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Abstract. Many of today’s applications attempt to connect mobile
users with resources available in their immediate surroundings. Exist-
ing approaches for discovering available resources are either centralized,
providing a single point of lookup somewhere in the cloud or ad hoc, re-
quiring mobile devices to directly connect to other nearby devices. In this
paper, we explore an approach based on cloudlets, marrying these two
approaches to reflect both the proximity requirements of the applications
and the dynamic nature of the resources. We present the design and im-
plementation of a cloudlet-based proximal discovery service, solving key
technical challenges along the way. We then use real world data traces to
demonstrate, evaluate, and benchmark our service and compare it to a
completely centralized approach. We find that, in supporting highly lo-
calized queries, our service outperforms the centralized approach without
significantly a↵ecting the quality of the discovery results.
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1 Introduction

Pervasive computing demands the ability to discover locally available resources,
whether data shared by nearby users or digital capabilities in the surroundings.
More specifically, applications require a location-based discovery service that,
when provided a user’s or device’s location, can “look up” nearby (digital) re-
sources. In this paper, we focus specifically on the need to discover resources
relevant in a particular user’s space and time; we are interested in finding digital
resources that are available in the user’s here and now. Existing approaches fall
into one of two general categories: (i) centralized indexing approaches that pro-
vide (at least abstractly) a single point of lookup for location-based discovery or
(ii) local broadcast approaches that rely on ad hoc discovery among peers.

The dynamics of pervasive computing environments make the approaches
from mobile ad hoc networks less desirable simply due to the high degree of
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churn in information. These dynamics force continuous updates to the dis-
tributed structures that overlay the mobile ad hoc network to support persis-
tent discovery. On the other hand, as the density of available smart devices
(both carried by users and embedded in environments) increases, completely
centralized approaches fail to scale. The obvious next step is to take the best
of both approaches, distributing the centralized index in a way that is reflective
of both the proximity requirements and dynamic nature of location-based dis-
covery. This is precisely the strategy employed by distributed spatial indexing
(e.g., Peer-Tree [6] and P2PR-Tree [21]) in which the universe is decomposed
into a hierarchy of regions; each node in a peer-to-peer (P2P) network is re-
sponsible for managing data concerning a region in the distributed index. These
approaches assume that nodes are capable of arranging themselves in a con-
nected network topology using ad hoc wireless communication [6] or a global
addressing scheme [21]. We make no such assumptions—indeed, supporting the
formation of such a P2P network is a motivating scenario of our work.

Our location-based discovery service creates cloudlets that are responsible
for maintaining knowledge about the digital resources available in specific re-
gions of space. A cloudlet is a trusted computing resource with good Internet
connectivity that is available for use by physically nearby mobile devices over
a wireless LAN [33]. Essentially, a cloudlet has the same responsibilities as the
cloud—it hosts a service that performs the significant computation required by
a mobile application while enabling the mobile device to act as a thin client
with respect to the service. Cloudlets di↵er from the cloud in that they are in-
herently within close physical proximity to the mobile devices that utilize their
resources, which reduces network latency and jitter and mitigates peak band-
width demands [33]. Consequently, cloudlets service fewer users and keep data
close to where it originates. Satyanarayanan et al. envision cloudlets to satisfy
the requirements necessary to transform many areas of human activity through
classes of mobile computing that “seamlessly augment users’ cognitive abilities
via compute-intensive capabilities” (e.g., speech recognition, natural language
processing, computer vision, augmented reality, planning, decision making, etc.).

We leverage cloudlets to implement proximal discovery for pervasive comput-
ing applications that operate in densely populated and highly mobile physical
spaces. A cloudlet-based approach for co-located peer discovery becomes seri-
ously advantageous, perhaps even necessary, when applications need to operate
in spaces with hundreds of thousands of devices per square mile (e.g., as in the
Internet of Things [1]). Consider the following scenario on a university campus:

It’s the first week of the semester and construction e↵orts on several univer-
sity buildings are behind schedule, requiring paths and building entrances be tem-
porarily blocked o↵ as necessary by construction crews. In an e↵ort help students
navigate campus and discover nearby friends, interest groups, and special first-
week events amongst these sporadic closures, the university has deployed a mobile
application that leverages the campus’ cloudlet infrastructure. The app enables
student users to advertise themselves, their location, and student-run events. Ad-
ditionally, special privileges have been given to construction teams’ foremen who
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may indicate pathways and building entrances as “closed” or “open” via the mo-
bile app. As students and construction foremen move about campus, their devices
periodically push this information to the cloudlet responsible for the region of the
campus they are in via the university’s wireless network. Ultimately, this chang-
ing and location-dependent information is displayed on the app’s “live” campus
map that dynamically updates as fresh data is received from nearby cloudlets.

One could also envision such an application to be used to deliver location-
dependent messages. For example, if a student wished to form an impromptu
study group, she could employ the cloudlet service to alert nearby classmates
of her availability and location. Alternatively, the university may wish to use
the application to deliver location-dependent emergency alerts or requests for
ground-level information (e.g., pictures of a particular crowded area as described
in [32]) if, for example, there were a dangerous suspect or a missing person.

A cloudlet-based proximal discovery service performs the same duties as
would a location-based service that may exist in the cloud—the service provides
extra knowledge about a user’s physical surroundings. However, by harnessing
a cloudlet infrastructure, data is kept geographically close to where it will most
likely be relevant, rather than in a distant cloud under a third party’s admin-
istration. Moreover, each cloudlet only serves tens to hundreds of users who
experience crisp interaction with the cloudlet service due to cloudlets’ physical
proximity and one-hop network latency. Our example scenario also teases out a
key technical challenge: as users move, they migrate between administrative re-
gions, the physical regions managed by cloudlets. Devices that are on the fringe
of two bordering administrative regions may fail to discover other devices be-
yond the region’s boundary, though they may be physically nearby. Some means
of synchronization between bordering cloudlets is therefore necessary.

We present the architecture, implementation, and API for a cloudlet-based
proximal discovery service that leverages a physically dispersed infrastructure
of cloudlets, each of which provides the service for a specific geographic region.
The distributed nature of a cloudlet infrastructure mitigates the congestion and
resource contention of a centralized cloud-based mechanism. Moreover, the phys-
ical and logical proximity of cloudlets to the clients they serve results in low
one-hop network latency. These factors combined provide the support required
by mobile pervasive applications targeting densely populated physical spaces.
A key technical challenge in the design of a cloudlet-based proximal discovery
service is the synchronization of information at the boundaries of bordering or
overlapping cloudlet administrative regions. As users and devices move around,
they inevitably migrate between cloudlets’ administrative regions. An applica-
tion running on a device within the fringe of one of these ambiguous spaces
may request information that exists beyond the administrative boundary of its
respective cloudlet’s administrative region, though the geographic relevance of
that information may be physically close. We evaluate our service’s performance
in terms of the system-level cost and the quality with which it performs proximal
neighbor discovery under various bordering cloudlet synchronization strategies.
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2 Related Work

Existing location-dependent resource discovery approaches can generally be clas-
sified into two categories: centralized methods, which rely on a single index to re-
solve spatial queries, and distributed methods, which can further be decomposed
into infrastructure-dependent and infrastructureless (i.e., ad hoc) approaches.

Centralized Location-Dependent Discovery. Geographic information
systems (GIS) have emerged over the last few decades out of advancements in
both database management systems (DBMS) and positioning and tracking sys-
tems (e.g., GPS) (see [26] for an excellent survey of this work) and are now
an industry standard. A GIS is a collection of software geared at e�ciently
performing a wide range of operations over geographic data, for example, resolv-
ing spatial queries, generating maps, detecting geographic patterns over time,
etc. [11]. GIS extensions exist for most modern DBMS and are the enabling
technology for location-based services (LBS), which integrate a mobile device’s
location with other (spatially-dependent) information [34].

Google Latitude1, Foursquare2, Facebook Places3, and Follow Me [38] are
cloud-based examples of LBS that enable users to share their location with
friends. The NearMe wireless proximity server [17] compares clients’ Wi-Fi fin-
gerprints (observed access points and signal strengths) to compute their relative
proximity. MoCA (Mobile Collaboration Architecture) [29] is a client-server mid-
dleware for developing and deploying context-aware applications; MoCA sup-
ports mobility by monitoring a mobile client’s location and switching to the
application proxy (an intermediary between a mobile client and the application
server that exists at the edge of a wired network) closest to the user. Similarly,
Hydra [31] facilitates mobile pervasive application development by providing
mobile agents that follow a user about a pervasive environment and construct a
virtual machine that meets a user’s current needs based on her location, tasks,
number of co-located people, etc.

These approaches employ a single point of lookup to store participants’ lo-
cations and resolve queries for location-based resources. Ypodimatopoulos and
Lippman point out that any system that centralizes user location information by
definition compromises user privacy [38], which can have potentially dangerous
implications (e.g., burglary4 and personal information inference [10]). For this
reason their Follow Me indoor location sharing service is intended to be imple-
mented at the per-building level instead of at a global level. We further argue
that a completely centralized approach fails to meet the requirements of perva-
sive applications that demand low latency and target densely populated physical
spaces where hundreds of thousands of devices may be carried by mobile users
(e.g., Body Area Networks [3]) and embedded in the environment (e.g., the In-
ternet of Things [1] and Web of Things [12]). These types of applications are

1 http://latitude.google.com
2 http://foursquare.com
3 http://facebook.com/about/location
4 http://pleaserobme.com
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more aptly supported by computing resources that are physically near partici-
pating devices and do not rely on a (potentially distant) single globally known
resource to manage devices’ location information. This flavor of approach both
reduces network latency and keeps location availability as local as possible.

Distributed Location-Dependent Discovery. The e�cient discovery of
“nearby” peers is an active area of interest in peer-to-peer (P2P) applications,
where nodes interact directly with one another in a decentralized and localized
fashion. Zero Configuration Networking (zeroconf)1 and the serverless messag-
ing extensions of the Extensible Messaging and Presence Protocol2 (XMPP)
both enable automatic discovery of available services on a local area network
(LAN). Friends Radar [19] uses XMPP messaging to support P2P location shar-
ing. Likewise, Virtual Cloud [15] employs XMPP messages to facilitate forming
on-demand mobile clouds comprising co-located mobile devices. While zeroconf
discovery over a wide-area network (WAN) is possible, it requires advanced setup
at each client. Our proximal discovery service makes no assumptions about the
type of network clients are a part of, simply that they are reachable.

Still other P2P applications maintain network overlays and routing tables to
leverage logical locality. pSense [35] enables discovery of virtually visible peers in
position-based massively multiplayer online games (MMOGs) through localized
multicast; this eliminates the need to propagate players’ location updates to
a global resource. Proximal peer discovery could be implemented on top of a
decentralized routing and location infrastructure like Tapestry [39] or Chord [36].
These approaches could certainly be applied in scenarios where physical locality
was the citizen of interest. However, overlay and routing table based approaches
require knowledge of at least one peer already in the network who may act as
an entrance point for the new peer. In the implementation we present here,
we require advanced knowledge of cloudlets and their administrative regions.
However, one could envision cloudlet resources existing at the edge of a wired
network infrastructure (e.g., in physically dispersed wireless access points) [32],
and a device would implicitly interact with the cloudlet resource hosted on the
Wi-Fi access point it was currently connected to.

Purely ad hoc approaches are inherently localized in both space and time
due to the attenuation of radio signals as they propagate. FlashLinQ [37] is a
telecommunication technology that enables long-range (approximately two mile)
P2P discovery and operates in a licensed 5MHz spectrum. Other existing pieces
of work use short range communication to localize (and co-localize) mobile users.
Virtual Compass [2], for example, constructs a two dimensional graph of nearby
devices via periodic (Wi-Fi or Bluetooth) signal strength measurements. Clearly,
ad hoc strategies are advantageous in densely populated spaces as they elimi-
nate the need for a bottleneck centralized resource and keep device interaction
entirely local. Nevertheless, the maintenance of accurate routing tables, network
overlays, and distributed data structures becomes expensive in scenarios that
exhibit heavy churn in formation and high degrees of node mobility.

1 http://zeroconf.org
2 http://xmpp.orgextensions/xep-0174.html
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Distributed Spatial Indexes. Our work aims to combine characteristics
from both extremes: we desire the reliability and simplicity of centralized LBS
systems and the scalability of entirely distributed approaches. We adopt a similar
approach to that of distributed spatial indexing techniques [6, 21], which leverage
the hierarchical nature of a spatial index structure (e.g., an R-Tree [13]) to
strategically distribute portions of its hierarchy among networked peers. Rather
than distribute portions of a holistic data structure, our proximal discovery
service distributes independent computing resources that each employ their own
spatial index. Moreover, our discovery service is designed under the assumption
that pervasive applications likely require localized device interaction; we dictate
that a computing resource monitoring device location information for a spatial
region be physically near or within that region. Therefore our discovery service
is able to keep location data about proximal peers as local as possible.

3 Architecture & Implementation

Under the assumption that cloudlets will be deployed within an existing Internet
infrastructure [33], we implement our proximal discovery service as a Web ser-
vice intended to be hosted on a cloudlet computing resource and made available
through a RESTful API over HTTP. Very generally, the REST (REpresenta-
tional State Transfer) style [8] is a design technique for implementing remote
procedure calls over the Web. Typically, in REST architectures, clients initiate
requests to servers, which process the requests and return a response. Unlike
WS-* integration techniques (e.g., SOAP, WSDL, the WS-* stack) that focus on
functions and use HTTPmerely as a transport-level protocol for application-level
functionality, REST’s requests and responses focus on the transfer of resources
and use HTTP constructs directly as an application-level protocol1. In other
words, “RESTful” Web services adopt a data-centric (rather than an operation-
centric) model where “everything” is treated as a resource accessible strictly via
HTTP operations (GET, PUT, POST, DELETE).

A RESTful architecture is an ideal candidate for any cloudlet-based Web ser-
vice for two reasons. First, REST has become a standardized design technique
and is the basis for most Web 2.0 services (e.g., those provided by Google, Twit-
ter, Facebook, Amazon, etc.). Therefore, a RESTful cloudlet-based service can
seamlessly integrate into existing Internet infrastructures. Second, since REST
integrates application-level functionality directly with HTTP, it does not re-
quire additional higher level constructs or middleware. REST’s lightweight na-
ture makes it ideal for resource-constrained pervasive computing devices [12]. In
the particular case of our proximal discovery service, it is natural to translate
our scenario’s notion of nearby devices to that of the REST concept of resources.

The Proximal Discovery Service. Our proximal discovery service’s ar-
chitecture is shown in Fig. 1. The service has two components that reside on
a cloudlet: a spatial index to keep track of resources’ locations and a REST

1 See [24] for a thorough comparison of WS-* and REST.
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API that enables remote storage and retrieval of these resources via an Inter-
net connection. A “resource” is anything that a particular application wishes to
associate with a geographic location—e.g., a user’s mobile device, a sensor em-
bedded in the environment, a location-dependent message, or a mobile software
agent that migrates between machines. We implement the spatial index using a
PostgreSQL1 database with PostGIS2 geospatial database extensions. PostGIS
employs an R-Tree [13] to intelligently index and e�ciently query geospatial
data. Our service’s REST API is implemented in Node.js3, which is a partic-
ularly good fit for our use case because of its small footprint and ability to
e�ciently handle many simultaneous connections and requests.

C
lo
ud
le
t!Spatial Index!

REST API!Pr
ox

im
al

 D
is

co
ve

ry
!

Se
rv

ic
e!

    Internet!

Fig. 1. The Proximal Discov-
ery Service’s Architecture. Dashed
arrows are POST /devices re-
quests; the solid arrow is a GET

/neighbors request.

Our service exposes a minimalist REST
API with the following resource “routes.” We
aim solely to facilitate discovery of physically
nearby resources, leaving other application-
specific functions to applications themselves.

POST /devices A client (mobile device, em-
bedded sensor, software agent) issues this
request to an instance of the discovery ser-
vice to create or update the resource rep-
resenting the client on the cloudlet.

GET /neighbors A client issues this request
to query a cloudlet for resources within its
vicinity. We parameterize the request with
a range to limit the query’s geographic
search space. An application could further
impose additional application-specific pa-
rameters. Upon receiving this request, the
cloudlet responds with a list of resources
whose locations are believed to be within
the request’s range of the client.

Our approach only provides an advantage over a centralized cloud-based LBS
when many independent instances are distributed across a geographic region,
where each instance assumes responsibility for a particular sub-region. How-
ever, important challenges arise when clients physically move between these
sub-regions or issue queries that cross the boundaries of these sub-regions.

Distributed Cloudlet Synchronization. Our proximal discovery service
supports pervasive computing applications in densely populated physical spaces.
To fully utilize the potential of a cloudlet infrastructure and support large num-
bers of anticipated clients, many instances of our service must be deployed in
a geographic region, with each instance responsible for a particular sub-region.
These spaces are highly mobile—people and their devices move and inevitably

1 http://postgresql.org
2 http://postgis.net
3 http://nodejs.org



8 Jonas Michel, Christine Julien

migrate between adjacent cloudlet-administered sub-regions; our proximal dis-
covery service must address the distributed synchronization of cloudlets govern-
ing these adjacent sub-regions.

0! 1! 2!

3! 4! 5!

6! 7! 8!

r!

Fig. 2. A query for resources within
a range of r from a mobile client.

Consider the scenario in Fig. 2. A space
is decomposed into nine administrative re-
gions (AR). One cloudlet exists in each AR
and is responsible for responding to cloudlet-
bound requests for that region. The solid dot
represents a mobile client that has traveled
along the dashed path over a period of time.
As the client moves, it periodically issues a
POST /devices with its current location to
the cloudlet responsible for the AR it occu-
pies. At the point in time shown, this client
wishes to discover nearby resources within
a range of r, so it issues a GET /neighbors query to cloudlet1. However, the
query’s range extends beyond the borders of cloudlet1’s AR and into those of
cloudlet0, cloudlet3, and cloudlet4. Without some means of synchronization,
cloudlet1 can only respond with the four resources in the shaded region of the
query’s target space (i.e., the resources within its AR). To facilitate this syn-
chronization, our proximal discovery service implements a third resource route:

POST /fringes A neighboring cloudlet issues this request to communicate
knowledge of resources that exist at or near the border of an adjacent AR.

δ
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k!

AR
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X!

Y!

δ
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Fig. 3. Computing administrative region fringes.

To both capture and
quantify “at or near the
border,” we introduce
the concept of a fringe,
illustrated in Fig. 3. A
fringe is a sliver of space
of width � on the inte-
rior of an AR’s border.
For simplicity, the ARs
shown in Fig. 3(a) are
rectangular, and there-
fore the computed fringes are also rectangular. In actuality, ARs can be of any
shape and even overlapping. ARi’s fringe with ARj consists simply of any point
within ARi that is within a specified distance (�) of ARj . Consider the more
complex pair of ARs in Fig. 3(b). ARA overlaps ARB ; any resource within the
area marked X can report to either ARA or ARB (or both of them). The fringe
that ARB computes to create a digest for ARA contains all of the resources it
knows about located in Y and all of the resources it knows about located in
X (because they may not have also reported their locations to A). Fringes can
also overlap; consider the adjacency of ARB and ARC ; the fringe of ARB with
respect to ARC (not depicted) will include not only their overlapping area but
also a sliver adjacent to this area that also overlaps Y.
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Periodically, our service computes each of its fringes’ digest, or a snapshot
of the fringe’s resources, which it sends to the appropriate adjacent cloudlet via
a POST /fringes. In Fig. 3(a), for example, cloudlet1 computes AR1’s fringe
digest to be (c, d, e, f), which it POSTs to cloudlet2.

Our service entails three variable deployment parameters, each which must
be tuned for a particular application’s needs:

µ The number of administrative regions (and correspondingly, cloudlets) that a
geographic region is decomposed into.

� The width of administrative regions’ fringes.
T The interval of time between fringe digest computations.

A particular combination of parameters, represented by the tuple (µ, �, T ), is a
synchronization strategy. In Section 5 we evaluate our service’s performance un-
der various synchronization strategies in terms of the quality with which proximal
discovery queries are satisfied and the system-level cost of the strategy.

Operating Assumptions. We assume clients can localize themselves and
have a labeled map of cloudlets and their ARs. Localization may be too ex-
pensive a task for severely resource constrained devices (e.g., battery operated
sensors); however, lightweight localization methods are currently a very active
area of research [2, 4, 20, 25]. Alternatively, resource-constrained devices could
communicate with cloudlets via less resource-constrained gateways [12]. We also
assume that cloudlets are aware of neighboring cloudlets; in our implementation,
clients and cloudlets each possess a copy of the same labeled map.

4 Application Examples

We next provide some concrete examples of mobile and pervasive machine-to-
machine (M2M) applications that are enabled by our proximal discovery service,
how they can be built with our service, and the inherent advantages of doing so.

Location Based Services. Perhaps the most obvious application of our
service is for the types of LBS discussed earlier (e.g., location-based social net-
working services, location sharing services, friend finders, and spatial crowdsourc-
ing [16]). Using our cloudlet-based service for localized discovery, such services
could target small and heavily crowded regions (e.g., music festivals, parades,
theme parks, university campuses, etc.) much more e�ciently. Instead of shipping
application requests to a (physically and logically) distant central cloud index,
requests and users’ location information would be localized to the geographic ar-
eas where they are inherently relevant, providing low-latency responses, lighter
server-side loads, and privacy gains through the distributed cloudlets [38].

P2P Network Overlays and Routing. In Section 2 we discussed the
fact that using a P2P routing and location infrastructure like Tapestry [39]
or Chord [36] to implement proximal resource discovery requires new network
participants to have advanced knowledge of at least one peer already in the
P2P overlay. This crucial discovery step could be performed with our proximal
discovery service, where the resource of interest is any peer already in the overlay.
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The use of a cloudlet infrastructure, in this case, encourages and facilitates P2P
interaction between devices that are physically near one another. Peer physical
proximity is not a requirement for these systems but can be advantageous if the
P2P overlay exists to store spatio-temporal events [40].

Mobile Ad Hoc and Opportunistic Networks. Our proximal discovery
service could also be used to construct virtual mobile ad hoc network (MANETs)
and opportunistic networks. Beyond the ability to implement MANET-style
routing algorithms without a separate dedicated radio interface, virtualization
of MANETs has added security benefits [14]. Virtual MANETs could be used
to form on-demand mobile clouds [30], execute geographic routing [5], imple-
ment location-based publish-subscribe [7], or enable wireless sensor network
(WSN) query-access mechanisms [9, 18, 22] across smartphones. The realiza-
tion of cloudlet-based virtual MANETs for mobile computing could conceivably
lead to a renaissance of techniques formerly developed for MANETs and WSNs.

5 Evaluation

We next benchmark the performance of our service in terms of its system-level
cost and the quality with which the service performs proximal resource discovery
under various combinations of (µ, �, T ) (number of administrative regions, fringe
width, fringe digest computation period), in an e↵ort to guide application devel-
opers in tuning our service’s parameters to meet application requirements. We
simulate mobile clients using two real-world and one simulated mobility trace
data sets (Table 1). Our framework is implemented in Python.

Table 1. Mobility Trace Data Sets

Data Set Geographic Region Description

UT-Real 640m2

UT Austin campus
24 hours of location information from 18
users of a mobile application deployed on
the UT Austin campus in June 2013

UT-Sim 640m2

UT Austin campus
6 hours of simulated location informa-
tion for 200 nodes generated using Mo-
biSim [23] and Levy-walk [28] mobility

Cabspotting [27] 10km2

downtown San Francisco
6 hours of location information for ⇠500
taxi cabs in downtown San Francisco, USA

We decompose a square geographic region into µ administrative regions
(ARs), assign each AR one instance of our discovery service, and generate a la-
beled map of these regions and their ARs; the clients and the µ service instances
each receive a copy of this map. Each simulated client moves about the region
and issues a POST /devices with its current location at most once per minute to
the cloudlet-hosted service responsible for the AR it occupies. Every T seconds,
each of the µ instances of the discovery service computes the digest1 for each

1 To prevent “stale” resources, we restrict digests to contain only resources that issued
a POST /devices within the last T seconds (i.e., since the last fringe digest).
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of its fringes. The service instance then issues a POST /fringes containing the
digest to the respective neighboring service instance. During each simulation, we
perform periodic proximal resource discovery queries (i.e., cloudlet-bound GET

/neighbors requests): at 10 randomly chosen simulation times we randomly
select 25 simulated clients1 and issue three queries (r =[“near”, “medium”,
“far”])2. For each data set, we also generate an Oracle, which is e↵ectively a
central (cloud) server to which every client posts its location once per minute.

Table 2 shows our evaluation parameters; in cases where we explored multiple
values, the value in parentheses is the default. We first evaluate the quality of our
service in terms of the mean number of false positives (resources in a cloudlet
result and not in the corresponding Oracle result) and false negatives (resources
not in a cloudlet result, but in the corresponding Oracle result) produced per
query under various synchronization strategies. In both cases, we normalize the
false positives and false negatives to the size of the Oracle result set. That is,
a value of 0.1 for a normalized false negative score indicates that for every 10
items in the Oracle result, there was one result missing from the cloudlet result.

Table 2. Evaluation Parameters

Parameter Value(s)

µ: number of cloudlets 4, 9, 16, (25), 36, 49, 64, 81, 100
�: fringe width (fraction of width of an AR)

1
10 ,

1
9 ,

1
8 ,

1
7 ,

1
6 , (

1
5 ),

1
4 ,

1
3 ,

1
2

T : digest update period (in seconds) 60, 300, (900), 1800, 3600, 7200, 18000
t: client location update period (in seconds) 603

u: location update size (in bytes) 80

Fig. 4 shows the false negative and false positive rates for varying the number
of cloudlets for the UT-Real and Cabspotting traces; we omit the results for UT-
Sim as they are very similar to the results for Cabspotting. Two observations are
relatively consistent across all data sets. First, the errors show a slight upward
trend as the number of cloudlets increases. As the cell sizes decrease, queries are
increasingly likely to rely on the digest from neighboring cloudlets for correct
information, and this information is more out of date than the local cloudlet’s
information. Second, the false positive and false negative rates for “near” queries
are significantly better than for “medium” or “far.” This demonstrates (and
begins to benchmark) that the cloudlet-based approach is more suited for highly
localized search and is not as well suited to searching for information that is
located further afield. Consider a query in the UT-Real when µ is 64, where
each cloudlet is responsible for a 10 x 10m2 area. A “medium” query, looking
for resources within 50m, may match resources that are not even located in an
adjacent administrative region and will be impossible to find using our service.

1 Only 18 clients were available in the UT-Real data set.
2 We define the [“near”, “medium”, “far”] ranges as (25m, 50m, 75m) for the UT-Real

and UT-Sim data sets and (100m, 500m, 1000m) for the Cabspotting data set.
3 The client update period was set to exactly 60 seconds for UT-Sim. For UT-Real and
Cabspotting, the period was determined by the data set but was close 60 seconds.
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(a) UT-Real

(b) Cabspotting

Fig. 4. Impact of varying the number of cloudlets.

(a) µ = 25 (b) µ = 36
Fig. 5. A “poor” choice of µ may split clusters.

Fig. 4(a) also shows
an interplay between
the behavior of real
users and the defini-
tion of cloudlets. For
µ values of 36 and 49,
the upward trend of the
error rates is violated.
The reason can be iden-
tified by examining the
location traces of the
users, shown in Fig. 5.
In the case of µ = 36, the common areas where users cluster (in this case, three
buildings on the university campus) happen to lie entirely within single admin-
istrative regions. In the case of µ = 25, these clusters cross the boundaries of
administrative regions. Users’ queries therefore also often cross these boundaries,
meaning that they increasingly rely on digests for correct query resolution. The
conclusion from this observation is that defining administrative regions should
account for user mobility patterns and should not create artificial boundaries to
separate users within natural congregation areas.

We next examine the impact of varying the fringe width. Fig. 6 shows the
false positive and false negative rates for the UT-Real and Cabspotting traces;
we again omit the results for UT-Sim, which are again very similar to the re-
sults for Cabspotting. Except within the (small) UT-Real data set, there is little
relationship between changing � and false positives and false negatives. These
figures again show the significant di↵erence in quality for “near,” “medium,”
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and “far” queries. While the error (as measured by the false positive or false
positive rate) is routinely below 10% for “near” queries, it grows up to nearly
50% for “far” queries. This again demonstrates that the cloudlet based approach
is particularly suited to very local queries of the immediate surroundings.

(a) UT-Real

(b) Cabspotting

Fig. 6. Impact of varying the fringe width.

Finally, we examine the quality of our cloudlet based discovery service with
respect to the update interval for fringe digests in Fig. 7. As T increases up to
50 minutes, quality degrades substantially. In the limit, the false positive rates
also decrease; this is a result of the fact that the digests are simply not updated
well, so they do not contain extra (irrelevant) information. However, we can
also discern that it is acceptable for the update interval to be larger than the
frequency with which the clients update their own cloudlets; specifically, any
setting of T under 900 seconds has only a marginal impact on false negatives.

We also benchmark the system-level cost of a synchronization strategy in
terms of the mean overhead (in KB) for sending both individual location updates
to the local cloudlet and the cost of sending the fringes according to the update
period. Because individual location updates are sent every minute, the cost, per
minute, of sending individual location updates to the local cloudlet is computed
as: n ⇥ 80B ⇥ 1 hop ⇥ 1KB

1024B , where n is the number of clients sending location
updates, and 80 bytes is the size of a client location update (from Table 2). We
assume that each client is located within one network hop of the cloudlet server.
We compute the cost of sending the digests between cloudlet servers as:

4(µ+
p
µ)⇥ sizedigestB⇥ 1 hop⇥ 1KB

1024B

where 4(µ+
p
µ) is the number of fringes in our square region and sizedigest is

measured during execution. We assume a single network hop between adjacent
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(a) UT-Real

(b) UT-Sim

(c) Cabspotting

Fig. 7. Impact of varying the fringe digest update period.

cloudlet servers. The total cost for the cloudlet approach is the sum of these two
values. We compare this to the system-level cost of the centralized approach,
computed as: n⇥80B⇥hhop⇥ 1KB

1024B , where the only cost is sending the clients’
individual updates to the central server. In the following results, we used the
(conservative) assumption of 10 hops to the central server1. Fig. 8 shows the
results, which include both the absolute values of the overhead (measured in
KB/min) for the cloudlet based approach and the improvement of the cloudlet
based approach over the centralized approach.

Overhead increases with both increasing µ and increasing �. As µ increases,
there are more digests to be sent because there are more fringes. Note, though,
that the overhead increases relatively slowly for increasing µ. Overhead increases
with � simply because, as the fringe size increases, there are more resources
within the fringe, so the size of the digest grows. Interestingly, the overhead

1 The value of 10 hops is significantly below the values we measured using traceroutes
to common cloud servers, which were routinely above 15 hops. The number of net-
work hops is not the only (or necessarily “best”) measure of cost, but it gives a
reasonable measure of the relative costs of these two approaches.
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(a) Varying µ

(b) Varying �

(c) Varying T
Fig. 8. Cloudlet overhead and comparison to Cloud based approach.

falls o↵ rapidly with increasing T ; for all values of T greater than 60 seconds,
we observed relatively low overheads (and therefore significant improvements in
comparison to the centralized approach). The plots in Fig. 8 show one additional
interesting phenomenon. The degree of improvement for the Cabspotting trace
is consistently better than the degree of improvement for the UT-Sim data set.
In real situations, resources tend to cluster in non-uniform ways, which the
cloudlet-based approach is designed to be sensitive to. This is in contrast to
the manufactured UT-Sim case in which the resources are uniformly distributed
with no attention to how real users or resources would be distributed in a real
space.

Our evaluation of the cloudlet based proximal resource discovery service has
demonstrated the situations in which it can prove beneficial over a more tradi-
tional cloud based approach. The cloudlet based approach may not always be
the ideal option (e.g., it does not have a high quality of query resolution for
“far” queries, or queries about resources that are multiple hops away in the local
network). For applications searching for very local resources (i.e., resources in
the immediate environs), the cloudlet based proximal resource discovery pro-
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vides high quality discovery at significantly decreased costs (with respect to the
amount of data transmitted within the network in total). The use of digests to
aid in discovering resources in neighboring cloudlets can be beneficial, especially
when the administrative regions are defined not randomly, but with input about
how they match with the real spaces that people inhabit.

6 Conclusion

The discovery of nearby digital resources is a definitive requirement of pervasive
computing, characterized by location-based mobile applications in digitally-rich
and highly dynamic physical spaces. As the density of both resources and users
continues to grow in such operating spaces, it becomes far more practical, per-
haps even crucial, to utilize proximally available computing resources rather
than a distant cloud resource to facilitate the discovery of nearby users and
resources. In this paper, we presented the design and implementation of a dis-
tributed location-based discovery service based on physically dispersed cloudlets,
which provide the service for well-defined physical regions. Our approach takes
advantage of the inherent proximity of clients, cloudlets, and relevant resources.
We explored various deployment settings of our service and demonstrated that a
cloudlet-based approach requires significantly less in-network tra�c than a cen-
tralized cloud-based approach while still providing good “look-up” query qual-
ity. Our evaluation focused on cloudlets that were responsible for rectangular
regions; our implementation does presuppose a particular shape of a cloudlet’s
administrative region (AR)—our service could operate over cloudlets with ARs
of arbitrary shapes that even overlap. Immediately, we envision that our proximal
discovery service could be used to supplement existing location-based discovery
services and P2P overlay approaches in heavily populated small physical spaces.
More generally, and more importantly, our service enables the realization of vir-
tual MANETs, the full-scale creation of which could lead to a revival of interest
in a whole body of MANET and WSN resource management techniques.
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