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Abstract—Pervasive computing applications often involve sensor-rich networking environments that capture various types of
user contexts such as locations, activities, vital signs, and so on. Such context information is useful in a variety of applications,
for example monitoring health information to promote independent living in “aging-in-place” scenarios, or providing safety and
security of people and infrastructures. In reality, both sensed and interpreted contexts are often ambiguous, thus leading to
potentially dangerous decisions if not properly handled. Therefore, a significant challenge in the design and development of
realistic and deployable context-aware services for pervasive computing applications lies in the ability to deal with ambiguous
contexts. In this paper, we propose a resource-optimized, quality-assured context mediation framework for sensor networks. The
underlying approach is based on efficient context-aware data fusion, information-theoretic reasoning, and selection of sensor
parameters, leading to an optimal state estimation. In particular, we apply dynamic Bayesian networks to derive context and deal
with context ambiguity or error in a probabilistic manner. Experimental results using SunSPOT sensors demonstrate the promise
of this approach.

Index Terms—Context-awareness, Ambiguous contexts, Bayesian networks, Multi-sensor fusion, Information theory, SunSPOT.
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1 INTRODUCTION

Recent research in smart environments offers promis-
ing solutions to the increasing needs of pervasive
computing applications; our work has demonstrated
the use of such environments to support the elderly
in home based healthcare applications [28]. Essential
to such applications is human-centric computing and
communication, where computers and devices adapt
to users’ needs and preferences.

In this paper we focus on the computational as-
pect of user-centric sensory data to provide context-
aware services; we demonstrate this through an ap-
plication for intelligent independent living. Given the
expected availability of multiple sensors of different
types, we view context determination as an estimation
problem over multiple sensor data streams. Though
sensing is becoming more and more cost-effective and
ubiquitous, the interpretation of sensed data as use-
ful contexts, particularly in critical applications like
healthcare or security, is still imperfect and ambigu-
ous. Therefore, a significant challenge facing the de-
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velopment of realistic and deployable context-aware
services lies in the ability to handle ambiguous con-
texts. The conversion of raw (sensed) data into high-
level albeit meaningful context information requires
middleware to pre-process the data collected from
heterogeneous distributed sensors through filtering,
transformation, and even aggregation, with a goal to
minimize the ambiguity of the derived contexts. Only
with reasonably accurate context(s) can the applica-
tions be accurate enough to make high quality adap-
tive decisions. The context processing could involve
simple filtering based on a value match, or sophis-
ticated data correlation, data fusion or information-
theoretic reasoning techniques. Contexts may also in-
clude various aspects of relevant information that may
be instantaneous or durative, ambiguous or unam-
biguous. Furthermore, heterogeneous sensors as the
information source usually have different resolutions
and accuracies, let alone different data rates and for-
mats. Thus, the mapping from sensory output to the
context information is a non-trivial task. We believe
context-aware mediation plays an important role in
improving the accuracy of the derived contexts by
reducing their ambiguity (and hence error), although
the exact fusion or reasoning techniques may be appli-
cation and domain specific. This motivates our work
in this paper.
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1.1 Related Work

The ubiquitous computing paradigm [34] implies smart
(i.e., pro-active) interaction of computing and com-
munication devices with their peers and surround-
ing networks, often without explicit operator con-
trol. Hence, such devices need to be imbued with
an inherent sentience about relevant contexts that
include automatically or implicitly sensed informa-
tion about the device states and the presence of the
users (inhabitants). This concept has led to various
projects in smart environments [6]. Existing work
such as the Aware Home [24], Reactive Room [7],
Neural Network House [21], Intelligent Room [4] and
House n [14] do not provide explicit reusable support
for users to manage or correct the inherent uncertainty
in the sensed data and its interpretation; instead
these systems assume that the sensed contexts are
unambiguous and error-free. The work reported in [9]
provided a toolkit to enable the integration of context
data into applications, however, no mechanism was
proposed for sensor fusion or reasoning about con-
texts to deal with ambiguity. Although a mechanism
is proposed in [32] to reason about contexts, it does
not provide well defined context-aware data fusion
models nor does it address the challenges associated
with context ambiguity and situation prediction. Dis-
tributed mediation of ambiguous contexts in aware
environments [8] has been used to allow the user to
correct ambiguity in the sensed output.

Significant efforts have also been made to develop
middleware systems that can effectively support ef-
ficient context-aware applications in the presence of
resource constraints, such as sensory data acquisition
or information fusion [1]. For example, DFuse [17]
is a data fusion framework that facilitates dynamic
transfer of different application level information into
the sensor network to save power. In the adaptive
middleware for context-aware applications [12] in
smart home setups, the application’s quality of con-
text (QoC) requirements are matched with the QoC
attributes of the sensors with the help of a utility
function. Similarly, in MiLAN [11], the quality of
service (QoS) requirements of the applications are
matched with the QoS provided by the sensor net-
work. Instead of looking into the network utility
maximization problem with predefined utility func-
tions, the quality of information-aware framework in
[19] employs a runtime design perspective in which
the wireless sensor network learns and optimizes the
network utility by probing the satisfaction levels of
the completed tasks. The notion of information quality
in the form of application tolerance is introduced
in [18], where the loss of information or data due
to resource-constrained environments is addressed by
the approximation. An information-directed sensor
selection approach is proposed in [37] for a target
tracking application. The work presented in [31] used

a dynamic Bayesian network based model to provide
the information quality of sensor network applica-
tions with minimal use of resources.

However, in all these schemes, the QoC require-
ments of the applications are assumed to be pre-
determined, and the applications should know both
these requirements and the quality associated with
each type of sensor in advance. Given that, in per-
vasive computing environments, the nature (num-
ber, types and cost of usage, and benefits) of such
sensors available to the applications usually vary, it
is impractical to assume a priori knowledge about
them. Entropy-based sensor selection heuristic algo-
rithms are also proposed in [10], [20], [33]. In these
schemes, an information-theoretic approach is taken
for specific application scenarios, where the belief
state of the target value is gradually improved by
repeatedly selecting the most informative unused sen-
sor until the required information or context accu-
racy is achieved. The problem of distributed tracking
using wireless sensor networks is formulated as an
information optimization problem that quantifies sev-
eral measurable information utility factors [36]. This
information-driven approach to sensor querying and
data routing balances the information gain provided
by each sensor with the cost associated with infor-
mation acquisition. The selection of proper sensors
with the right information at the right moment was
originally introduced in [30], while the structure of
an optimal sensor configuration constrained by the
wireless channel capacity was investigated in [2].

By eliminating the simplifying assumption that all
contexts are certain, we design a context-aware data
fusion algorithm to mediate ambiguous contexts us-
ing dynamic Bayesian networks. We also propose
an approach to intelligent sensor management that
provides optimal sensor parameter selection in terms
of the reduction in the ambiguity or error in the state
estimation process. Additionally, a quality of context
model along with a fidelity function is proposed to
satisfy the application quality requirements.

1.2 Our Contributions

In this paper, we propose a framework that fuses
data from disparate sensors, derives the underlying
context state (activity), and reasons efficiently about
this state in order to support context-aware services
that handle ambiguity. For pervasive computing and
smart environments with ambiguous contexts, our
goal is to build a framework that resolves information
redundancy, and also ensures the conformance to the
application’s quality of context (QoC) bounds based
on an optimal sensor placement and/or configuration.
For this purpose, we propose a layered and modu-
larized system design using Dynamic Bayesian Net-
works (DBNs) [15] in which the sensed data is used
to interpret context states through the fusion process.
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Additionally, we use information-theoretic reasoning
techniques to select the optimal values for context
attributes (sensor data) to minimize the state ambiguity
or error. We build a system using SunSPOT sensors
for sensing and mediating the user context states or
activities. Experimental results demonstrate that the
proposed framework is capable of reducing the sen-
sor overhead (measured in terms of communication
cost) while ensuring an acceptable level of context
accuracy. The framework is also capable of adaptively
enhancing the effectiveness of the probabilistic sensor
fusion scheme and the situation prediction of the
user states by selectively choosing the proper sensors
corresponding to the most cost-effective (i.e., efficient)
disambiguation action.

The rest of the paper is organized as follows. Sec-
tion 2 describes the basic concepts of our context
model and the quality of context (QoC). Section 3
describes the context-aware (active) data fusion model
based on DBNs for resolving ambiguity. In Section 4
we study the structure of an optimal sensor configu-
ration to minimize the state estimation error from an
information-theoretic point of view. The performance
of our proposed framework is evaluated for a smart
health monitoring application with a context sensing
system in place, and the results are presented in
Section 5. Finally, Section 6 concludes the paper.

2 CONTEXT MODEL
Context-aware sensory data fusion in the face of
ambiguities is a challenging research problem. This
is because the data sent to the sensor fusion mediator
collected from a network of multiple (heterogeneous)
sensors is often characterized by a high degree of
complexity due to the following challenges: (i) data
is often acquired from sensors of different modali-
ties and with different degrees of uncertainty and
ambiguity, (ii) decisions must be made quickly, and
(iii) the situation as well as the sensory observa-
tions evolve dynamically over time. The paradigm
of context-awareness demands systems to obtain real
world information using limited available resources in
a way that is useful for the applications at hand. The
derived contexts can either be immediately used for
triggering actions or representing real-life situations in
which case further computation, such as data fusion
techniques may be required to relate the contexts
to the situations, leading to what is called situation-
awareness. To model this fundamental nature of con-
texts and to enable context and situation-awareness
for systems that are able to sense information in
the presence of varying levels of data uncertainties
requires a generic context model. Thus we make use
of the space-based context model [25] and extend it
to include quality of context (QoC) attributes. This
extended model captures the underlying description
of context related knowledge and attempts to incorpo-
rate various intuitions that should impact the context

inference and produce better (more accurate) fusion
results.

2.1 Space-based Context Model
We use the space-based context model as proposed
in [25] that defines the following concepts.

Definition 1: Context Attribute: A context at-
tribute, denoted by ai, is defined as any type of
data used for inferring situations. A context attribute
is often associated with sensors, virtual or physical,
where the sensor readings denote the context attribute
values at a given time t, denoted by ati. For example,
the body temperature “100◦ F” of a user measured by the
i-th sensor at a given time t is an example of a context
attribute.

Definition 2: Context State: A context state de-
scribes the current state of the application or user
in relation to a chosen context and is denoted by
a vector Si. It is a collection of N context attribute
values that are used to represent a specific state of
the user at time t. Thus, a context state is denoted
as St

i = (at1, a
t
2, . . . , a

t
N ). Suppose the body temperature

is “100◦ F” and the user location is “gym”, then the
context state of the user may be inferred as “doing physical
exercise”. Later we will show how to infer the context
state from the context attributes using a probabilistic
framework such as dynamic Bayesian networks.

Definition 3: Situation Space: A situation space
R represents a real-life situation. It is a collection
of ranges of attribute values corresponding to some
predefined situation (e.g., sickness or normal be-
havior) and is denoted by a vector space Ri =
(aR1

1 , aR2
2 , . . . aRM

M ) consisting of M acceptable ranges
Ri for these attributes. An acceptable range aRi

i is
defined as a set of elements V (numerical or non-
numerical) that satisfies a predicate P , i.e., aRi

i =
V |P(V ). For example, in numerical form the accepted
region would often describe a domain of permitted
real values for an attribute ai. A region of acceptable
values is defined as a set that satisfies some predi-
cate, containing any type of information, numerical or
non-numerical. For example, the context attribute “body
temperature” can take values in the range “98◦ F” to
“100◦ F” when the user context state is “doing physical
exercise” with predefined situation space “normal”. But if
the body temperature takes values within the range “98◦

F” to “100◦ F” when the user context state is “lying
on the bed”, then the situation space is “not normal”.
A hierarchical probabilistic framework incorporating
context attributes, context states, and situation space
is discussed in the next section.

2.2 Quality of Context Model
Despite recent developments in sensing and net-
work technology, continuous monitoring of users’
vital signs (in health care applications) and environ-
mental context in normal settings is still challenging
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due to the resource constraints of sensor networks.
Consequently, the amount of information transmitted
to a sensor fusion mediator should be minimized in
order to prolong the mediator’s lifetime. The idea
of exploiting temporal and spatial correlation among
successive samples of individual sensors is addressed
in [3]; this approach reduces the communication over-
head for snapshot queries. The focus there was on
meeting the quality requirements for a class of ‘ag-
gregation queries’, whereas our model is on arbitrary
relationships between a context state and its underly-
ing sensor data. Thus we define the Quality of Con-
text (QoC) [13] as a metric for minimizing resource
usage (e.g., battery life and wireless communication
bandwidth). We assume that the application processes
an aggregation query with its QoC specified by a
precision range Q, which implies that the aggregate
value computed at the mediator at any instant should
be accurate within ±Q.

Our objective is to evaluate the update cost of a
sensory action A for a given task while ensuring
conformance to the application’s QoC bound. Let us
denote the update cost (in terms of communication
overhead) as Ui if a sensor Bi has to report its sample
value to the mediator and m is the subset of the
reporting sensors. Then, the objective is to minimize∑

Bi∈m

Ui(qi) (1)

where Ui denotes the expected average update (data
reporting) cost and explicitly indicates its dependence
on the specified precision interval qi (tolerance range).
Intuitively, Ui is inversely proportional to qi, since
the value of the data reporting cost would be high
as the precision interval continues to shrink. At any
particular time instant t, we denote this update cost
as U t

i .
This update cost also depends on the hop count hi,

the length of the uplink path from the sensor Bi to
the fusion mediator. Accordingly, the update cost can
be rewritten as:

minimize
∑

Bi∈m

Ui(qi, hi) (2)

Claim 1: The update cost Ui is inversely propor-
tional to qi and directly proportional to hi.

A natural method for sampling sensor data is the
use of random walks. In the sensor network domain,
one could generate a random sample by propagating
a request message along a randomly chosen h-hop
path starting from the query sink, and sampling the
h-th sensor reached. Here we model the variation of
a given sensor’s sampled values as a random walk
without considering any temporal correlation among
these samples. For such a model, it is well known
that a sensor’s sampled value deviates from the mean
by more than ±qi is proportional to 1

q2
i

. We consider
the random walk model because the sensor positions

are unknown and the network may not always be
connected. If the underlying data samples evolve as
a random-walk model as shown in [13], we have
Ui ∝ hi

(q2
i
)

resulting in the following optimization
function:

minimize
∑

Bi∈m

hi

(q2i )
(3)
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Fig. 1. Subset of sensors with required QoC with no
consideration of tolerance range

For example, as shown in Fig. 1, using a respiratory
sensor, the activity state of an individual may be
computed with an inferencing accuracy of 0.9 (i.e.,
with 10% error rate), but only with 0.8 accuracy using
data from a low-quality ECG sensor. However, by
fusing the data available from the respiratory and
ECG sensors, we can achieve an inferencing accuracy
of 0.98 (i.e., only 2% error rate as per calculation based
on Eq. 6). In Fig. 1, each edge from a sensor to the
context attribute is associated with a function of three
parameters: qi (the tolerance range of sensory data
from sensor Bi), Q (the accuracy range of the derived
context attribute) and ℘ (the fidelity of the derived
context attribute that lies within the range Q). Thus,
the fidelity function is ℘ = fi(qi, Q) for sensor Bi.
In other words, given tolerances on qi and Q, we
can say how often (in an ergodic sense), the fused
context attribute estimation will lie within the true
accuracy range ±Q. Similarly, when we consider two
sensors Bi and Bj jointly, the fidelity function should
be ℘ = fij(qi, qj , Q). In this way, for m sensors, there
are 2m − 1 (all possible combinations except when
no sensor is selected) functions f(.), indicating the
relationship between the context attribute, the context
fidelity and the precision range. Given these functions,
the ‘application’ now says that it needs a precision
bound (on the context attribute) of Q́ with a fidelity
of at least ℘́. Then, the problem at hand is:

Problem 1: Find the combination of tolerance
ranges q1, q2, ..., qm of m selected sensors that satisfies
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the fidelity f1,...,m(q1, q2, . . . qm, Q́) ≥ ℘́ and minimizes
the update cost

∑
Bi∈m hi/(qi)

2.
In case the context attribute values are boolean, it

may be hard to associate a bound Q with the accuracy
of the context. However, this is a special case of the
model proposed here.

The problem of optimally computing the qi values
can be represented by the Lagrangian:

minimize
m∑
i=1

hi

q2i
+ λ×

[
f1,...,m(q1, q2, . . . qm, Q́)− ℘́

]
.

(4)
where λ is the Lagrangian constant. Finding an exact
solution to Eq. 4, for any arbitrary f(.) is an NP-
complete problem [3]. While a completely arbitrary
f(.) function requires a brute-force search, there are
certain forms of f(.) that prove to be more tractable.
In particular, an attractive case occurs when the indi-
vidual fidelity function of sensor Bi is represented by
the form

fi(.) = νi ∗ exp−
q2
i

ηi , (5)

where ηi and νi are sensitivity constants for sensor
Bi. A larger value of ηi indicates a lower contribution
from sensor Bi to the inference of the context state
S. In [22], a decision fusion rule with the counting
policy has been proposed based on a Poisson sensor
distribution model. Moreover, for selecting m sensors,
assuming that the estimation error of each sensor
is statistically independent of the other sensors (as
in [16]), the resulting f(.) function has the form:

f1,...,m(.) = 1−
∏

Bi∈m

[1− fi(.)] (6)

We solve this by taking the Lagrangian optimization
as follows.

minimize
∑

Bi∈m

hi

q2i
+λ

[
1−

∏
Bi∈m

[1− (νi ∗ exp−
q2
i

ηi )]− ℘́

]
.

(7)
and prove the following Lemma.

Lemma 1: The combination of tolerance ranges
q1, q2, ..., qm of m sensors that satisfies the fidelity
function f1,...,m(q1, q2, . . . qm, Q́) ≥ ℘́ and minimizes
the objective function in Expression (3) is given by

h1 ∗ η1 ∗ (1− ν1 ∗ exp(− q21
η1
))

q41 ∗ ν1 ∗ exp(−q21
η1

)
= . . .

=
hm ∗ ηm ∗ (1− νm ∗ exp(− q2m

ηm
))

q4m ∗ νm ∗ exp(−q2m
ηm

)

Proof: The proof is shown in the Appendix.
This optimization problem helps us choose the val-

ues of q1, q2, . . . , qm for a given set of m sensors, such
that we minimize the total update cost while ensuring
the required accuracy level.

In the next section we propose a fusion scheme that
can correlate with and reason about the context at-
tributes and context states since the situation space in
pervasive computing environments is often dynamic
and unfolds over time. Thus we need a time varying
dynamic model to reflect changes that captures the
beliefs of the current events and predicts the evolution
of different situations. An adaptive system is therefore
needed so that it cannot only handle raw sensory data
of different modalities systematically but also, per-
haps more importantly, can reason over time to reduce
the context ambiguity during the interpretation of the
situation.

3 CONTEXT-AWARE DATA FUSION

A characteristic of a sensor-rich smart environment
(e.g., health care) is that it senses and reacts to contexts,
information sensed about the environment, its occu-
pants (users), and their daily activities, by providing
context-aware services with a goal to improve user
experiences and interactions with the environment. In
this section, we develop an efficient framework for
sensor data fusion in a context-aware environment
with the help of the underlying space-based context
model. In the case of context-aware services, it is
difficult to get an accurate and well defined context
that can be classified as ‘unambiguous’ since the
interpretation of sensed data as a context is mostly
imperfect and ambiguous (or noisy). To alleviate this
problem, we propose a dynamic Bayesian network
(DBN) model.

Fig. 2. Context-Aware Data Fusion Framework based
on Dynamic Bayesian Networks

3.1 The DBN Model

Our motivation is to use the data fusion algorithm to
develop a context-aware model to gather knowledge
from the sensory data. A Dynamic Bayesian Networks
(DBN) provides a coherent and unified hierarchical
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Procedure ACMA (input: context attribute ati, confidence threshold τ;
output: subset of sensors m)
1. Initialize time stamp t = 0,
2. Compute ambiguity-reducing utility {Vt

1, . . . ,Vt
m} by Eq.8

3. Calculate utility value {U t
1, . . . , U

t
m} using Eq.10

4. Select the most efficient sensor action A∗ based on Eq.11
5. Instantiate the subset of corresponding sensors
6. Update probability distribution P (R, A) of situation space using Eq.12
7. If P (R, A∗) ≥ τ, then terminate; otherwise
8. Increase time stamp t = t+ 1, and go to step 1

Fig. 3. Ambiguous Context Mediation Algorithm (ACMA)

probabilistic framework for sensory data represen-
tation, integration, and inference. Fig. 2 illustrates
a DBN based framework for a context-aware data
fusion scheme consisting of a situation space, context
states, context attributes, and a sensor fusion mediator
in a network of sensors. The data fusion scheme
integrates both top-down and bottom-up inference
mechanisms. The top-down inference can be used to
predict the utility of a particular sensory action with
respect to a goal at the top. For example, in the case
of a given context state (going to the restroom), top-
down inference will fuse the most relevant context
attributes (time, frequency of getting up from bed,
blood sugar level, etc.). The bottom-up inference in-
tegrates the context attributes from a sensory action
and updates each node in the network.

Let us consider a situation space R resulting from
the sensory information sources B = {B1, . . . ,Bm}
where B is a set of measurements taken from sensors
labeled 1 to m as shown in Fig. 2. The context attribute
that is most relevant in our case should decrease
the ambiguity of the situation space element a

Rj

j

the most; we will select that sensor which directs
the probabilities of the situation space to near one
(for maximum) or zero (for minimum). Let V be the
ambiguity reducing utility to the situation space R.
Then the expected value of V , given a context attribute
atk from a sensor Bk, providing L possible values, can
be represented as

Vi =
L

max
k=0

N∑
j=0

[P (a
Rj

j |atk)]2 −
L

min
k=0

N∑
j=0

[P (a
Rj

j |atk)]2 (8)

where i ∈ {1, 2, . . .m} is a sensor and N denotes the
elements of the situation space. The context attribute
can be measured by propagating the possible outcome
of an information source, i.e.,

P (a
Rj

j |atk) =
P (a

Rj

j , atk)

P (atk)
(9)

However, the quantification of this conditional prob-
ability needs a detailed model depending upon the

different types of sensors and their applications. Con-
sider for example, an audio sensor. Evaluating the
benefit of using audio in disambiguating a person’s
state (e.g., whether a person is moaning in pain or
singing) is extremely challenging. It depends on how
far the person is from the microphone, which way
the person is facing, the time of the day (at night it
is more quiet so sounds can be heard more clearly),
and the state of other potentially interfering audio
sources (such as air conditioning, TV, radio, refrigera-
tor etc). Computing the disambiguating utility, there-
fore, needs very detailed models of how the above
factors affect the efficacy of the audio sensor.

Considering the information update cost from Eq. 2
and ambiguity reducing utility from Eq. 8, the overall
utility can be expressed as

Ui = αVi + (1− α)(1− Ui) (10)

where Ui is the update cost to acquire the information
by the sensor Bi with a knowledge of the QoC bound,
and α denotes the balance coefficient between the am-
biguity reduction and the cost of information acquisi-
tion. Eq. 10 represents the contribution to ambiguity
reduction and the cost associated with information
retrieval to achieve the desired level of confidence for
the situation space. We can observe from Eq. 10 that
the utility value of a context attribute ai increases with
the ambiguity reducing utility and decreases as the
cost to acquire that attribute increases. So the most
efficient sensor action A∗ can be chosen with the help
of the following decision rule:

A∗ = argmax
A

∑
j

U(B, aRj

j )P (a
Rj

j |B) (11)

where B = {B1, . . . ,Bm} is a set of measurements
taken from sensors labeled from 1 to m respectively at
a particular instant. Action A refers here the optimal
sensor selection. To define the decision rule for select-
ing sensor, we consider utility of a situation space over
all its acceptable ranges multiplied by the probability
of the situation space over all its acceptable ranges
with the given set of sensors. The subset of sensors
(referred to as economically efficient disambiguation
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sensor action A∗ ) which maximizes this decision
rule value is ultimately chosen. By incorporating the
temporal dependence between the nodes as shown
in Fig. 2, the probability distribution of the situation
space can be described as:

P (R, A) =

T−1∏
t=1

P (St|St−1)

T−1∏
t=1

P (Rt|βt)P (R0) (12)

where T denotes the time, R = {R0, . . . ,Rt, . . . ,RT }
is the situation space and β = {β0, . . . , βt, . . . , βT } is
the subset of sensed information on the time sequence
of T . Here S = {S0, . . . , St, . . . , ST } represents a
context state relevant on the time sequence of T that
has temporal links between corresponding nodes in
two neighboring time steps. The sensor action strat-
egy must be recalculated at each time step since the
best action varies with time. The ambiguous context
mediation algorithm is presented in Fig. 3. Next we
propose an information theoretic reasoning technique
to select the sensor parameters with a goal to reduce
the ambiguity in the context estimation process.

4 OPTIMAL SELECTION OF SENSOR PA-
RAMETERS

Energy-efficiency in wireless sensor networks is of
utmost importance in addition to managing the QoC
requirements. For example, a higher quality of context
might be required for certain health-related context at-
tributes during high stress situations such as medical
emergency, while a lower quality may suffice during
low stress situations such as sleep. Fig. 4 shows the
context attributes graph for a personal health mon-
itor and includes multiple states for each vital sign
that can be monitored depending upon the context
state of the patient. Specifically, the figure shows that
when a patient is lying in a distressed state and the
blood pressure is low, the blood oxygen level must
be monitored with a quality of 0.7 and the blood
pressure must be monitored with a quality of 0.8. So
the problem here is to decide what type of information
each sensor should send to the fusion mediator to
estimate the best current state of the patient, satisfying
the application QoC requirements for each context
attribute while at the same time minimizing the state
estimation error.

In this section, we formalize an optimal selection
of sensor parameters for context state estimation. The
optimality is defined in terms of the reduction in
ambiguity or error in the estimation process. The
main assumption is that state estimation becomes
more reliable and accurate if the ambiguity or error
in the underlying estimation can be minimized. We
investigate this from an information-theoretic per-
spective [5], where information about the context at-
tributes is made available to the fusion mediator by a
set of selected sensors. The fusion mediator produces

Fig. 4. State-based Context attribute graph with the
required QoC

an estimate of the state of the situation by analyzing
the received data. We assume that the noisy observa-
tions across sensors are independent and identically
distributed (i.i.d) random variables conditioned on the
binary situation R (we assume here the situation R as
binary for ease of modeling). Each sensor attribute has
a source entropy rate1 H(ai). By H(ai) we mean the
entropy rate of the ith sensor as a source; H(ai) is the
average number of bits needed to encode it; and ai is
the noisy observations across sensor i, mathematically
refers the discrete random variable of a stochastic
process. Any sensor wishing to report this attribute
must send H(ai) bits per unit time, which is the
source entropy being measured assuming that the
sensor is sending the ‘exact’ physical state. Of course,
different sensors contribute in different measures to
the ‘error’ in the state estimation (e.g., due to their
sensing limitations). So, the problem is to minimize
the error (or keep it within a specified bound), while
not exceeding the shared link rate Q. Thus, by max-
imizing the a posteriori detector probability, we can
minimize the estimation error of the random variables
based on noisy observations from a set of sensors at
the fusion center to accurately reconstruct the state of
the situation [2].

Problem 2: Let D be the vector of sensors and A be
the set of attributes. Imagine a (D×A) matrix where
Dmi = 1 when sensor Bm sends attribute ai. Then, the
goal is to find the matrix (D×A) within the link rate
constraint Q representing the data that minimizes the

1. The entropy rate of a data source means the average number
of bits per symbol needed to encode it. The entropy or source
information rate of a stochastic process is the time density of the
average information in that process. Mathematically, the entropy
rate H(X) = limn→∞ 1

n
H(X1, X2, ..., Xn) is the limit of the joint

entropy of n members of the process Xk divided by n, as n tends
to ∞.
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estimation error of the situation space.∑
m

∑
i

H(ai) ∗Dmi < Q and

minimize [Pe = P{R̃ �= R}] (13)

where R̃ is an estimate of the original situation R.

4.1 Problem Statement
We assume R to be a random variable drawn from
the binary alphabet {R0,R1} with prior probabilities
p0 and p1, respectively. In our case, each sensor needs
to determine a sequence of context attributes for a
sequence of context states {Sm,t : ∀t = 1, 2, . . . , T}
to determine the value of situation R. We assume
that the random variables Sm,t associated with context
states are i.i.d., given situation space R, with con-
ditional distribution pS|R(.|Ri). The sensors send a
summary Zm,t = πm(Sm,t) of their own observations
to a fusion center at discrete time t, where π is an
admissible strategy (decision rule). Upon receiving
the data, the fusion center produces an estimate R̃
of the original situation R. Thus we need to find
an admissible strategy for an optimal sensor-attribute
mapping matrix (D×A) that minimizes the probabil-
ity of estimation error Pe = P{R̃ �= R}.

Definition 4: Consider a set of decision rules πm

for an observation X → {1, 2, . . . nm} where nm is the
number of messages admissible to sensor Bm with
the admissible strategy denoted by π, consisting of
M sensors in (D ×A) matrix, such that

M∑
m=1

∑
i

nm ×H(ai) ∗Dmi < Q

A message in this case is a sequence of context
attributes. But for a set of decision rules we have
a set of messages. By admissible strategy in this
definition we mean the strategy which minimizes the
probability of estimation error of the situation space.
The number of messages most relevant (admissible)
to sensor Bm with the admissible strategy being max-
imum a posteriori detection probability are ultimately
chosen. The evaluation of message zm,t = πm(sm,t) by
sensor Bm is forwarded to the fusion center at time
t. Since we are interested in a continuous monitoring
scheme, we consider that the observation interval T
tends to ∞. But the associated probability of error
at the fusion center goes to zero exponentially fast
as T grows unbounded. Thus we can compare the
data transmission scheme through the error exponent
measure or Chernoff information:

E(π) = − lim
T→∞

1

T
logP (T )

e (π) (14)

where P
(T )
e (π) denotes the probability of error at the

fusion center for strategy π considering the maxi-
mum a posteriori detector probability. We use Π(Q)
to capture all admissible strategies corresponding to

a multiple access channel with link rate capacity Q
and redefine our problem as follows:

Problem 3: Find an admissible strategy π ∈ Π(Q)
that maximizes the Chernoff information:

E(π) = − lim
T→∞

1

T
logP (T )

e (π) (15)

4.2 Analytical Results
Let us consider an arbitrary admissible strategy π =
(π1, π2, . . . , πM ) and denote the space of received in-
formation corresponding to this strategy by

γ = {1, 2, . . . , n1}×{1, 2, . . . , n2}× . . .×{1, 2, . . . , nM}
(16)

where

(π1(x1), π2(x2), . . . , πM (xM )) ∈ γ (17)

for all observation vectors (x1, x2, . . . , xM ) ∈ XM .
Since the maximization of the a posteriori detector
is basically the minimization of the probability of
estimation error at the fusion center, we could approx-
imate this probability of error for a finite observation
interval T and measure the error exponent corre-
sponding to strategy π using Chernoff’s theorem [5].

Let pZ̃|R(.|R0) and pZ̃|R(.|R1) denote the condi-
tional probability mass functions on γ, given situa-
tions R0 and R1. Now for z̃ = (z1, z2, . . . zM ) and
i ∈ 0, 1 :

pZ̃|R(z̃|Ri) = Pi {x̃ : (π1(x1), π2(x2), . . . , πM (xM )) = z̃}

=

M∏
m=1

Pi{πm(um)} (18)

where the probability of event W is Pi{W} under
situation Ri, and πm(um) = {x : πm(x) = zm}

Theorem 1: Using Chernoff’s theorem [5], the best
achievable exponent in the error probability at the
fusion center is given by

E(π) = − min
0≤k≤1

log

⎡
⎣∑
z̃∈γ

(pZ̃|R(z̃|R0))
k(pZ̃|R(z̃|R1))

1−k

⎤
⎦

where π ∈ Π(Q) is given. Using Theorem 1 we can
restate our original problem as follows.

Problem 4: Maximize the Chernoff information

E(π) = − min
0≤k≤1

log

⎡
⎣∑
z̃∈γ

(pZ̃|R(z̃|R0))
k(pZ̃|R(z̃|R1))

1−k

⎤
⎦

corresponding to an admissible strategy π ∈ Π(Q).
The problem of finding the optimal decision rules π =
(π1, π2, . . . , πM ) is hard even when the assignment
vector (n1, n2, . . . , nM ) is fixed a priori. Hence we try
to derive a set of simplified conditions for Problem 4.
For this purpose, we state the following lemma, where
we obtain an upper bound on the contribution of a
single sensor to the Chernoff information and find
sufficient conditions for which having Q sensors in the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXXX 2011 9

(D × A) matrix, each sending one bit of information,
is optimal.

Lemma 2: For strategy π, the contribution EBm(π)
from a single sensor Bm to the Chernoff information
E(π) is bounded above by the Chernoff information
E∗ contained in one context state S,

EBm(π) ≤ E∗ ≡
− min

0≤k≤1
log

[∫
X

(pS|R(x|R0))
k.(pS|R(x|R1))

1−kdx

]
(19)

Proof: The proof is shown in the Appendix.

Let us represent E1(πm) as the Chernoff information
corresponding to a single sensor with decision rule
πm, i.e.,

E1(πm) =

− min
0≤k≤1

log

[
nm∑

zm=1

(P0{πm(um)})k(P1{πm(um)})1−k

]
(20)

and let Γb be the set of binary functions on the
observation space X .

Lemma 3: Consider a binary function π̃b ∈ Γb such
that E1(π̃b) ≥ E∗

2 . Then having Q identical sensors,
each sending one bit of information is optimal.

Proof: Let strategy π = (π1, π2, . . . , πM ) ∈ Π(Q)
and link rate capacity Q be given. We construct an
admissible strategy π′ ∈ Π(Q) such that E(π′) ≥
E(π). We divide the collection of decision rules
{π1, π2, . . . , πM} into two sets; the first set contains
all of the binary functions, whereas the other is
composed of the remaining decision rules. We also
consider Ib to be the set of integers for which the
function πm is a binary decision rule:

Ib = {m : 1 ≥ m ≥ M,πm ∈ Γb} (21)

Similarly, we define Inb = {1, 2, . . . ,M} − Ib. Con-
sidering the binary decision rule π̂b ∈ Γb, we express

E1(π̂b) ≥ max{max
m∈Ib

{E1(π̂b)}, E
∗

2
} (22)

Since by assumption π̃b ∈ Γb and E1(π̃b) ≥ E∗
2 , we

infer that such a function π̂b always exists. Observing
that m ∈ Inb implies that nm ≥ 2, which in turn yields
nm×H(ai) ≥ 2. Hence without exceeding the capacity
(Q bits per unit time) of the multiple access channel,
we can replace each sensor with index in Inb by two
binary sensors. Considering the alternative scheme π′,
where π′ is an admissible strategy, we replace every
sensor with index in Inb by two binary sensors with
decision rule π̂b. This new scheme outperforms the
original strategy π as shown below.

TABLE 1
Calibrated Accelerometer Sample Values for different

Context States

Range(5− 95th percentile) Context States
of Tilt Values (in degrees)
85.21 to 83.33 Sitting
68.40 to 33.09 Walking
28.00 to −15.60 Running

E(π′) = (| Ib | +2|Inb|)E1(π̂b) ≥ |Ib|E1(π̂b) + |Inb|E∗

≥
M∑

m=1

[
−min
0≤k≤1

log

[
nm∑

zm=1

(P0{πm(um)})k(P1{πm(um)})1−k

]]

≥−min
0≤k≤1

log

[∑
z̃∈γ

(
M∏

m=1

(P0{πm(um)})k(P1{πm(um)})1−k

)]

= E(π) (23)

We observe that the Chernoff information at the
fusion center is monotonically increasing with the
number of sensors for a fixed decision rule π̃b. The
state estimation error can be minimized by augment-
ing the number of sensors in π′ until the capacity
constraint Q is met with equality.
The strategy π being arbitrary, we conclude that having
Q identical sensors in the (D × A) matrix, each sending
one bit of information, is optimal in terms of reducing the
state estimation error. This configuration also conveys
that the gain offered through multiple sensor fusion
exceeds the benefits of getting detailed information
from each individual sensor.

5 EXPERIMENTAL STUDY

We use the SunSPOT [29] sensors for evaluating our
proposed framework for context sensing and me-
diation. Each free-range SunSPOT (Sun Small Pro-
grammable Object Technology) contains a processor,
radio, sensor board, and battery; the base-station
SunSPOT contains a processor and radio only. The
SunSPOT uses a 32-bit ARM9 microprocessor running
the Squawk VM and programmed in Java, supporting
the IEEE 802.15.4 standard. In our context sensing and
performance evaluation, we will use various built-in
sensors available with the SunSPOT sensor board.

5.1 Determination of Context Estimates
We used the SunSPOT accelerometer sensor to mea-
sure the tilt value (in degrees) when a monitored
user was in three different context states: sitting,
walking, and running. From the collected samples,
we computed the 5th and 95th percentile of the tilt
readings corresponding to each state. Table 1 shows
the resulting ranges in the accelerometer tilt readings
observed for each of these three states. The results
indicate that there is an observable separation in the
ranges of the tilt values for the three different states.
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Tolerance Range using Motion Sensor
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TABLE 2
Light Sensor Values (lumen) for different Context States

Avg. Range of Light level (lumen) Context States
LightSensor.getValue() = 10 to 50 Turned on → active
LightSensor.getValue() = 0 to 1 Turned off → sleeping

This suggests that the states can be distinguished rea-
sonably accurately even under moderate uncertainty
in the sensor readings.

Similarly, we also used the SunSPOT light sensor
to measure the light level (in lumen) for different
user contexts. Intuitively, low values of ambient light
intensity may be indicative of a ‘sleeping’ state, while
higher values of light intensity are likely to result
when the individual is ‘active’ (e.g., walking or run-
ning). Table 2 shows the observed ranges for the light
values for each of these two states. The accuracy of
context from the light sensor is much lower than that
for the accelerometer sensor as users may often be
inactive (e.g., sitting), even under high illumination.

5.2 Measuring QoC Accuracy and Sensor Over-
heads
To study the potential impact of varying the toler-
ance range of each sensor and the resulting tradeoff
between the sensor reporting overhead, we collected
traces for the SunSPOT motion and light sensors for
a single user engaged in a mix of three different
activities (sitting, walking, and running) for a total
of ≈ 6 minutes (2000 samples at 5.5Hz). We then
used an emulator to mimic the samples that a sensor
would have reported, given the trace, for a given
tolerance range q, and compared the context inferred
from the values reported by the emulation against

the ground truth. Fig. 5 shows the resulting plots for
the total number of samples reported (an indicator of
the communication overhead) and the corresponding
QoC (defined as 1 − error rate) achieved, for different
values of the tolerance range (qmo) for the motion
sensor. Fig. 6 plots the corresponding values vs. the
tolerance range (ql) for the light sensor.

As the figures demonstrate, in general, there is a
continuous drop in the reporting overhead and the
QoC as q increases. However, as seen in Fig. 5, a QoC
accuracy of approximately 80% is achieved for q = 40,
a modestly large value. Moreover, the use of this
tolerance range reduces the reporting overhead dra-
matically by approximately 85% (from 1953 → 248).
This suggests that it is indeed possible to achieve
significant savings in cost, if one is willing to tolerate
marginal degradation in the accuracy of the sensed
context. A similar behavior is observed for the light
sensor (q = 4 incurs a 5% loss in QoC accuracy vs.
approximately 65% reduction in the reporting over-
head). However, as the difference between the lumen
ranges for Active vs. Inactive (e.g., Sleeping) is only
approximately 10 (Table 2), increasing q actually leads
to a sharp fall in the QoC.

5.3 The Benefit of Joint Sensing
We also investigated how the use of joint readings
from both sensors affects the inferencing accuracy vs.
tolerance ranges. We consider the user in a sitting,
walking, or running state whenever the motion sensor
tilt values lie within the corresponding range and the
light sensor values indicate an active state. Fig. 7 uses
a three-dimensional plot to illustrate the observed
inferencing accuracy when the tuple (qmo, ql) is jointly
varied. This confirms the QoC is now less susceptible
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to individual variations of q. Fig. 8 confirms this
benefit by plotting the QoC vs. q obtained using
the light sensor against that obtained by using both
light and motion sensors (the tolerance ranges of both
being identical). Clearly, the QoC accuracy from the
combination of the two sensors is much higher than
that of a single sensor.

5.4 Evaluation of Ambiguous Context Mediation
We conducted experiments to evaluate the perfor-
mance of the proposed ambiguous context mediation
framework in a smart home health monitoring en-
vironment. The ambiguous context mediation algo-
rithm (ACMA) given in Fig. 3 was applied during
the evaluation. In our application, the goal is to
determine a set of sensors and the situation level
(emergency or non-emergency) of a patient based on
the most efficient sensor action. Let us assume the
situation space has three states, high, medium and
low. Fig. 9 represents a snapshot of the Bayesian
Network model for this application using Netica BN
software [23]. In this figure we represent a situa-
tion space sickness and three context states – Watch-
ingTV, Lying in Distress and Exercising. The condi-
tional probabilities of these context states are empir-
ically derived using the SunSPOT traces. The sen-
sors selected by the ACMA algorithm for this ap-
plication are Position Sensor1, Body Temp Sensor2,
Motion Sensor3, Light Sensor4 and Video Camera5.
We empirically derived the conditional probabilities
of the context attributes from the raw readings of
the sensors. For example, given the ground truth of
the patient exercising, we computed how many times
the Body Temp Sensor report a reading above the
threshold value. These conditional probability values

Fig. 9. Bayesian Network

at a particular state of the application are all shown
in Fig. 9.

From Fig. 10, we observe that the utility increases
(i.e., the ambiguity decreases) as the number of se-
lected sensors increases for different states of the
application. The initial utility is calculated using Eq. 8
considering a single sensor. The maximum utility val-
ues were obtained by increasing the sensor subset size
for three different states (different probability values).
With different balance coefficients as shown in Eq. 10,
the best subset of sensors for an application having
multiple states is also different. This demonstrates
that the gain obtained by having multiple sensors
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exceeds the benefits of detailed information from each
individual sensor, which is also in accordance with
our information theoretic analysis.

Next we experimentally analyze the performance of
active (context-aware) and passive (non context-aware)
fusions to illustrate how the proposed active fusion
scheme works. The choice of which sensor to activate
depends on the expected utility of each sensor. This
repeats until we identify the situation type with suf-
ficient confidence. We observe during our experiment
that a few sensors dominate in active fusion compared
to the others. This selection of sensors accelerates the
decision to be taken on a situation space compared
to the passive fusion as shown in Fig. 11. However,

this sometimes leads to information redundancy if
the same value of the attribute repeats consecutively.
However, this approach may be beneficial for reduc-
ing imprecision and increasing reliability.

Fig. 11 shows no significant performance differ-
ence by considering the update cost. So the infor-
mation redundancy can be overcome by frequently
alternating between the active sensors with almost
the same performance gain. Fig. 12 represents the
confidence of situation prediction for different values
of the QoC constraint. The confidence level achieves
a higher value for a rigid (tight) QoC constraint as
compared to a partial QoC. Though we achieved a
better confidence level for a rigid QoC constraint,
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more uniformity is achieved for the partial QoC.
This observation confirms that the participation of
multiple sensors during the partial QoC bound fusion
process yields a more stable value though fails to
achieve a higher confidence gain. Next we examine
the situation prediction when different sensors are
selectively chosen with the help of using the context
mediation framework. Fig. 13 depicts the variation
of situation prediction with different sets of context
attributes from different sensors. In the first scenario,
all context attributes are fused following the specified
algorithm according to their QoC specifications. In the
second scenario, values are only partially satisfied due
to their inherent inaccuracy and experimental settings.
The fusion of selective context attributes yields better
results compared to the non-selective ones.

Through this evaluation we observed that it is
indeed possible to significantly reduce the resource
usage of the sensors while satisfying the applica-
tion quality of context requirements in pervasive
healthcare environments. This evaluation also attested
the promise of a context-aware multi-sensor fusion
scheme for selecting the most efficient disambiguation
action in a resource-optimized quality -assured model.

6 CONCLUSION

This paper presents a framework that supports
ambiguous context mediation based on dynamic
Bayesian networks and information-theoretic reason-
ing. We exemplified the proposed approach through
context-aware healthcare applications in smart envi-
ronments. Our framework satisfies the applications’
quality requirements based on a resource optimized
QoC function, provides a Bayesian approach to fuse
context fragments and deal with context ambiguity
in a probabilistic manner, and depicts an information
theoretic approach to minimize the error in the state
estimation process. A SunSPOT platform based con-
text sensing system is developed and subsequent ex-
perimental evaluation is done to perform cost/benefit
analysis to engage the most efficient actions for con-
text disambiguation in resource constrained sensor
environments.
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