 1(4):74–83, October–December 2002.

[42] U. Saif and J. Paluska. Service-oriented network sockets. In Proc. of the
1st Int’l. Conf. on Mobile Syst., Apps., and Services, pages 159–172,
May 2003.

[43] D. Salber, A. Dey, and G. Abowd. The Context Toolkit: Aiding the
development of context-enabled applications. In Proc. of the Conf. on
Human Factors in Comput. Syst., pages 434–441, May 1999.

[44] A. Vargas. OMNeT++ Web Page. http://www.omnetpp.org.
[45] P. Verissimo, V. Cahill, A. Casimiro, K. C. A. Friday, and J. Kaiser.

CORTEX: Towards supporting autonomous and cooperating sentient
entities. In Proc. of European Wireless, February 2002.

[46] R. Want, A. Hopper, V. Falco, and J. Gibbons. The Active Badge
location system. ACM Trans. on Information Syst., 10(1):91–102,
January 1992.

[47] R. Want, B. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg, J. El-
lis, and M. Weiser. An overview of the PARCTab ubiquitous computing
environment. IEEE Personal Commun., 2(6):28–33, December 1995.

[48] E. Yoneki and J. Bacon. An adaptive approach to content-based
subscription in mobile ad hoc networks. In Proc. of the 1st Int’l. Wkshp.
on Mobile and P2P Comput., pages 92–97, 2004.

[49] S. Zachariadis, C. Mascolo, and W. Emmerich. SATIN: A component
model for mobile self-organisation. In Proc. of the Int’l. Symp. on Distib.
Objects and Apps., October 2004.

[50] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc
networks. In Proc. of the 1st ACM Int’l. Symp. on Mobile Ad Hoc
Networking and Comput., pages 51–60, 2000.

