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Abstract— Context-aware computing is characterized by soft-
ware’s ability to continuously adapt its behavior to an environ-
ment over which it has little control. This style of interaction is
imperative in ad hoc mobile networks that consist of numerous
mobile hosts coordinating opportunistically via transient wireless
connections. In this paper, we provide a formal abstract charac-
terization of an application’s context that extends to encompass a
neighborhood within the ad hoc network. We provide a context
specification mechanism that allows individual applications to
tailor their operating contexts to their personalized needs. We de-
scribe a context maintenance protocol that provides this context
abstraction in ad hoc networks through continuous evaluation
of the context. This relieves the application developer of the
obligation of explicitly managing mobility and its implications on
behavior. We also characterize the performance of this protocol
in ad hoc networks through simulation experiments. Finally, we
examine real world application examples demonstrating its use.

I. I NTRODUCTION

The ubiquity of mobile computing devices opens a user’s
operating environment to a rapidly changing world where
the network topology, or physical connections between hosts,
must be constantly recomputed. These network connections
link a host to information provided by other members of the
computing environment—information we refer to as a host’s
context. In ad hoc networks especially, software must adapt
continuously in response to this changing context. In addition,
devices are commonly constrained and must rely on other
connected devices for information and computation. Mobile
units therefore become part of other hosts’ contexts. In general,
ad hoc mobile networks contain many hosts and links, which
define the context for an individual host.

The next section discusses the current trends in context-
aware computing, which often limit a host’s context to what
it can immediately sense or limit the type of information
used to define a context to specific information (e.g., loca-
tion). To support more general context-aware applications,
an application must be allowed to define an individualized
context; such definitions may need to include varying facets
of the environment. Our goals include broadening the context
available to a host to include not only properties that can be
sensed directly by a host, but also properties of other reachable
hosts and properties of the links among them. This approach
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has the potential to greatly increase the amount of context
information available, and therefore an application running on
a host should specify exactly the context it needs. For example,
an ad hoc network on a highway might extend for hundreds of
miles. A driver in a particular car, however, may be interested
in only gas stations within five miles along his projected route.
An application should supply a definition of its desired con-
text; subsequent operations issued by the application should be
performed only over that context. Because we aim to provide
both a manner for an application to specify its context and
a protocol that computes and maintains the context, we need
to allow the context specification to remain as general and
flexible as possible while ensuring the feasibility and efficiency
of dynamically computing the context.

Many application scenarios will benefit directly from the use
of such declarative context specificationsthat explicitly de-
scribe an application’s communication requirements. Imagine
field researchers studying the behavioral patterns of a group
of animals. Each researcher monitors a particular animal or
animals. The researchers also use temperature and location
information to supplement their notes. Perhaps not every
researcher carries a thermometer, but temperature information
sensed by another researcher within a certain distance will
suffice. Therefore, one could define a context to extend just as
far as temperature information is valid and use the information
contained in the constructed subnet. Extending this particular
example, each researcher might carry a camera to automati-
cally record observations. If one researcher’s subject moves
behind a boulder, the researcher can no longer see it from
his location, but he can use another’s camera feed to observe
the target. The context defined in this case might be bounded
by network latency—only cameras within a certain end-to-end
latency can provide a camera feed with a high enough frame
rate to be useful. This particular example can easily extrapolate
to more generalized surveillance applications.

We provide this network abstraction to the application
developer through a simple interface for defining expressive
metrics over an ad hoc network. Specifically, an application on
a particular host, henceforth called thereference host, formally
specifies a context that spans a subnet of the ad hoc network.
This work starts from the premise that the development of
mobile applications can be simplified by allowing developers
to specify such individualized contexts. First is the question
of how to facilitate a formal specification of context that is
general, flexible, and amenable for use in ad hoc settings. The
solution maps all nodes in the ad hoc network to points in a
abstract multi-dimensional space and defines context as the set
of points whose distance from the reference does not exceed
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a bound that can change throughout the application’s lifetime.
We show that a number of useful contexts can be defined
in this manner. The second issue is one of maintaining the
specified context and operating on it. This paper presents the
Source-Initiated Context Construction (SICC) protocol which
constructs and dynamically maintains a tree over a subnet
of hosts and links whose attributes contribute to a context
definition, as required by an application on a particular mobile
host. Context-sensitive operations are carried out through a
cooperative effort involving only hosts in the given context.
The final concern is of the presentation of this construct to
the application developer. We build a simple programming API
that not only includes built-in general-purpose metrics but also
provides a usable mechanism for creating additional metrics.

In summary, the specific novel contributions of this work are
threefold. First, we present the first formal characterization of
an application’s context with respect to a dynamic mobile ad
hoc network. Second, we develop a communication protocol
(SICC) and its implementation that support this notion of
context for real-world applications. Finally, we provide an
initial performance characterization evaluating the feasibility
of deploying our protocol in mobile ad hoc networks.

This paper is organized as follows. Section II details
previous work in context-aware computing and presents a
new perspective. Section III provides background on existing
communication support in ad hoc networks. We present our
formal abstraction of the network into a context in Section IV
and provide some example applications using this abstraction
in Section V. Section VI describes the SICC protocol for
context computation and maintenance in detail. Section VII
provides initial simulation results for the protocol. Finally,
Section VIII concludes.

II. CONTEXT-AWARE COMPUTING

Initial context-aware projects at Olivetti Research Lab and
Xerox PARC laid the foundation for more recent context-
aware software. Active Badge [35] uses infrared communi-
cation between users’ badges and building sensors to for-
ward telephone calls to roving users. PARCTab [34] also
uses infrared communication between users’ palm top devices
and desktop computers to allow applications to adapt to the
user’s environment. Applications range from simply presenting
information to the user about his current location to attaching
a file directory to a room for use as a blackboard by users
in the room. More recent work [12] in building ubiquitous
computing environments uses CORBA and operates over a
wired network infrastructure that supports both localization
and communication. These systems require extensive infras-
tructures and constant maintenance. They also rely on a
wired communication backbone and do not address the issues
inherent to ad hoc networks, including the need to scale to
large dynamic networks that span more than single buildings.

More recent context-aware applications serve as tour
guides [1], [7] by presenting information about the user’s
current environment. Fieldwork tools [23] automatically attach
context information, e.g., location and time, to notes taken by
field researchers. Memory aids [28] record notes about the

current context that might later be useful to the user. These
applications each collect their own context information and
focus on providing a specific type of context, e.g., the guide
tools use only location.

Generalized software built to support context-aware appli-
cation development has begun to be developed. The Context
Toolkit [32] abstracts context information through the use of
context widgets that form a library that developers can use
when constructing context-aware applications. The Context
Fabric [13] is founded on the observation that an infrastructure
approach to providing context information has advantages over
a toolkit approach. While these solutions offer developers
much needed building blocks for constructing context-aware
applications, even collecting information from distributed sets
of sensors, these systems do not explicitly address the needs
of applications in large scale ad hoc networks to dynamically
discover and operate over a constantly changing context. The
work presented in this paper allows applications to limit their
operating contexts to a portion of the context data provided
by low level sensors or even widget-like components.

GAIA [29] introducesActive Spacesas immersive comput-
ing environments for context-aware applications. This work
addresses the needs of context-aware applications in small
networked environments where the available resources in
the space can be centrally managed by a kernel in each
Active Space. This type of approach does not map well to
large-scale context-aware applications in completely wireless
environments. CORTEX [33] proposes an infrastructure for
context-awareness in nomadic mobile environments that com-
bine mobile entities with a wired infrastructure. This project
focuses on quality of service guarantees that can be provided
within a region of the network. The goals of CORTEX are in
line with ours—to support large-scale mobile computing—but
the target environment differs in that the concerns apparent in
ad hoc networks require specialized solutions. In addition, the
work presented in this paper focuses on generalized context
provision, while CORTEX is tailored to concerns related to
quality of service guarantees.

From this review, it becomes apparent that supporting
context-aware applications in large-scale ad hoc networks
requires a redefinition of the notion of context. The key
components of this new context definition are:

1) The definition of context should be generalized so that
applications interact with different types of context (e.g.,
location, bandwidth, etc.) in a similar manner.

2) Different applications require contexts tailored to their
individual needs.

3) In an ad hoc network, an application’s context includes
information collected from a distributed network sur-
rounding the application’s host.

4) Due to the large-scale environment, context computation
and operation must be decentralized.

5) Abstractions of context collection from sensors ease the
development burden.

Constructing and operating over this dynamic context in
large-scale ad hoc networks requires protocols for supporting
the definition of these contexts. Because this information must
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be gathered from the network, this protocol must coordinate
devices to provide context-awareness.

III. C OMMUNICATION IN AD HOC NETWORKS

Much work in ad hoc networks has focused on routing.
Because gathering context information requires communicat-
ing with a set of nodes in the ad hoc network, it will either
use an existing algorithm or make use of similar interactions
in defining its own specialized behavior. In this section, we
review existing mobile ad hoc routing protocols and examine
applying these techniques directly to context acquisition.

Ad hoc routing protocols are generally divided into two
categories. Table-driven protocols, such as Destination Se-
quenced Distance Vector (DSDV) routing [26] and Clusterhead
Gateway Switch Routing [8] maintain consistent up-to-date
information for routes to all other nodes in the network [31].
This class of algorithms is based on modifications to the classi-
cal Bellman-Ford routing algorithm [6]. Maintaining routes for
every other node in the network can become quite costly. The
overhead can be lessened by utilizing routing protocols from
the second class, source initiated on-demand routing protocols.
Ad-Hoc On-Demand Distance Vector (AODV) routing [27]
builds on DSDV but minimizes routing overhead by creating
routes on demand. Dynamic Source Routing (DSR) [16]
requires that nodes maintain routes for source nodes of which
they are aware in the system. Finally, the Temporally Ordered
Routing Algorithm (TORA) [22] uses link reversal to present a
loop-free and adaptive protocol. It is source initiated, provides
multiple routes, and has the ability to localize control messages
to a small set of nodes near a topological change. Another
type of routing that relates well to the work presented here is
Distributed Quality of Service Routing [5] in which routes are
selected based on network resources available along that path.

While this is not an exhaustive survey of the current ad hoc
routing protocols, it highlights well-known and fundamental
approaches. The main gap betwee these protocols and the
needs of context-aware applications lies in the fact that the
ad hoc routing protocols described require a known source
and a known destination. Instead, context-aware programs
as described in the previous section require the ability to
abstractly specify a group of hosts with which to communicate.

Communication with a subset of nodes in a network is
commonly accomplished using multicast. Early approaches to
multicasting in ad hoc networks used the shared tree paradigm
commonly seen in wired networks, adapting these protocols
to account for mobility [9], [10]. More recent work has
realized that maintaining a multicast tree in a highly mobile
environment can drastically increase the network overhead.
This has led to shared mesh approaches [3], [20] for improved
reliability. Both the tree- and mesh-based protocols use a
shared data structure. That is, they assume that all members in
the group have or need the same view about the membership of
the multicast group. However, in context-aware applications,
each node may need an egocentric view regarding relevant
context and in turn an egocentric view of the membership in
its context group. As a result, the shared structure paradigm
in conventional multicast protocols is not applicable for our
context provision and context maintenance purposes.

In summary, while previous research clearly points out
many issues a context provision and maintenance protocol
must address (e.g., host mobility, transient connections, and
changing properties of hosts and links), existing protocols
do not apply well to the context construction problem. The
distinctive features of our solution include:

1) property-based communication specification: instead of
asking a host to explicitly name with which other hosts
it wishes to communicate, the host specifies properties
of the paths to the communicating parties;

2) context-aware network structure: any data structure built
over the network must guarantee that the path used
to communicate with a host satisfies the contextual
property;

3) scalability: the context space is formed under localized
communication thus avoiding a network-wide search.

IV. A N ETWORK ABSTRACTION FORCONTEXT PROVISION

Extending the availability of context information beyond
a host’s immediate scope is facilitated by an abstraction of
network properties. Without this facility, a programmer must
explicitly program at the socket level to find and connect to
desired hosts. Additionally, he must directly access context
sensors and know how to interact with each different type of
sensor. By abstracting these properties, we provide a logical
view of available resources and unify interactions. After spec-
ifying some constraints that include a distance definition and a
maximum allowable distance, an application on the reference
host would like a list of qualifying acquaintances. That is:

Given a hostα and a positive value D, find the set of
all hostsQα such that all hosts inQα are reachable
from α and, for all hostsβ in Qα, the cost of the
shortest path fromα to β is less than D.

To build this list, we first define a way to determine a shortest
path and its cost. Costs derive from quantifiable context
aspects. In any network, both hosts and links have attributes
that affect communication. We combine these properties to
achieve a single weight for each link. An application has the
freedom to specify which properties define weights.

Once each link has a weight, an application-specified cost
function can be evaluated to determine the cost of a network
path. Multiple paths are likely to exist between two given
nodes. Therefore, we build a tree rooted at the reference that
includes only the lowest cost path to each node. Because we
aim to restrict the scope of an application’s context, calculating
the lowest cost to every node in the network is not reasonable.
To limit the context specification, we require the application
to specify a bound for its cost function. Nodes to which the
cost is less than the bound are included in the context.

A. The Physical Network

Because each application individually specifies which prop-
erties to use in its context specification, each application has its
own interpretation of the physical network. To begin mapping
the ad hoc network to an abstract space, we represent the
entire network as a graphG = (V,E) where mobile hosts
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are mapped toV , the graph’s vertices, and communication
links between hosts are mapped toE, the graph’s edges. In
the ad hoc network, every host and link has attributes that
we map to the abstract space represented by the graphG
by placing values on every vertex and edge. We quantify
relevant properties of a mobile host as a valueρi on the
vertex vi ∈ V . Formally, ρ : V → R. The value ofρi can
combine properties such as a host’s battery power, location,
load, service availability, etc. We quantify the properties of a
network link as a valueωij on the edgeeij ∈ E. Formally,
ω : E → Ω. The value ofωij may combine values representing
a link’s length, throughput, etc.

B. Logical View of the Network

Each application creates a logical network view based on the
context that interests it. We designate an application’s logical
network G = (V ,E), formed from the original mappingG.
We use the information about node and link properties to
create a topologicaldistancebetween each pair of connected
nodes in the logical networkG by creating weights on edges
in G. Given an edgeeij ∈ E and the two nodes it connects
vi, vj ∈ V , the weights of the two nodesρi and ρj are
combined with the weight of the edgeωij , resulting in a single
weightmij on the edgeeij ∈ E in the logical networkG. No
host vi ∈ V has a weight. Formally, this projection from the
physical world to the virtual one can be represented as:Γ :
R×R×Ω → M , or more specifically:mij = Γ(ρi, ρj , ωij).
The value ofmij is defined only if nodesvi and vj are
connected as we assumemij = ∞ for missing edges.

C. The Path Cost Function

Given the logical network view, we need to assign a cost
from the referenceα ∈ V to any reachable nodeβ ∈ V .
An application on the reference node specifies a cost function
providing instructions on calculating the cost of a given path in
G. A pathP = 〈v0, v1, · · · , vk〉 indicates the path originating
at the reference host, now referred to asv0, traversing nodes
v1 throughvk−1 and terminating atvk. As a shorthand, we
introduce the notationpn to indicate the portion of the path
P from v0 to vn wherevn is one of the nodes on the path.

Given a path inG, the topological cost fromv0 to vk,
represented byfv0(Pk), is defined recursively using a path cost
function Cost, specified by the reference host’s application.
The recursive evaluation to determine this value is:

fv0(Pk) = Cost(fv0(Pk−1,mk−1,k)

fv0(〈v0〉) = 0

Fig. 1 shows this function. The figure shows that the cost
of, or distance to, hostvi, represented byνi results from the
evaluation of the application-specified cost function over the
weight of edgeei−1,i and the cost of, or distance to, hostvi−1.

For the field research application scenario discussed in
Section I, assume the weight of each link in the network is
a combination of the total link latency and the inverse of the
link’s bandwidth. In this case, the cost function is additive

νi =
w i-1,i

)i-1ν(Cost i-1,iw,

i-1ν

0
ν 0=

kν

Fig. 1. The recursive cost function

with respect to the latency, but maximizing with respect to
the inverse of the bandwidth. The entire cost function and its
reasoning are presented in Section V.

D. The Minimum Cost Path

In an arbitrary graph, multiple paths may exist fromα to
another nodeβ. We call the cost of the shortest of these paths
gα(β). That is,

gα(β) = min
over all P from α to β

fα(P )

There is a shortest path treeT rooted atα. For all nodes
β in this tree, the path fromα to β in T has costgα(β).
Fig. 2 shows an example tree. The numbers near each edge
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Fig. 2. The logical network and shortest path tree

in the graph represent the weight (mij) on the link. The cost
function used in this example simply adds the weights of the
links along the path. The links that form the shortest path tree
are darkened. Though the graph shown contains multiple paths
from the reference node to each other node, the tree includes
only the shortest paths.

E. Ensuring Boundedness

Given a shortest path tree constructed over an ad hoc
network, we define a bound on the context. Any nodes for
which the cost of the shortest path is greater than the bound
are not included in the set of acquaintances. In the case of a
field researcher needing video information, the context might
be bounded by a combination of tolerable latency and required
bandwidth. Therefore, only hosts to which the latency is less
than some maximum while the bandwidth satisfies some end-
to-end requirement will be included in the context.

Fig. 3 shows the shortest path tree from Fig. 2. The bound
D is indicated by the dashed circle. Nodes inside the dashed
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circle are part ofα’s acquaintance listQα, while nodes outside
the dashed circle are not.

Notice that this bound is useful only if the shrotest path’s
cost is strictly increasing as the path extends away from the
reference node. That is, if we number the nodes on a path
〈1, 2, . . . , i, . . . , n〉 and designate the value of the cost to node
i asνi, we require thatνi > νi−1. This guarantees that a parent
in the tree is always topologically closer to the root than its
children. With this guarantee, the application can enforce a
topological constraint over the search space by specifying the
context’s bound. This strictly increasing requirement prevents
an infinite number of nodes on a path having the same cost,
resulting in a context that cannot be bounded.

Defining the properties that contribute to a link’s weight and
constructing cost functions are the most important aspects of
this network abstraction. In the next section we show how the
metric allows the definition of a variety of simple, expressive,
and flexible context specifications.

V. SAMPLE METRICS

In this section, we explore sample metrics and relate them
to specific applications. We start with a very simple metric
and then show how more sophisticated application scenarios
can be supported using more tailored and complex metrics.

A. Hop Count Calculation

Application. The simplest metric constructed with the
abstraction presented in the previous section is one that makes
context inclusion decisions based solely on the number of hops
from the reference. This can be useful in many applications,
and, as we will see, will also serve as a building block for
more sophisticated metrics.

Metric. The weight on each linkeij connecting two nodesi
andj is always one, i.e.,mij = 1. The cost function is additive,
i.e., fv0(Pk) = fv0(Pk−1) + mk−1,k. By construction, this
cost function is guaranteed to increase at every hop; in fact,
it increases by exactly one each step.

B. Building Floor Restriction

Application. This metric constructs a context based on the
building locations. The building has a fixed infrastructure of
sensors and devices providing information regarding structural

integrity, frequency of sounds, movement of occupants, etc.
Engineers and inspectors carry PDAs or laptops that provide
additional context and assimilate context information. As an
engineer moves through the building, he may wish to see
structural information not for the whole building, but only for
his current floor and the floors adjacent to it.

Metric. The weight on linkeij connecting nodesi and
j accounts for the floors of the nodes. We defineρi =
node floor # so that the value ofρ corresponds to the floor
where the node is located. We do not use the link weight,ω.
To generate logical weights, we combine the floors of nodes
i andj so thatmij consists of the range of floors of the two
nodesmij = {ρi, ρi+1, . . . , ρj−1, ρj}. For example, if nodes
on floors 2 and 4 are directly connected, the weight on the
link between them will be the range{2, 3, 4}.

Using a cost function based only on this property does not
guarantee the metric will increase. We incorporate the hop
count metric to measure the number of network hops the path
has taken without moving to a new floor (i.e., a floor that the
path has not traversed in the past). The cost function’s valueν
consists of two values:ν = (r, c). The first value is the range
of floors covered by the path. The second counts the number
of hops taken in the current range of floors.

The cost function generates a cost for each node:

fv0(Pk) =


(fv0(Pk−1).r, fv0(Pk−1).c + 1)

if mk−1,k ∈ fv0(Pk−1).r
(fv0(Pk−1).r ∪mk−1,k, 0)

otherwise

We use∈ to refer to the fact that one range is entirely
contained in another. The union of two ranges (∪) is the range
that exactly covers the two input ranges. The first case in the
function corresponds to the situation when the current link
does not move to a new floor. The range of floors for the path
does not change and the hop count increments by one. In the
second case, the current link does move to a new floor. The
range of floors for the path is the union of the previous node’s
range with this link’s range. The counter resets to 0. Note that
this cost function increases at every hop because either the
range expands or the hop count increments.

To bound this context, the application specifies the accept-
able range of floors and a hop count. For example, the building
engineer might define the bound:({f−1, f, f +1}, 10), where
f is his current floor, and this context contains only hosts on
his current floor or adjacent ones. As he moves throughout the
building, f changes, and his context automatically changes to
reflect this. The use of 10 as a hop count is arbitrary; the
engineer’s application will choose something large enough
to ensure that he includes as many nodes as possible while
ensuring that performance does not degrade.

C. Network Latency

Application. Next we design a metric for the application
scenario introduced in Section I. Briefly, this application
consists of field researchers who share sensor data and video
feeds. It is likely that the context requirements for each task
will be different due to differences in data requirements. For
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each task, the researcher defines the context. We focus on the
video transmission.

Metric. The weight on link eij connecting two nodes
accounts for the node-to-node latency. We later extend the
metric to include bandwidth. These are not the only network
measurements that might affect video transmissions; more
complicated metrics could account for additional constraints.
To create this metric, we define

ρi =
node packet processing latency i

2
where node packet processing latency i is the average time
between when nodei receives a packet and when it propagates
the packet. We use half of this number to avoid counting the
node’s latency twice, which suffices under the assumption that
the incoming and outgoing latencies are approximately equiv-
alent. We defineωij = link latency ij , wherelink latency is
the time it takes for a message to travel fromi to j.

Possible mappings to the logical network abound; the link
latency and node latency can each be given a different im-
portance by weighting theρ and ω values. For simplicity’s
sake, the valuemij in the logical network is defined as
mij = ρi + ρj + ωij , and the cost function asfv0(Pk) =
fv0(Pk−1)+mk−1,k. This cost function increases at every hop
because it is additive and each latency term must be strictly
positive. A bound on this cost function is defined by a bound
on the total latency.

Metric Extension. Because the usefulness of the video
feed might also depend on bandwidth, we extend the previous
metric to include bandwidth. Theρ values remain the same,
but theω values become pairs of values:

ωij = (link latency ij ,
1

bandwidthij
)

We treat this pair as an array; to access the latency, we use:
ωij [0], and to access the bandwidth, we use:ωij [1]. We use
the inverse of the bandwidth because a connection with a
higher bandwidth can be considered “shorter.” The valuemij

is defined as a pair of values:mij = ((ρi+ρj+ωij [0]), ωij [1]).
The cost function computes a pair of values for each node’s

cost. The first value corresponds to the path’s total latency, and
the second value stores the minimum bandwidth encountered:
ν = (latency , bandwidth). The cost function is:

fv0(Pk) = (fv0(Pk−1)[0] + mk−1,k[0],
max(fv0(Pk−1)[1],mk−1,k[1]))

This cost function also increases at every hop. Because the la-
tency is completely additive, thelatency component increases
every hop. Additionally, because we take the maximum of the
bandwidth each hop, it is guaranteed not to decrease.

A bound on this cost function consists of a bound on the
total latency and a bound on the bandwidth. When either of the
cost function components increases beyond its corresponding
bound, the path’s cost is no longer within the context.

D. Physical Distance

Application. Finally, we present a general-purpose metric
based on physical distance. Imagine a network of vehicles on

a highway. Each vehicle gathers information about weather
conditions, highway exits, accidents, traffic patterns, etc. As
a car moves, its driver gathers information that will affect his
immediate trip. This data should be restricted to information
within a certain physical distance (e.g., within a mile).

Metric. The calculated context should be based on the
physical distance between hosts. The weight placed on edges
in the logical network reflects the distance vector between two
connected nodes and accounts for both the displacement and
the direction of the displacement:mij = ~IJ.

Fig. 4a shows an example network where specifying dis-
tance alone causes the cost function to not be strictly increas-
ing. The reference host,α, is shaded. The numbers on each
node indicate the node’s cost, given the reference host’s cost
function. The cost function simply assigns as the cost of a
node the distance to the reference. Notice that nodesC and
D are outside the context whileE should be placed inside
the context. In this case, nodeA cannot communicate directly
with nodeE due to some obstruction (e.g., a wall) between
them. When the cost of the path is strictly increasing, host
C knows that no hosts farther on the path will qualify for
context membership. In this example, this condition is not
satisfied, and no limit can be placed on how long context
building messages must be propagated.

To overcome this problem, we base the cost function on both
the distance vector and a hop count. The cost consists of three
values:ν = (maxD ,C ,V). The first value,maxD , stores the
maximum distance of any node seen on this path. The second
value, C , keeps the number of consecutive hops for which
maxD did not increase. The final value,V, is the distance
vector from the reference host to this host. Bounding this cost
function requires bounding bothmaxD andC . As will become
clear with the definition of our cost function, neither the value
of maxD nor the value ofC can ever decrease. Also, if one
value remains constant for any hop, the other is guaranteed to
increase, therefore this cost function is strictly increasing.

Fig. 4d shows the revised cost function. In the first case, the
new magnitude of the vector from the reference host to this
host is larger than the current value ofmaxD , andmaxD is
reset to the magnitude of the vector from the reference to this
host,C remains the same, and the distance vector to this host
is stored. In the second case,maxD is the same for this node
as the previous node. Here,maxD remains the same,C is set
to its old value incremented by one, and the distance vector
to this host is stored.

Fig. 4b shows the same nodes as Fig. 4a. In this figure
the cost function from Fig. 4d assigns the path costs shown.
The application specified bound isD = (10, 2) where10 is
the bound onmaxD and 2 is the bound onC . The values
shown on the nodes in the figure reflect the pairmaxD and
C . Because the cost function includes a hop count and is
based on maximum distance instead of actual distance, node
C can correctly determine that no host farther on the path will
satisfy the context’s membership requirements. Fig. 4c shows
the same cost function applied to a different network. In this
case, while the paths never left the area within distance 10,
nodeZ still falls outside the context because the maximum
distance remained the same for more than two hops.
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fv0(Pk) =

{
(|fv0(Pk−1).V + mk−1,k|, fv0(Pk−1).C , fv0(Pk−1).V + mk−1,k) if |fv0(Pk−1).V + mk−1,k| > fv0(Pk−1).maxD

(fv0(Pk−1).maxD , fv0(Pk−1).C + 1, fv0(Pk−1).V + mk−1,k) otherwise

(d)

Fig. 4. (a) Physical distance only; (b) Physical distance with hop count, restricted due to distance; (c) Physical distance with hop count, restricted due to
hop count; (d) The correct cost function

VI. CONTEXT COMPUTATION AND MAINTENANCE

Our protocol for computing context, Source-Initiated Con-
text Construction (SICC) takes advantage of the fact that an
application running on a reference host does not necessarily
need to know which other hosts are part of its context. Instead,
the application needs to be guaranteed that a message sent to
its context is received only by hosts belonging to the context
and that all hosts belonging to the context receive the message.
SICC builds and maintains a tree over the network. By nature,
this tree defines a single route from the reference node to
each other node in the context. To send a message only to
the members of the context, the reference node needs only to
broadcast the message over the tree.

A. Assumptions

SICC relies on a few assumptions regarding the underlying
system. First, it assumes that there exists a message passing
mechanism that guarantees reliable delivery. Providing this
type of guarantee in the highly dynamic ad hoc network can
prove difficult and has been much studied. Work on building
consistent group membership [14], for example, ensures sta-
ble communication given information about hosts’ positions,
relative velocities, and properties of the wireless network.

We also assume that when a link disappears, both hosts
connected by the link detect the disconnection. SICC also
requires that all configuration changes and an application’s
issuance of queries over the context are serializable with
respect to each other. A configuration change is defined as
the change in the value of the metric at a given link and the
propagation of those changes through the tree.

Finally, we assume that the underlying system maintains the
weights on the links in the network by updating weights in
response to changes in node and link properties designated
by the application. For each link it participates in, a host

should have access to both the weight of the link and the
identity of the host on the other side of the link. In our
implementation, this information is made available to SICC
through the CONSUL [11] sensing package.

B. Protocol Foundations

SICC takes advantage of the fact that a reference host (i.e.,
the host building the context) specifies the context over which
it would like to operate but does not need to know the identities
of the hosts in the context. Therefore, the context computation
can operate in a purely distributed fashion, where responses to
data queries are simply sent back along the path from whence
they came. SICC is also on-demand in that a shortest path
tree is built only when a reference node sends a query. Piggy-
backed on this message are the context specification and the
information necessary for its computation.

Query,q

q.initiator initiator’s id (the reference node)
q.num application sequence number ofq
q.s sender of this copy ofq
q.sd distance from the reference toq.s
q.d distance from the reference to the host at which the

query is arriving
q.D bound on the cost function
q.Cost cost function
q.data application level data associated with this query

Fig. 5. The Components of a Query

Fig. 5 shows a query’s components. The sequence number
allows SICC to determine whether this query is a duplicate.
This prevents a host from responding to the same query
multiple times. It should be noted here that a query’s sender
and a query’s reference are not necessarily the same. The
reference for a query is the host running the application for
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which the context is being constructed. The sender of a query
is the most recent host on the path to the current host.

We divide SICC’s explanation into three sections: tree
building, tree maintenance, and reply propagation. Before we
describe the algorithm itself, however, we present the informa-
tion each host remembers about a single context specification.

C. SICC State Information

id this host’s unique identifier
num application sequence number, initialized to -1
d distance from the reference node, initialized to∞
p this host’s parent in the tree
pd parent’s distance (or cost) from reference node
D bound on the cost function
Cost cost function
C set of connected neighbors, the weight of the link to each,

and the cost of the path to the neighbor
I a subset ofC containing the connected neighbors that are in

the reference’s context, initially empty

Fig. 6. State Variables

Fig. 6 shows the state variables that a hostβ participating in
α’s context computation holds. This shows only the informa-
tion needed for one ofα’s contexts; in general, a host would
likely participate in multiple contexts and would therefore
store separate state for each.

The setC holds the list of all connected neighbors. Each
neighbor has a link to it from this host; the weight of that
link is stored inC and is referred to aswc for somec ∈ C.
This set is also used to store other paths to this host. If a host
receives a query from hostc that would give it a costdc < D
that it does not use as its shortest path, it remembersc’s cost
in C. This information will prove useful in quickly finding a
new shortest path to replace a defunct path.

D. Context Building

Information required for computing a context arrives in a
query; the protocol maintains no global state. An application
with a query to send bundles the context specification with the
query and sends it to all its neighbors. When a query arrives
at a host, it brings the cost function and the bound which
together define the context. It also brings the cost to this host.

Any query a host receives is guaranteed to be within the
context’s bound because the sending node determines the
destination node’s cost before sending it the query. Only
neighbors that fall within the bound are sent the message.
Subsequent copies of the same query are disregarded unless
they offer a lower cost path. As shown in the secondif block of
the QUERYARRIVES action in Fig. 7, when a shorter cost path
is found, the cost of the new path, the new parent, and the new
parent’s cost are all stored. Also, the query is propagated to
non-parent neighbors whose distance will keep them inside the
context. This is done through thePropagateQueryfunction,
described with SICC’s other support functions in Fig. 8. For
each non-parent neighbor,c, this host applies the cost function
to its own distance and the weight of the link toc. If this results
in a cost less than the bound, the host propagates the query

to c. A host must propagate a query with a lower cost even if
its application has already processed it from a previous parent
because this shorter path might allow additional downstream
hosts to be included. Finally, upon reception of any query, the
host adds the information about the parent to the setC.

QUERYARRIVES(q)
Effect:

if q.num = num + 1 then
save query specific information (Cost := q.Cost , D := q.D)
clearC
record information (d := q.d , p := q.s, pd := q.sd)
Propagate Query(q)
AppProcessQuery(q)
save the sequence number (num := q.num)

else if q.d < d then
record information (d := q.d , p := q.s, pd := q.sd)
PropagateQuery(q)

end updateC (dq.s := q.sd)

Fig. 7. SICC Context Computation

When a host receives a query that it has not seen before
(i.e., the sequence number of the arriving query is larger
than the stored one), the application automatically processes
it regardless of whether or not it arrived on the currently
stored shortest path. A host does not wait for more additional
copies of a query to comeonly from its parent because it
is possible that the path through the parent no longer exists.
If the path does still exist and is still the shortest path,
the query will eventually arrive along that path, causing the
cost to be updated and the effects to be propagated to the
children. Upon receiving a new query, the host processes it in
the manner described above. Finally, the host sends the data
portion of the query to the application for processing using
the AppProcessQuerysupport function described in Fig. 8.

Earlier, we introduced an application in which a researcher
associates temperature data with his notes, but he may not
carry a thermometer. Others may have thermometers whose
data could be used. Once the researcher defines a context to
include some thermometers (e.g., a context based on physical
distance or thermometer accuracy), he issues a variety of
queries over his context, depending on his needs. He may use
a one-time queryif he needs a single piece of data. On the
other hand, if the surveillance of the target is ongoing and the
temperature data needs to be constantly correlated with notes,
the researcher may need apersistent query. Next, we classify
various types of operations and show how SICC is modified
to handle long lasting queries through tree maintenance.

E. Context Maintenance

As discussed above, an application can perform two differ-
ent types of operations: transient and persistent. A transient
operation is a one-time query or instruction. An application
issues a persistent query with an initial registration. As long
as the persistent operation remains registered, the associated
query propagates to hosts that enter the context and is dereg-
istered from hosts that move out of the context. When an
application wants to deregister a persistent operation from the
entire context, it issues a deregistration query.
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PropagateQuery(q) for each non-parent neighbor,c, send the query toc if Cost(d, wc) < D by calling SENDQUERY to c after setting
q.d = Cost(d, wc) andq.s = id in the query; updateI to include exactly thosec to which the query was propagated

AppProcessQuery(q) application processing of the data message part of the query
SendCleanUps for each non-parent neighbor,c, send a clean up message toc if Cost(d, wc) ≥ D by calling SENDCLEANUP to c
PropagateCleanUps for every member ofI, send a clean up message by calling SENDCLEANUP

PropagateReply(r) send the reply top
AppProcessReply(r) application processing of the data message part of the reply

Fig. 8. Support Functions

The protocol presented in Fig. 7 is sufficient if the appli-
cation issues only transient operations. The context needs to
be recomputed only if a new query is issued. Because SICC
propagates each query to all included neighbors of a host, the
shortest path will be computed each time, even if the weights
of the links have changed between the queries.

At times, an application needs to register persistent opera-
tions on other hosts in its context. These persistent operations
should remain registered at all hosts in the context until such
time that the reference host deregisters them. The reference
host’s context needs to be maintained whenever the topology
of the network changes, even when no new queries are issued.
Any topology change that affects the current context directly
reflects a change in at least one link’s weight. As stated, we
assume that both hosts connected by the link detect the change.
That is, if wij changes, then hostsvi andvj are both notified.
Hosts whose costs grow as a result of a network topology
change may have to be removed from the context, while hosts
that enter the context should be notified of the query. To do
this, the system reacts to changes in weights on links and
recalculates the shortest paths if necessary.

QUERYARRIVES(q)
. . . as before

WEIGHTCHANGEARRIVES(wnew id )
Effect:

if id = p then
calculate the cost (d := Cost(pd ,wnew id ))
if wnew id > wp then

calculate shortest path not throughp
(minpath := minc Cost(dc, wc))

if minpath < d then
reset the cost (d := minpath)
assign new parent

end
end
set the query fields (q := 〈num, id , d, D,Cost〉)
PropagateQuery(q)

else if wnew id < wid then
if Cost(did , wnewid ) < d then

recalculate cost (d := Cost(did , wnewid ))
reset the parent (p := id)
set the query fields (q := 〈num, id , d, D,Cost〉)
PropagateQuery(q)

end
end
store the new weight (wid := wnew id )

Fig. 9. SICC Context Computation and Maintenance

Because both hosts connected by the link are notified of any
change, both can take measures to recalculate the shortest path
tree. Fig. 9 shows a new action, WEIGHTCHANGEARRIVES

added to the protocol to deal with dynamic topology. This

action is activated when the notification of a weight change
arrives at a host. The weight changes are divided into two
categories: the weight of the link to the parent has changed,
and any other weight has changed.

In the first case, if the path through the parent has either
lengthened, it is possible that the shortest path to this node
from the reference node is through a different neighbor. The
node sets its cost to be the minimum of the cost through the
old parent and the shortest path through any other neighbor
(as stored inC). If the length of the path through the parent
has shortened, the node should still be included in the context,
and the shortest path to it from the reference should still be
through the same parent. In both cases, the node recalculates
its distance and propagates the information to its neighbors.

If the weight change has occurred on a link to a non-
parent neighbor, then the change interests this host only if
it causes the path through the neighbor to be shorter than the
path through the parent. Because this host is storing distance
information for all of its neighbors it simply calculates what
the new distance would be, compares it to the stored cost, and
resets its values if they have changed. If these calculations
change the cost to the node, it should package the current
context values in a query and propagate that query using the
PropagateQuerysupport function.

The protocol presented in Fig. 9 does not free the memory
used to store information about a reference host’s context.
For example, as a car moves across the country, it leaves
information about its specified contexts on every other car it
encounters. The car may never come back, so each car that
was part of one of these contexts would like to recover its
memory when it is no longer part of the context. We add
a clean up mechanism as shown in Fig. 10. Whenever it is
possible that a change has pushed a host that was in the context
out of the context, the parent notifies the child that its context
information is no longer useful and should be deleted. There
are two places in the algorithm where a change might push
another node out of the context. The first is when a weight
changes and the path through the parent becomes longer. Not
only might this node be pushed out of the context, any of
its descendants in the tree might also be pushed out. After
calculating its new cost, the node verifies that it is still within
the bound. If not, it cleans up its own storage. If this node
is still within the bound, it propagates a copy of the current
query to its neighbors that will remain within the bound and
sends a message to the neighbors that are not within the bound
instructing them to clean up this context information.

The second change occurs in the QUERYARRIVES action.
When a new query arrives, it is possible that the shortest path
has increased in cost, thereby pushing neighbors out of the
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context. To account for this, after propagating the query to all
neighbors within the bound, the host also sends a clean up
message to all neighbors not within the bound.

QUERYARRIVES(q)
. . . as before

WEIGHTCHANGEARRIVES(wnewid)
. . . as before

CLEANUPARRIVES(id)
Effect:

if id = p then
calculate shortest path not throughp

(minpath := minc Cost(dc, wc))
if minpath < D then

reset the cost (d := minpath)
reset the parent
set the query fields (q := 〈num, id , d, D,Cost〉)
PropagateQuery(q)
SendCleanUps

else
PropagateCleanUps
clean up local memory

end
else

updatedid in C
end

Fig. 10. SICC Context Computation, Maintenance, and Clean Up

A new action, CLEANUPARRIVES has been added to the
protocol shown in Fig. 10. If the clean up message comes from
the parent, it is an indication that there no longer exists a path
to the reference that satisfies the context specification. A new
shortest path is selected using the information inC and the
information propagated. If no qualifying shortest path exists,
the local memory is recovered. If the clean up message comes
from a node other than the parent,C needs to be updated to
reflect that the cost to the source is∞.

F. Reply Propagation

Most applications require responses from the hosts in their
contexts. To guarantee the application’s bound requirements,
these responses must traverse the shortest cost path back to
the initiator. Fig. 11 shows the components of a reply. The

Reply, r

r .initiator the initiator’s id
r .num the application sequence number of the query
r .id the replying node’s id
r .cost the cost from the initiator to the replying node
r .data the application level data associated with this reply

Fig. 11. The Components of a Reply

initiator’s id and sequence number allow the reference to
differentiate replies that correspond to different queries.

The information needed to propagate this reply back to the
reference is contained within the network. As shown in Fig. 6,
each node (other than the reference) maintains a variablep
that stores the identity of the next hop back along the shortest
path. When a host receives a reply, it checks the destination
of the reply, i.e., the initiator. If this host is the destination,
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Fig. 12. Mesh reply routing example

SICC passes the reply to the application level using the support
function, AppProcessReplylisted in Fig. 8. If this host is not
the destination, SICC propagates the reply back through this
host’s parent in the context’s tree.

The context’s tree contains exactly the minimum cost paths
to every node in the context. However, a single host in
the network may be connected to the reference by multiple
paths that satisfy the context’s bound. Forcing the routing of
replies back to the initiator only along the links present in the
shortest path tree ignores using links that have the capability
of performing useful work. We extend SICC based on this
observation. Most of the information necessary for this mesh
routing is already stored at each intermediate node in the state
variableC. The necessary changes arise in the structure of the
reply message itself and in the behavior of the nodes.

An application requires that every response to a context
query travels a path whose total cost is less than the bound.
This path can be the shortest to the node, but, when there are
multiple paths connecting the reference node to a responding
node, the reply can travel any qualifying path. We accomplish
this on a mesh by starting each reply message with a bag of
tokens. Because the reply has not yet traveled on any link and
therefore has not yet incurred any cost, the initial number of
tokens in the bag is equal to the context query’s bound. As
the reply travels toward the initiator, tokens are removed from
the message based on the cost of the links traveled.

Fig. 12 shows an example network with a mesh for routing
reply messages. The shaded reference host has defined a
context to include all nodes within three hops. The shortest
path tree constructed for this specification is shown with darker
links. The other links can be used for routing reply messages
if their costs qualify. In this figure, the numbers on the arrows
along the links refer to the shortest possible path from that
link back to the reference host. Consider the host labeled X
sending a reply. The host packages the reply with a bag of
three tokens (because three is the bound). At this point, X
can send this message to any of its neighbors because all of
the paths are qualifying. Let’s say X chooses host Y. X first
updates the bag of tokens by subtracting one (the cost of every
link in our example is one) and then sends the reply to Y. Y
has only one choice of path to send the reply along because
the message is not sent back to any previous node on its path.
This prevents reply messages from cycling unnecessarily in the
network. Y therefore updates the bag of tokens by subtracting
one and sends the reply to Z. When the message reaches Z,
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the bag contains only a single token. This forces Z to consume
the last token and route the reply along the direct link to the
reference host. Fig. 13 shows the modified reply.

Reply, r

r .initiator the initiator’s id
r .num the application sequence number of the query
r .tokens the number of tokens remaining for this reply to use,

i.e., initially equal to the context query’s bound
r .path the hosts that this reply has passed through so far
r .id the relying node’s id
r .cost the cost from the initiator to the replying node

Fig. 13. The Components of a Reply

Within the REPLYARRIVES(r) action, shown in Fig. 14,
instead of sending the reply back along only the shortest cost
path, the node chooses a host fromC through which the cost
back to the initiator is less than the tokens carried by the
reply. Assuming a node does not always choose the same
path for replies, this method will increase the performance
of the reply propagation by spreading the network traffic to
previously unused links. The action uses a support function
SendReply(r, c) which sends the replyr to the connected
neighbor identified byc.

QUERYARRIVES(q)
. . . as before

WEIGHTCHANGEARRIVES(wnewid)
. . . as before

CLEANUPARRIVES(id)
. . . as before

REPLYARRIVES(r)
Effect:

if id = r .initiator then
AppProcessReply(r)

else
Choose a host to send the reply through

(c := c′.(c′ ∈ C ∧ c′.cost + c′.weight < r .tokens
∧c′ /∈ r.path))1

Update the reply
(r .tokens := r .tokens − c.weight , r .path.append(c))

SendReply(r, c)
end

Fig. 14. Reply Propagation Over a Mesh

G. Demonstration System

Fig. 15 shows a screen capture of our demonstration system.
Each circle depicts a single host running an instance of the
protocol. The system uses the network for communication,
which allows us to display information gathered from actual
mobile hosts. The figure shows a single context defined by
a host (the gray host in the center of the white hosts). The

1The nondeterministic selection of a host from the setC uses the nonde-
terministic assignment statement [2]. A statementx := x′.Q assigns tox a
value x′ nondeterministically selected from among the values satisfying the
predicateQ. As long as our assumptions hold, the statement succeeds because
SICC guarantees that there is always at least one path back to the reference.

Fig. 15. Screen capture of demonstration system

context is simple; it includes all hosts within one hop. When a
host moves within the context’s bound, it receives a query reg-
istered on the context that causes the node to turn its displayed
circle white. When the node moves out of the context, it turns
itself black. The demonstration system provides simulations
using a variety of mobility models, including a markov model,
a random waypoint model [4], and a highway model. This
system is particularly useful because it allows us to visually
match types of context definitions to styles of mobility.

Our implementation of SICC is currently used to support
the EgoSpaces middleware [17], [18], which provides pro-
gramming constructs for context-aware data management in
dynamic mobile ad hoc networks. SICC also serves as the
foundation for a customizable query service [24], [25] that
performs tailored in-network processing of queries according
to policies supplied by the application programmer.

VII. A NALYSIS AND EXPERIMENTAL RESULTS

In this section, we further motivate SICC’s applicability
by providing initial performance measurements. A suite of
such measurements will be essential to application developers
in determining which context definitions are appropriate for
different needs or situations.

We used the ns-2 network simulator to provide results
for context dissemination as a first step in analyzing the
practicality of our protocol. Not only do they serve to show
that it is beneficial to define contexts in the manner described,
the measurements also provide information to application
programmers about what types or sizes of contexts should be
used under given mobility conditions or to achieve required
guarantees. The simulations we describe use a context defined
by the number of hops from the reference node (as described
in Section V-A). This provides a baseline against which we
can compare simulations of more complex or computationally
difficult definitions.

1) Simulation Settings:We generated 100 node ad hoc
networks that use the random waypoint model. While this
model suffers from “density waves” as described in [30],
it does not adversely affect our simulations. The simulation
is restricted to a 1000x1000m2 space. We vary the network
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Range (m) 50 75 100 125 150 175 200 225 250
Neighbors 1.09 2.47 4.21 6.38 9.18 12.30 15.51 19.47 23.89

Fig. 16. Average number of neighbors for varying transmission ranges

density (measured in average number of neighbors) by varying
the transmission range. The average number of neighbors in
our simulations for each transmission range are shown in
Fig. 16. An average of 1.09 neighbors (i.e., 50m transmission
range) represents an almost disconnected network, while an
average of 23.89 neighbors (i.e., 250m transmission range) is
extremely dense. While the optimal number of neighbors for
a static ad hoc network was shown to be the “magic number”
six [19], more recent work [30] shows that the optimal number
of neighbors in mobile ad hoc networks varies with the degree
of mobility and mobility model. The extreme densities in
our simulations lie well above the optimum for our mobility
degrees.

In our simulations, we used the MAC 802.11 standard [15]
in ns-2. Our protocol sends only broadcast packets, for which
MAC 802.11 uses Carrier Sense Multiple Access with Col-
lision Avoidance (CSMA/CA). This broadcast mechanism is
not reliable, and we will measure our protocol’s reliability over
this broadcast scheme in our simulations.

We also tested our protocol over a variety of mobility
scenarios using the random waypoint model with a zero second
pause time. In the least dynamic scenarios, we use a fixed
speed of 1m/s for each mobile node. We vary the maximum
speed up to 20m/s while holding a fixed minimum speed of
1m/s to avoid the speed degradation described in [37].

2) Simulation Results:The results presented evaluate our
protocol for three metrics in a variety of settings. The first
metric measures the context’s consistency, i.e., the percentage
of nodes receiving a context notification given the nodes
that were actually within the context when the query was
issued. Using this method to evaluate a proposed context
definition, we can give an application using the protocol an
idea of how successful it will be in reaching the members
of its contexts. For example, an application that relies on
strong guarantees (e.g., the application transfers money or
measures safety criticality) will have to define contexts with
high levels of consistency. At the other end of the spectrum,
many applications can accept a best-effort style of interaction,
and can define wider contexts with weaker guarantees.

The second metric measures the context’s settling time, i.e.,
the time between the reference host’s issuance of a query
and the time that every node in the context that will receive
the query has received it. This is the first step in providing
applications with information about how long they should wait
for responses from differently sized contexts.

The third metric evaluates the protocol’s efficiency through
the rate of “useful broadcasts,” i.e., the percentage of broad-
casts that reached nodes that had not yet received the context
query. This measurement provides us insight into under what
conditions (e.g., high speeds, densities, or loads) the protocol
might require tailoring in the dynamic ad hoc network.

The first set of results compare context definitions of varying
sizes, specifically, definitions of one, two, three, and four

hop contexts. We then evaluate our protocol’s performance as
network load increases, specifically as multiple nodes define
contexts simultaneously. Unless otherwise specified, nodes
move with a 20m/s maximum speed.

Reasonably Sized Contexts Have Good Consistency
Guarantees.In comparing contexts of varying sizes, we found
that as the size of the context increases, the consistency of
the context decreases slightly. Results for different context
sizes are shown in Fig. 17. These results show a single
context definition on our 100 node network. As for all
of the results presented throughout this section, the x-axis
shows the transmission range of the nodes in our simulated
networks. This quantity is a measure of network density
and increases from left to right. The protocol can provide
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Fig. 17. Percentage of context members receiving the message for contexts
of varying sizes

localized contexts (e.g., one or two hops) with near 100%
consistency. With broader context definitions, the percentage
of the context notified can drop as low as 94%. The disparity
between large and small context definitions becomes most
apparent with increasing network density. At large densities,
the extended contexts contain almost the entire network, e.g.,
at a transmission range of 175m, a four hop context contains
∼80% of the network’s nodes. In addition, the number of
neighbors is 12.3, leading to network congestion when many
neighboring nodes rebroadcast. This finding lends credence to
the idea that applications should define contexts which require
guarantees as more localized, while contexts that can tolerate
some inconsistency can cover a larger region. In addition,
small modifications to the protocol that address the fact that
neighboring nodes should not rebroadcast simultaneously may
positively benefit performance.

Context Building Settles Quickly. Fig. 18 shows the
settling times for contexts of varying sizes defined on networks
of increasing density. For a two hop context with a reasonable
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Fig. 18. Settling time for contexts of varying sizes

density, the maximum time to notify a context member was
around 20ms. The settling times for different sized networks
eventually become similar as network density increases. This
is due to the fact that even though the context is defined to
be four hops, all nodes are within two hops of each other,
effectively rendering a four hop context a two hop context.

Efficiency Decreases Almost Linearly with Increasing
Density.Fig. 19 shows the protocol’s efficiency versus density.
First, notice that the efficiency for a one hop network is
always 100% because only one broadcast (the initial one)
is ever sent. For larger contexts, the efficiency is lower and
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Fig. 19. Percentage of broadcasts that reached new context members for
contexts of varying sizes

decreases with increasing density. Most of the lower efficiency
and the descending nature of the curve results from the fact
that rebroadcasting neighbors are likely to reach the same set
of additional nodes. This becomes increasingly the case as
the density of the network increases. In the next section, we
discuss possible solutions to increase the performance of the
protocol in these cases.

Consistency Remains above 80% with Increased Net-

work Load. The remainder of the analysis focuses on an
increasing load in the network, caused by multiple simul-
taneous context definitions. We show only results for four
hop contexts because they are the largest and have the worst
behavior. As Fig. 20 shows, five context definitions have
no significant impact on the consistency as compared to a
single definition. For ten definitions, the consistency starts
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Fig. 20. Percentage of context members receiving context messages for
varying network loads

to decrease, but remains above∼80% at all transmission
ranges. With more registrations, especially at larger densities,
the different context messages interfere significantly with each
other. Two factors contribute to this observation. The first is
that broadcast messages collide and are never delivered. The
second results from the fact that MAC 802.11 uses CSMA/CA.
Because the medium is busier, nodes are more likely to back
off and wait to transmit. During this extended waiting time,
the context members are moving, and context members that
were in the context initially move out of it before receiving the
query. These effects decrease significantly with smaller context
sizes, e.g., at a transmission rate of 175m, ten definitions on a
two hop context can be delivered with∼97% consistency, and
twenty can be delivered with∼89.5% consistency. This type
of information advises applications that, in extremely mobile,
dense, or active networks, contexts that span a smaller set of
nodes are likely to be more consistent.

Increased Network Load Increases Settling Time at High
Densities.As shown in Fig. 21, increasing the network load
to ten definitions increases settling times of networks with
high densities. Again, when the network density is large and
multiple nodes are building contexts, the dispersions of their
context queries interfere, causing the broadcasting nodes to
back off. This increased back off causes a longer delay in the
delivery of context messages.

We do not present any results for efficiency with changing
network load, since network load seems to have no real effect
on the percentage of useful broadcasts.

Changing Speed has Little Impact on Context Notifi-
cation. In our analysis of this protocol, we tested scenarios
with a wide variety of node speeds. We found that even the
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consistency of context message delivery is not greatly affected
by the speed. It is likely that, were we to analyze transmission
of replies to queries, we would find that routes are less likely to
hold up for scenarios with higher node speeds. Such concerns
are addressed by the maintenance protocol, and we expect
further simulation of the protocol to be beneficial in further
understanding the impact of node speed.

A. Discussion

To ensure application-level data consistency, we make as-
sumptions about the atomicity of network topology changes
and their propagation through the network for rebuilding
the context. Future work will explore ways to relax these
assumptions by weakening the required guarantees on context
maintenance and context operations. For example, with some
knowledge about the system (e.g., radio transmission range,
maximum node speed, etc.), a node can predict a “safe
distance” for a link [14]. This may allow us to redefine
applications’ contexts on the fly to essentially replace a context

specification like “all nodes within two hops” with one like
“all nodes guaranteed to remain within two hops for 20ms”.

Several of our results show that increased network con-
gestion negatively affects our protocol. This results from a
commonly known problem called a “broadcast storm” [21].
Several alternative broadcasting mechanisms have been pro-
posed [36] and include using probabilistic methods or knowl-
edge about the environment or neighbor set to determine
when to rebroadcast. Integrating these or similar intelligent
broadcast mechanisms may increase the resulting consistency
and efficiency of context notification. Fig. 20 showed that the
consistency of context notification tends to fall off when net-
work load increases. Future work includes investigating ways
to handle this undesirable effect. This could include reusing
information available about already constructed contexts to
limit the amount of work required to construct another context
for a new node.

VIII. C ONCLUSIONS

This work is rooted in the fundamental observation that
existing techniques and protocols supporting communication
in mobile ad hoc networks today are not sufficient to provide
the capabilities that real-world context-aware applications re-
quire. To that end, we precisely define the notion of context-
awareness and build the underlying communication constructs
necessary to support it. Specifically, we provide a formal
characterization (Section IV) of an application’s context in a
mobile ad hoc network and describe how applications operate
over their defined context. We presented several generalizable
real world applications (Section V) and explicitly show how
they take advantage of the abstraction to build and operate
over dynamic contexts. We present a protocol (Section VI)
that implements this abstraction in a distributed fashion, and
provide initial simulation results (Section VII) demonstrating
the feasibility and practicality of context-aware communica-
tion in mobile ad hoc networks. To our knowledge, this work
is the first targeted to mobile ad hoc networks that focuses on
first evaluating the communication requirements of context-
aware applications and providing a generalized protocol that
directly supports these requirements. The protocol presented
here is already in use supporting a context-aware middleware
and further extensions and incorporations of it into additional
systems are underway.
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