
BraceForce: A Middleware to Enable Sensing Integration
in Mobile Applications for Novice Programmers

Xi Zheng, Dewayne E. Perry, Christine Julien
The Center for Advanced Research in Software Engineering

Mobile and Pervasive Computing Lab
The University of Texas at Austin

jameszhengxi@utexas.edu,perry@mail.utexas.edu,c.julien@utexas.edu

ABSTRACT
Even as the use of sensor networks to support mobile ap-
plications grows, our ability to seamlessly and efficiently in-
corporate sensor network capabilities into our mobile ap-
plications remains astoundingly difficult. Today, accessing
remote sensing data and integrating this data into the adap-
tive behavior of a dynamic user-facing mobile application re-
quires interacting with multiple platforms, languages, data
formats, and communication paradigms. We present Brace-
Force, an open and extensible middleware that allows de-
velopers to access the myriad remote sensing capabilities
inherent to today’s mobile computing spaces (where mo-
bile devices and sensors are closely integrated) using very
minimal code. Further, BraceForce incorporates event- and
model-driven data acquisition as first-class concepts to pro-
vide efficient access to sensing while retaining expressiveness
and flexibility for applications. We present the BraceForce
architecture and key abstractions, describe their implemen-
tations, and provide an empirical study using BraceForce to
support mobile applications integrating sensing.

1. INTRODUCTION
Developing and deploying mobile applications integrating

sensing involves a large amount of low-level programming
that requires interacting with different (often proprietary)
data formats, languages, and operating systems. In prac-
tice, applications are built for specific sensor platforms with
little potential for portability or integration with other sen-
sors. Debugging mobile applications that integrate with a
physical environment requires not only integrating the appli-
cation with sensing but also the use of a testing harness that,
at debugging time, accesses sensed data about the physical
environment for the purposes of validating the actions of
the application. Integrating sensing for mobile applications
and debugging support in a way that is easy, flexible, and
portable is essential for supporting current mobile applica-
tion development.

In general, research in this space has been focused on
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demonstrating the feasibility of applications, the develop-
ment of support services such as routing protocols or energy-
saving algorithms, or on advancement of hardware platforms
and operating systems. Little focus has been applied to ef-
fective development support for applications that integrate
the capabilities of networked sensing platforms in easy to use
and extensible ways. In addition to the variety of data for-
mats, communication technologies, and programming plat-
forms a developer must tackle, mobile applications also re-
quire handling network dynamics and energy constraints.

This paper introduces BraceForce, a middleware for mo-
bile application development that simplifies the development,
deployment, and debugging of mobile applications. Brace-
Force targets novice developers, by which we refer to pro-
grammers who have a good understanding of programming
in general but have limited prior experience in program-
ming sensor devices. For development, BraceForce sepa-
rates the application developer from the low-level interac-
tions between the platform and sensors. For deployment,
BraceForce also allows the developer to connect the appli-
cation to sensing assets in the deployment environment. Fi-
nally, when applied to debugging tasks, BraceForce can mon-
itor a test environment using capabilities that may not be
available in the deployment environment. Architecturally,
BraceForce defines functional tiers that encapsulate related
aspects but coordinate in such a way that the tiers’ deploy-
ment to particular physical assets is flexible. Different tiers
can be deployed on user-facing devices or on sensing devices
with limited capabilities, directly addressing and leveraging
the specific capabilities and intentions of each device. Brace-
Force provides auto-discovery of new sensing and computing
assets, allowing easy integration of new capabilities into ex-
isting applications or automatic and seamless extension of a
debugging environment.

Instead of using a proprietary programming language (e.g.,
nesC [9]), supporting a single hardware platform (e.g., ODK [5]),
or creating a new standard (e.g., Dandelion [19] or DASH [7]),
BraceForce presents a simple Java programming interface for
integrating new sensing capabilities. To add a new sensor
to BraceForce, a developer just needs to implement a sim-
ple sensor driver interface that provides essential commands
(e.g., open, close, query) and configuration. The driver im-
plementation can be specific to the particular sensor but
basically translates raw data into meaningful BraceForce
sensor data constructs, guided by the provided BraceForce
interfaces. BraceForce handles issues such as thread man-
agement, networking, remote procedure call, etc.

BraceForce supports both pull- and push-based interac-



tion with sensing devices. BraceForce also embraces model-
driven data acquisition (MDDA) [14, 21, 22, 24, 27] to reduce
energy costs of integrating sensing in mobile applications.
MDDA suppresses sensor readings that are predictable ac-
cording to some a priori or learned model. BraceForce sup-
ports (i) temporal models based on previous sensor read-
ings [24]; (ii) models based on underlying physics princi-
ples [21]; (iii) models derived from applying data mining to
prior sensed data [14]; and (iv) models expressing correla-
tions of data in space and time [27]. While the use of MDDA
is itself not novel to BraceForce, what is new is that Brace-
Force provides existing libraries for a few MDDA models
and allows customized MDDA models to be plugged into the
framework through an extensible programming interface.

This paper describes BraceForce, from its flexible archi-
tecture to a prototype implementation. We directly assess
BraceForce’s ability to ease mobile application development
through an exploratory study applied to real mobile applica-
tions that rely on networked sensors. BraceForce provides a
clear design contract for integrating new sensors into existing
applications. This paper makes the concrete contributions
in three areas:

1. Supporting mobile application developers and users

◦ BraceForce provides a simple and unified programming
interface to reduce programming barriers of mobile ap-
plications that integrate sensing.

◦ BraceForce’s tiered architecture enables dynamic up-
dates to mobile applications and their physical deploy-
ments without intervention by the users.

2. Supporting flexible and expressive mobile applications

◦ BraceForce can be deployed to heterogeneous devices
in different configurations to meet constraints of mobile
applications and devices.

◦ BraceForce supports both pull- and push-based inter-
action with sensing devices.

◦ BraceForce embraces model-driven data acquisition to
address energy concerns of mobile applications.

3. Studying mobile application development

◦ We demonstrate and evaluate how BraceForce makes
both the development process more approachable and
the resulting mobile application more efficient.

◦ We demonstrate that MDDA within BraceForce can sig-
nificantly reduce the network overhead, which in turn
reduces energy consumption.

The next section places this paper’s contributions in the
context of related work. In Section 3, we provide complete
details of the BraceForce middleware. Section 4 presents the
empirical design for our evaluation, while Section 5 describes
its results.

2. RELATED WORK
Sensor Platforms. TinyOS [13] is an operating system

for sensor networks that enables developers to use networked
sensors to solve distributed sensing, computational, and co-
ordinating tasks. Its focus has largely been on supporting in-
creasingly complex and sophisticated applications at the ex-
pense of usability and flexibility [17]. The Robot Operating
System (ROS) [23] provides a component-oriented style of
programming, in which components communicate via pub-
lish/subscribe mechanisms and two-way service calls, both
using user-defined topics. However, ROS only supports a

communication scale of one machine, and connection mecha-
nisms are among ROS components running on the same ma-
chine; modern mobile systems require coordination among
distributed components. ROS also comes with a non-trivial
learning curve.

Arduino has gained wide popularity due to simplicity, high
degrees of usability, and the resultant enabling of rapid pro-
totyping. While programming for Arduino is more straight-
forward, programmers are still required to interact with the
Arduino at a very low-level of abstraction. This does not
allow for flexible updating and discovery of local sensing
devices. The Android Sensor Framework [1] provides a pro-
gramming interface to access hardware and software sensing
components on Android. This framework is also limited in
its abstract capabilities; the developer is still entirely re-
sponsible for thread control and other essential concerns for
accessing sensors. Further, the Android Sensor Framework
does not enable connecting to external sensors connected to
the device via Bluetooth, USB or other connectivity modes.
Instead, the developer must use other libraries.

Integrating sensing in mobile applications requires high
level abstractions to provide automatic sensor discovery and
flexible and efficient access to the sensor data via event- and
model-driven data acquisition. BraceForce unifies access to
a variety of sensor platforms and provides a flexible and
expressive programming interface with high-level program-
ming constructs tailored to networked sensor integration.

Sensor Programming Frameworks. Easing program-
ming of sensor networks has received significant attention.
Maté [18], for example, is a tiny virtual machine that allows
developers to concisely express sensor programs and cause
these programs to be dynamically deployed. A virtual ma-
chine approach is very flexible, but Maté comes with the cost
of increased complexity due to the severe and unmitigatable
resource constraints of the target environment [12].

SensorWare [4] shares the resources of a single node among
many applications. SensorWare’s primary abstractions have
a network focus and are intuitive for sensor and networking
experts but do not promote data and data integration for
application developers. MiLAN [11] builds on networking
and discovery protocols using a plug-in mechanism to incor-
porate arbitrary protocols. Application developers use QoS
graphs to specify their sensing requirements, and MiLAN
uses this information along with the sensor network state to
determine how to configure the network and sensors to meet
the provided requirements. This high-level data-centric ab-
straction is the style we target in our middleware. We cou-
ple these abstractions with automatic sensor discovery and
a distributed architecture that, by its nature, addresses the
mixed resource constraints of our target environment.

Dandelion [19] supports developing wireless body sensor
applications on smartphones using a programming abstrac-
tion called a senselet, which abstracts a device driver and al-
lows applications to integrate data from that device through
remote method invocation. This abstraction is data-centric
and provides a jumping-off point for BraceForce’s abstrac-
tions, but Dandelion does not incorporate higher-level pro-
gramming constructs for aggregation, model-driven data ac-
quisition, and automatic sensor discovery and integration.

Perhaps most similar to our goals, Open Data Kit (ODK)
Sensors [5] simplifies deployment of smartphone applications
that rely on data from external sensors (e.g., connected via
USB and BlueTooth). A sensor driver developer implements



specific driver interfaces for configuring sensors, packaging
the data they generate, and connecting that data into the
Android framework. Application’s interactions with sensors
are then confined to pull-based acquisition with only locally
connected sensors. ODK Sensors does not support MDDA,
limiting its applicability.

We focus on easing the integration of distributed sensor
data into mobile applications without limiting the expres-
siveness of sensing capabilities or over-utilizing precious con-
strained resources. This demands not only automatic sensor
discovery and integration but also abstractions for acquiring
sensor data in ways other than through direct polling.

Model-Driven Data Acquisition. Model-driven data
acquisition (MDDA) can limit costly communication with
networked sensors by suppressing polling and notifications
from the sensors except when the sensor readings deviate
from some pre-defined or learned model. Gupta et al. stud-
ied the problem of collecting spatially correlated data in a
wireless sensor network, based on the theory of dominating
sets [10]. Other work has focused on achieving data sup-
pression using temporal and spatial data correlation either
by dividing the network into clusters [20], exploiting domain
knowledge regarding reasonable ranges of sensed values [26],
or combining temporal and spatial correlations [27]. Other
approaches use simple models of sensed value trends to gen-
erate readings only when the sensed value deviates from the
model’s predicted value. Simple linear models are very effec-
tive [24], and the approach can also be applied to in-network
aggregation of raw values [8].

We are motivated to use similar techniques in BraceForce
to suppress data without sacrificing the quality of knowledge
about the sensed entity. BraceForce allows mobile applica-
tion developers to incorporate different models of MDDA
both at the level of individual sensors and at the level of an
entire distributed application to handle different deployment
scenarios and meet specific energy requirements of mobile
applications. We avoid approaches that demand a particu-
lar topological structure (e.g., designated clusters of nodes)
to avoid unnecessary rigidity in a dynamic network of sup-
porting sensors and rely on simple models that have shown
significant gains.

3. BRACEFORCE
We first describe BraceForce from an abstract architec-

tural perspective; we then briefly discuss our prototype.

3.1 BraceForce Abstract Architecture
BraceForce comprises five abstraction layers: the sensor

driver layer, the data layer, the distribution layer, the dis-
tributed data cache and aggregator layer, and the mobile ap-
plication layer. Fig. 1 shows one example BraceForce de-
ployment with these five layers.

3.1.1 BraceForce Layered Architecture
Sensor Driver Layer. In the current state of the art, mo-

bile application developers must understand low-level proto-
cols and hardware-specific aspects of sensors to be able to use
sensor data. Moreover, raw sensor data has no open stan-
dard and often loses its original temporal information. These
issues demonstrate a gap between the low-level sensing capa-
bilities of both on-board and external sensors and the appli-
cation space. At BraceForce’s base, the sensor driver layer
bridges this gap by encapsulating functions related to inter-

acting with a sensor, from configuration, through starting,
querying, reconfiguring, stopping, and cleaning up allocated
resources. The sensor driver layer requires driver developers
to adhere to a design contract enabling these common func-
tionalities and unifying on-board and external sensors into
a shared data packet format that can be used throughout
the BraceForce architecture. A driver developer creates the
connection between the sensor and the driver layer by defin-
ing how raw sensor data (e.g., in the form of a binary array)
is converted into a BraceForce sensor data response, which
defines an abstract data type unified across all sensor data.
Each sensor data response maps a data type (or types) to a
value (or values) and associates a timestamp with the data.
This timestamp ensures that data used by higher layers is
fresh within the requirements of the application.

On#board)
Sensors)

External)
Sensors)

Sensor)Driver)Layer)

Data)Layer)
Model)driven)
)))))data)acquisi:on)

On#board)
Sensors)

External)
Sensors)

Sensor)Driver)Layer)

Data)Layer)

D2D)Discovery)Distribu:on)Layer) Distribu:on)Layer)

Distributed)Data))
Cache)and)Aggregator)

Model)driven)
)))))data)acquisi:on)

Mobile)Applica:on)Node)

Model)driven)
)))))data)acquisi:on)

Dr
iv
er
)

Dr
iv
er
)

Figure 1: BraceForce: Uniform Environment

Data Layer. Mobile operating systems allow sensors to
be accessed directly using Bluetooth, Near Field Communi-
cation (NFC), USB, and proprietary interfaces to on-board
sensors. Access is often device-specific and requires a non-
trivial amount of low-level development and testing using
interfaces that are not portable across platforms. These
programming methods also usually entail a steep learning
curve. BraceForce encapsulates these interactions in the
data layer, explicitly separating user-application code above
from sensor- and platform-specific code below. The data
layer also controls data retrieval for locally connected sen-
sors (both on-board and external), where the options include
push, in which a sensor pushes every data reading to the data
layer; pull, in which the data layer periodically polls the con-
nected sensor; and event-driven, in which a sensor notifies
the data layer only upon the occurrence of some predefined
“event.” At the data layer, BraceForce introduces single-
device MDDA, whereby simple models of temporal correla-
tion can be used to suppress sensor readings as long as they
follow an expected model [24].

Distribution Layer. Modern mobile applications require
a distributed view of active and available sensors, both on



the local device and available remotely on other devices in
the network. Programmers must use message passing mech-
anisms or RPC-like connectors to make devices in the net-
work communicate and coordinate their actions. Develop-
ers must also handle location transparency and other intrin-
sic issues related to distributed programming (e.g., concur-
rency, failures, and time synchronization). In the distribu-
tion layer, BraceForce provides automatic discovery of other
BraceForce-enabled devices, and thereby other BraceForce
connectable sensors. BraceForce uses a combination of best
effort protocols for the on-the-fly discovery and reliable pro-
tocols for initiating and accepting remote method calls to
transfer sensor data from discovered sensors. The distri-
bution layer also extends the data acquisition modalities of
the data layer by defining data listeners that bridge between
the data layer below and the aggregation layer above and,
more importantly, across distributed devices. One specific
function of this bridge is to use guidance from cross-device
MDDA performed at the aggregation layer (described next)
to correctly configure and query underlying (distributed)
sensors. Within the distribution layer, BraceForce’s auto-
matic detection of distributed sensors can be deployed along-
side the Sensor Driver Layer, circumventing the data layer,
simplifying the BraceForce deployment on devices that have
significant computation and storage constraints.

Distributed Data Cache and Aggregator. Mobile appli-
cations that require large scale deployments often include
sensing devices that have severe computation and storage
constraints. In this case, it is highly ideal that data storage
and processing are done in backend servers or other more
powerful devices in the network. Programming these fea-
tures in a scalable and reliable way is a challenge for mo-
bile application developers. BraceForce’s aggregation layer
is specifically designed to deal with this challenge through
a unified view of the dynamic sensing capabilities of the
networked environment. As new sensors are discovered on-
the-fly or known sensors disappear, these dynamics are han-
dled seamlessly by BraceForce. Given a distributed view
of aggregate sensing capabilities, the aggregation layer can
perform high-level MDDA, for example, by using more so-
phisticated models based on spatial correlations or learned
relationships among sensed data [22]. In our prototype, we
demonstrate the potential for this high-level MDDA using
a spatial correlation model that suppresses sensor readings
that are similar to neighboring readings. More generally,
from the aggregation layer, BraceForce can expressively di-
rect data acquisition (e.g., by choosing between event-driven
data acquisition, push, and pull) for all of the sensors under
its purview. This layer also encapsulates data mining and
compression.

Mobile Application Node. To support the mobile appli-
cation, BraceForce maintains a registry of aggregation and
sensing capabilities, and the programming interface allows
the application to subscribe to them. Based on the appli-
cation’s goals, these sensors can be integrated as part of a
testing harness at debugging time or can provide essential
functional information at deployment time.

3.1.2 BraceForce Deployment Scenarios
Fig. 1 showed just one possible deployment scenario in

which all of the devices are homogeneous (e.g., smart phones)
and have the same capabilities. In BraceForce, different
physical assets can support different pieces of the archi-

tecture, depending on a particular device’s capabilities and
functional requirements. In any deployment, the sensor driver
layer and the discovery layer must be present on any sensing-
capable device, as they are essential to connecting to and
getting data from sensors. On moderately capable devices,
the addition of the data layer adds multiple modalities for
driving data acquisition and the potential for expressive
temporal-based MDDA. Fig. 2 shows an alternative deploy-
ment in which the system consists of heterogeneous devices;
in this example, the application runs on a dedicated high-
powered device (e.g., a laptop) that connects to a variety
of sensing devices of different capabilities, glued together by
the distribution layer.
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Figure 2: BraceForce: Mixed Environment

We envision three primary use cases for BraceForce. In the
obvious case, BraceForce is integral to the mobile applica-
tion. Take a smart home application in which a home con-
troller connects to various sensing devices integrated with
the home to control the ambient environment. In this case,
the homeowner may introduce and remove components from
the home over its lifetime, and, using BraceForce, the chang-
ing capabilities are seamlessly reflected to the application.

As a second case, we envision BraceForce deployed for
large scale ad-hoc sensor networks (e.g., to monitor a fire in
a forest). The Sensor Driver Layer and Discovery Layer can
be combined into a service to be deployed on cheap sensor
devices with basic sensing and networking capacity and lim-
ited computation and storage resources. These devices can
be deployed at a mass scale. The Distributed Data Cache
and Aggregator can be deployed to more powerful Android
devices or a cluster of backend servers for data processing.
The sensor data then will be passed to the mobile appli-
cation node, which runs on user-facing Android devices to
notify users (e.g., first responders) of the real-time situation
to allow them to take informed actions.



As a third case, consider an autonomous robot application
wrapped in a test harness that connects to expressive sensing
capabilities available in the debugging environment but not
available in the deployment environment. At deployment
time, the robot may be placed in an unknown territory and
expected to perform some tasks. At debugging time, how-
ever, the developer may control the environment and may
be able to monitor various aspects of the robot using sen-
sors embedded in the environment (e.g., overhead cameras).
The debugging program that surrounds the actual control
application can use BraceForce to access these sensors for
debugging; at deployment time, these connections to Brace-
Force and the debugging environment are removed.

3.2 BraceForce Implementation
To demonstrate and evaluate BraceForce, we have built

the entire architecture in the Android operating system. We
choose Android as our initial platform as it is open source
and has extensive support for background processes, includ-
ing several built-in constructs for inter-application commu-
nication [25]. BraceForce is not particular to Android, and
we avoid using low-level constructs and interfaces specific to
Android and not replicated on other platforms.

3.2.1 Android Programming Idiosyncrasies
A handful of accidental complexities arise from our choice

of Android; below, we describe these challenges and our so-
lutions as they arise. In addition, to understand the dis-
cussions of the architecture, we briefly review a vocabulary
related to Android:

Intent: a passive data structure holding an abstract de-
scription of an operation to be performed; something that
has happened and is being announced.

Android Interface Definition Language (AIDL): allows
definition of the programming interface that the client and
service use to communicate with each other using inter-
process communication (IPC).

Bundle: a data structure of key-value mappings but not
limited to a single String/Object mapping.

Android does not provide significant high-level abstrac-
tions for programming coordination among distributed de-
vices. From a model perspective, BraceForce assumes such
capabilities, e.g., in the form of Java RMI. To support our
BraceForce prototype on Android, we therefore implement
our own version of RMI by building on several open source
projects. We use JsonBeans [15] to serialize and deserialize
Java object graphs to and from JSON [6]. JsonBeans is an
obvious choice for this task because it is very lightweight
(45KB) with no external dependencies. We use ASM [2, 16]
to dynamically generate classes involved in the RMI process
in binary form.

3.2.2 Unified Data and Subscription Interfaces
Programming for Android requires interacting with the

Dalvik virtual machine, and it is inevitable that our im-
plementation accesses some proprietary Android constructs
(e.g., Bundle). To remain as general as possible, we imple-
ment a wrapper that encapsulates these proprietary compo-
nents and presents a generic interface to the BraceForce im-
plementation. Within this wrapper, BraceForce translates
Android data structures to reusable and portable Java data
structures.

Android provides sensor data subscription only for inter-
nal sensors. To subscribe for sensor data from external sen-
sors (e.g., sensors connected via USB), developers have to
create a subscription model themselves (e.g., using the ob-
server design pattern) and write a large amount of low-level
code to access sensor data. Retrieving data from other de-
vices is even more difficult. In BraceForce, we provide a
unified subscription interface for developers to access inter-
nal sensors, external sensors, and networked sensors; this
abstraction allows generic ”plug-and-play” of sensors at run-
time. Fig. 3 shows the BraceForce API used to subscribe
sensed data from an internal accelerometer (line 1), a tem-
perature sensor (Dallas DS18B20) connected via USB (line
2), and all accelerometers on networked devices (line 3).
Line 4 shows how to retrieve sensor data; it is the same
regardless of the type of sensor connection. The retrieved
data contains a timestamp of the data and where the data
is from; data values are accessed through meaningful keys
instead of array indices provided by Android.

1 BraceSensorManager . subscr ibeSensorEvent (
Bui ltInSensorType .ACCELEROMETER. name ( ) , this ,
this ) ;

2 BraceSensorManager . subscr ibeSensorEvent ( ”DS18B20” ,
this , this , SensorAutoDetect ion .USB ) ;

3 BraceSensorManager . subscr ibeSensorEvent (
Bui ltInSensorType .ACCELEROMETER. name ( ) , this ,
this , true ) ;

4 BraceSensorManager . r e t r i eveSensorData ( event ) ;

Figure 3: Interface for data subscription

3.2.3 Thread Management and Android services
Android provides much support for multi-threaded appli-

cations. As with any multithreaded environment, the added
flexibility comes with a significant increase in complexity.
In Android applications that interface with sensing, devel-
opers must implement (and debug) threads to listen for and
connect to multiple connections. These tasks are far from
trivial, as they require the developer to have a deep under-
standing of the relationships between the operating system
and the life cycles of application components. As our user
study (described in Section 5) demonstrates, developers have
a difficult time navigating the complexities of the Android
APIs related to thread management and concurrency.

BraceForce exposes thread managers that explicitly en-
able thread-safe access to the shared sensor data available to
the mobile applications. To enable communication beyond
shared memory, we expose the threads and their embodied
data using the Android Binder service’s remote procedure
call capabilities. To conserve energy, BraceForce activates
threads only when necessary. This is guided by developers
through the interface in Fig. 3, e.g., by specifying the types
of communication interfaces to attach to event listeners. For
example, in Fig. 3, line 2 specifically indicates that Brace-
Force should activate the USB thread to communicate with
the connected temperature sensor. Alternatively, a devel-
oper with less experience in low-level details can indicate,
via a boolean parameter, activation of all the networking
threads, albeit at increased cost.

3.2.4 Networking
Our prototype supports simple device-to-device discov-

ery based on UDP. The relevant threads for discovery and
exposed Android Binder services are built in the distribu-
tion layer. When each discoverable service is started within



BraceForce, the distribution layer implementation creates a
new Android intent and attaches the discovery capability to
that intent. When the discovery layer starts a service, it
listens on the UDP port specified in its intent and reacts to
discovery requests received on this port. The discovery layer
also actively engages in discovery by sending UDP packets
to neighboring devices. Each node maintains an active list
of other nodes; this list is maintained by removing any nodes
that have failed to respond to three consecutive periodic re-
quests. Using UDP for discovery is a simple approach to
enable automatic device discovery. BraceForce could poten-
tially integrate other on-the-fly discovery mechanisms in the
distribution layer, e.g., [3], so that devices can talk to each
other even when they are in different networks (e.g., behind
NAT).

3.2.5 Sensor Driver Definition and Discovery
BraceForce’s driver layer separates mobile application de-

velopers from sensor driver developers by providing a con-
tract for implementing new sensor drivers. Fig. 4 shows
this contract and the simple SensorDataResponse structure,
which is mapped to a Java Hashtable. The interface shown
in Fig. 4 provides a high-level abstraction that allows access
to sensor data in key-value pair fashion instead of requiring
the application developer to directly interact with myriad
forms of raw sensor data.

1 public interface Driver {
2 byte [ ] getCmdForSensorConfig ( St r ing configKey ,

Hashtable configParams ) ;
3 byte [ ] getCmdForSensorData ( ) ;
4 byte [ ] getCmdForStartSensor ( ) ;
5 byte [ ] getCmdForStopSensor ( ) ;
6 SensorDataResponse getSensorData ( List<

SensorDataPacket> rawData ) ;
7 byte [ ] sendDataToSensor ( Hashtable actuatorData ) ;
8 void shutdown ( ) ;
9 }

10 public interface SensorDataResponse {
11 List<Hashtable> getSensorData InCo l l e c t i on ( ) ;
12 }

Figure 4: Interface for defining sensor drivers

The driver interface is exposed through an AIDL file.
We have built the drivers for common built-in sensors on
Android devices. For any external or uncommon sensors,
the sensor driver developer must implement the interface in
Fig. 4 to provide access to those sensors1 . This is accom-
plished by creating an Android library project that includes
the interface implementation and AndroidDeviceDrivers.aidl.
The project can be uploaded to the mobile devices connected
to the sensor(s) for which the driver(s) are written. Given
the project’s manifest file, the BraceForce driver layer can
automatically detect the driver definition and create AIDL
stub clients that connect to the new driver service.

The BraceForce data layer automatically discovers con-
nected sensors (e.g., those attached via USB and BlueTooth
in our prototype). Once the data layer in BraceForce de-
tects external sensors, a manager agent interacts with the
underlying communication channel manager and the created
driver stub to capture raw sensor data, convert it to the

1While the byte[] data type clearly requires programming at a
very low-level, the sensor driver developer is an expert in the sen-
sor and, as such, is required to think about sensors at a low-level.
The mobile application developer, however, is shielded from these
low-level concerns by the high-level data types that BraceForce
provides.

BraceForce SensorDataResponse, and make it available for
the higher layers of the architecture. The manager’s inter-
face allows the higher level (and ultimately the application
developer) to specify how BraceForce should interact with
the sensor. In the case of push-based interactions or event-
driven data acquisition, the application developer defines the
behavior of a listener, as shown in Fig. 5.

1 public interface SensorDataChangeListener {
2 void bindDataProvider ( SensorDataProvider

prov ider ) ;
3 void onDataChanged ( SensorDataChangeEvent event ) ;
4 }
5 public interface SensorDataProvider {
6 List<Hashtable> getSensorData ( ) ;
7 void addSensorData ( Hashtable sensordata ) ;
8 void addSensorData ( List<Hashtable>

s en so rda taL i s t ) ;
9 }

Figure 5: Data Change Listener Interface

The first method in the interface binds the listener to a
data provider; the latter provides a wrapper for a specific
sensor/driver pair on a specific device. The second method
is invoked automatically by the data layer when a reading
is pushed or an event notification occurs.

3.2.6 Model-Driven Data Acquisition
To help mobile application developers to design energy-

efficient solutions, BraceForce enables MDDA within the
data layer for single device models and within the aggre-
gation layer for distributed models.

In our prototyped data layer, we use the temporal model
from [8]; specifically, if the value change for a single sen-
sor between two consecutive readings lies below a specified
threshold, the reading is suppressed (Fig. 6). This is a sim-
ple form of data suppression based on temporal data corre-
lation; even only slightly more complex models [24] may
substantially further reduce the overhead of high quality
sensing since the energy of communication dominates com-
putation [27]. Our goal with this simple implementation is
to demonstrate how MDDA dovetails with the BraceForce
architecture.

1 f loat l a s tData =
2 ( Float ) h i s to r i ca lDataPack . get (mainParameterName ) ;
3 f loat thisData =
4 ( Float ) currentDataPack . get (mainParameterName ) ;
5 long accessTime =
6 (Long ) h i s to r i ca lDataPack . get ( ”timestamp ”) ;
7 long currentTime =
8 (Long ) currentDataPack . get ( ”timestamp ”) ;
9 i f ( currentTim−accessTime<t imeDelta ){

10 i f (Math . abs ( thisData−l a s tData )<dataDelta ){
11 Log . d( ”SensorEventDr ivenListener ” ,
12 ”Data suppressed ”) ;
13 return ;
14 }
15 }

Figure 6: Simple temporal data correlation
In the aggregation layer, we apply MDDA using simple

spatial data correlation. The data aggregation service main-
tains a list of nearby devices and their sensing capabilities.
Periodically (as specified by the application), BraceForce ag-
gregates sensed values by type from all connected devices.
Our model assumes that each sensed value has within its
SensorDataResponse a location and timestamp. Our imple-
mentation of spatially correlated MDDA checks the sensed
values from devices located close to one another and sup-
presses readings from sensors that would be redundant with



respect to the spatial coverage of the sensing task. Because
the aggregation layer is above the distribution layer in the
BraceForce architecture, this data suppression decision must
be transmitted to the distributed sensing devices; this is ac-
complished through the RMI implementation encapsulated
within the distribution layer. We use a simple model that
suppresses readings for a device physically located between
two similarly capable devices if the two devices on either
side sense values within a specified threshold of each other.

In conclusion, BraceForce enables MDDA within the data
layer for single device models and within the aggregation
layer for distributed models by providing libraries for easy
instantiation of models (e.g., simple temporal data correla-
tion) and providing a programming interface to create and
insert customized models.

4. EMPIRICIAL DESIGN
Using our prototype implementation, we have carried out

an empirical evaluation to answer the following questions
about the performance and use of BraceForce.

Question 1: Does BraceForce simplify development of ap-
plications that require interaction with distributed and
aggregated mobile application sensor data? If so, how
and why?

Question 2: What are the potential ramifications of using
BraceForce to interface with the sensors?

Question 3: Can BraceForce save energy by employing even
primitive predictive models of temporal and spatial data
correlation? If so, under what conditions does it work
and at what cost to quality of knowledge supplied to the
application?2

Question 1: Simplifying the Programming Task.
We conduct a user study involving twelve participants from
a diverse student population and with varying levels of pro-
gramming experience (both fourth-year undergraduate and
graduate students). All have basic knowledge of Java. We
ask each participant to fill in the sensor data retrieval sec-
tions for three different applications.3 Each participant per-
formed each of the three tasks once using BraceForce and
once using the Android SDK alone. Each participant was
awarded a $20 Amazon gift card. The order of the two sub-
tasks was randomized for each user and each application.

◦ Application 1 relies only on a single Android internal sen-
sor (the accelerometer). The application mimics part of a
smarthome mobile application that uses an Android de-
vice to detect the user’s shake orientation. The hardware
used is an Android phone.

◦ Application 2 relies on an external temperature sensor.
The application represents part of a mobile application
that requires getting information from external sensors
to an Android device. The temperature sensor (Dallas
DS18B20) is connected via an Arduino MEGA board,
which in turn is connected to an Android tablet.

2Though the use of MDDA to reduce communication cost has
been illustrated in the past (Section 2), we designed the question
to verify whether MDDA within BraceForce can indeed reduce
energy consumption. This lays the groundwork for future analysis
of the correlation between sensor data and the MDDA models
used.
3Videos of how BraceForce works for these three applications are
available at http://goo.gl/62WMyc, http://goo.gl/KVDQZT, and
http://goo.gl/5mE64m

◦ Application 3 mimics a large scale wireless sensor network.
Sensor readings come from accelerometers on low-budget
Android phones. The sensor data must be aggregated to a
more powerful data processing device (an Android tablet).
The sensor data is then displayed in an application run-
ning on a user’s Android phone. The participants create
the sensor retrieval and aggregation components (includ-
ing a primitive MDDA model of temporal data correlation
for which pseudo-code is provided). These components
are deployed to the Android mobile phone and an Android
tablet, respectively. Connectivity among the devices relies
on a local wireless network.

We provide training sessions for the participants, which
includes a five minute session on BraceForce, a five minute
session on the scope and functions of the applications,4 and a
thirty minute session for the Android architecture and APIs
related to sensor data retrieval.5 The participants were given
additional material on Android (e.g., URLs for highly rele-
vant Android programming) to review at home prior to the
study. We record for each participant how many hours they
spent on Android reading after the training but before the
study. To rule out other confounding variables (e.g., human
fatigue), we set the time limit for each user study to four
hours.

Before the user study, each participant fills out a pre-
questionnaire to provide basic information of their program-
ming experience in general, and specifically with Android
and with sensors. After each user study, each participant
fills out a post-questionnaire about how they feel about us-
ing BraceForce compared with Android SDK for each ap-
plication and their overall feeling about the middleware. If
a user fails to complete an evaluation application, in the
post-questionnaire we ask what led to the failure and the
user’s estimate of how many more hours would be needed to
complete it.

We measure the development time and accuracy for each
user for each of the evaluation applications. The results
are averaged across participants. We also provide in-depth
qualitative analysis of participants’ feedback.

Question 2: Potential ramifications of using Brace-
Force. To answer the second question, we use the same
evaluation applications in the first question. In this case, we
implement the Android versions ourselves as the baseline to
compare with the BraceForce versions. We measure the ac-
curacy of the applications (using out-of-band validation, for
example, by measuring the temperature using an ordinary
thermometer) and the running time required to acquire the
sensed data; these results are averaged across five runs of
each application. In Application 1 and 3, a “run” is defined
as 10 distinct rotation tests; in Application 2, a “run” is
defined as 10 measurements of body temperature.

Question 3: Energy Savings with Model-Driven
Data Acquisition. To answer the third question, we cre-
ated a fourth evaluation application, which is a piece of a
smart home application in which a user retrieves light read-
ings from multiple sensors deployed around a home. The
deployment is at the home of one of the authors; the light-
ing levels are subject to controlled lighting as well as un-
controlled conditions that include the glow of street lights,

4The tutorials for both BraceForce and evaluation applications
are available at http://goo.gl/mMXQj5
5Tutorials for Android are available at http://goo.gl/8j9tBA

http://goo.gl/62WMyc
http://goo.gl/KVDQZT
http://goo.gl/5mE64m
http://goo.gl/mMXQj5
http://goo.gl/8j9tBA


passing cars, daylight, etc. The deployment consists of six
sensing devices, a pair of devices for data aggregation, and
a separate laptop that runs the mobile application node.

We employ MDDA at both the data and aggregation lay-
ers. We deploy the six sensing devices in pairs; one of each
pair executes MDDA, while the second of the pair does not.
Across all runs, we measure both the number of data packets
transmitted with and without MDDA, along with the accu-
racy of the sensed data. In this experiment, we are compar-
ing the use of MDDA to not using it; therefore the device
not using data suppression is treated as the “ground truth”
for determining the accuracy of MDDA. The frequency of
data acquisition is fixed for both groups at 10 seconds. For
the MDDA group, the suppressed data is predicted to com-
pare with the sensed data from the comparison group. For
a specific time, the predicted value for a suppressed sensor
is either the average of the neighboring readings (in the case
of the spatial model) or a running average of the previous
readings (in the case of the temporal model).

5. EVALUATION
Question 1. We evaluated how BraceForce eases the de-

velopment of mobile applications for each of our three appli-
cations, we evaluated the benefits of using BraceForce specif-
ically in terms of reduction in development time. The results

Figure 7: Decrease in development effort using
BraceForce vs. Android sensor framework

show that the development times for each of three applica-
tions when using BraceForce are not substantially different,
even though the applications are increasingly complex. How-
ever, the development times when using the Android SDK
alone (i.e., without BraceForce support) increase dramati-
cally among evaluation applications (a 349.8% increase from
Application 1 to Application 2, and then another 147.9% in-
crease from Application 2 to Application 3). Fig. 7 shows
a box-and-whisker plot of the percentage decrease in devel-
opment time for BraceForce versus Android. BraceForce
reduces the median development time in the range of 66%
(for Application 1) to 98.8% (for Application 3) compared to
the Android SDK.6 The variance for the reduction for Ap-
plication 1 is wide because several of the test subjects were
able to complete the (simple) Android task very quickly. As
the application complexity increases, however, BraceForce’s
abstractions provide significant support for the development
task. All participants were able to deliver working applica-
tions in all three cases when using BraceForce, but when

6If a participant was not able to complete a specific task within
the time limit (i.e., 4 hours in total), we asked the user to estimate
the time he or she thought would be required to complete the task;
this value was used in computing the relative development efforts.

using the Android SDK, only half of the participants deliv-
ered a working Application 1, one participant was able to
successfully implement Application 2, and no participants
completed Application 3.

One of the most useful sets of feedback from the post-
questionnaire explained the users’ stumbling blocks with re-
spect to completing the tasks using the Android SDK:

◦ “Android interface is harder to understand”

◦ “Complex Android APIs”

◦ “Android permission is complicated; hard to locate the
right documents”

◦ “Android SDK is complex and not easier to understand,
not user friendly”

◦ “Complex logic regarding permission, broadcast receivers
and so on; distributed programming in Android is very
difficult”

We also asked participants whether they agree that us-
ing BraceForce was much easier and quicker than the An-
droid SDK and if so, why. Eleven participants responded
that they “Strongly Agree” with the statement, while the
remaining participant responded “Agree”. As for why, the
users’ justifications included the following:

◦ “Easy to manage and read, simplify the implementation”

◦ “Much more efficient, easier to use, easier to understand”

◦ “More convenient, more integrated in communication”

◦ “Convenient, cleaner, user friendly”

◦ “Very simple, easy to understand, elegant”

◦ “Very easy to use, hides all the low level details”

◦ “It hides the complex logic, easier to use, simple to debug”

Question 2. We evaluated the ramifications of using
BraceForce to interface with the sensors in terms of the accu-
racy of the sensing task and the running time. Fig. 8 shows
the results. The accuracy of the versions of all three applica-
tions was not substantively different (sensor deviations and
network noise likely account for the observed trivial differ-
ences), but Fig. 8 shows that executing through BraceForce
has some impact on how long it took the application to run,
including interacting with the sensors. While this burden
was relatively higher (an 8% increase) for Application 1, it
was substantially lower for the more sophisticated Applica-
tions 2 and 3, since the interactions are amortized over more
extensive and potentially distributed interactions.

Figure 8: BraceForce’s percent increase in accuracy
and running time vs. Android alone

Question 3. In this experiment, we report results from
using MDDA for a run of our smarthome application over
three hours. We report results that examine the impact of
MDDA at the aggregation level. That is, in the experiments



we report in this section, we fix the frequency of data ac-
quisition in the data layer and instead explicitly suppress
updates from neighbors where the sensor readings differ by
less than x% from the average of the neighboring readings.
We vary x from 0.5% (the most sensitive) to 5% (the least
sensitive). We report results for three sensitivity settings in
Fig. 9, which plots the tradeoff of MDDA with respect to ac-
curacy and communication costs. While MDDA at the data
layer is also useful to sensing driven mobile applications, for
space considerations, we focus on the higher level MDDA
because it has a more significant potential to impact com-
munication costs since the reasoning at the aggregation layer
requires network communication among distributed sensing
devices.

Figure 9: Tradeoffs of MDDA
As shown, there is a modest loss of accuracy when sensor

readings are suppressed, but this comes at a substantial re-
duction in the communication overhead. We measure both
the number of packets transmitted and the number of bytes
transmitted because some communication is amortized over
the entire run of the application. In our particular scenario,
suppressing sensor readings that are within 2% of neighbor-
ing readings entails only 3% loss of accuracy (in compari-
son to the out-of-band measured ground truth) but incurs
74-78% less communication overhead. These results are de-
pendent on the particular model used and the ability of the
phenomenon sensed to be predictably modeled. The results
do show that, in applications where this is the case, MDDA
whose sensitivity is tuned by the application domain expert
can provide a significant benefit in terms of the cost to de-
ploy or debug a mobile application that must acquire data
from a networked set of sensors.

6. DISCUSSION
Here, we briefly discuss threats to validity.
Construct and Internal Validity. We have used two simple

models for MDDA. We posit that using more sophisticated
models will only bring more benefits to the suppression of
superfluous transmissions of sensor data, but we have not
validated this hypothesis. The application used to answer
Question 3 was developed by the authors; since the focus
of the evaluation for Question 3 is not on the usability of
BraceForce but instead on the importance of MDDA (from
a performance aspect), the particular developer should be
irrelevant.

We use automated measures of CPU usage, WiFi usage,
and communication latency to assess BraceForce. These
statistics can be influenced by network noise, background
threads, and other processes running on the test devices.
To mitigate these concerns, we perform multiple trials and

average values across the trials. We notice the CPU usage
is always below 5% (rarely even over 3.8%) for sensing ser-
vice, data aggregation service, and mobile application node
service for all evaluation applications. The framework’s low
impact on CPU is expected result from the multi-layer archi-
tecture and months of code optimization, however, we have
not run a stress test for the middleware, especially for the
data aggregation and application node layer, which requires
large-scale deployment and ports the framework to a more
resource-constrained platform (To test the framework on a
large scale deployment is on the top of our list for the future
works).

We also have not done a thorough system evaluation of
the aggregator layer and of the overhead of the wrapper
described in Section 3.2.2; we believe this overhead to be
minimal and to not strongly affect the results, especially
when evaluated from a software engineering perspective.

We evaluated BraceForce’s support for programming us-
ing Software Engineering and Computer Science students in
a public university. The results may be different with profes-
sional mobile application developers, however, our target is
to enable novice programmers to build mobile applications,
and our users represent this group of programmers. In our
study’s pre-questionnaire, the majority of our participants
labeled their programming capabilities as “Average” (while
five labeled their experience as “Above Average”), and only
one study participant had any prior experience in interfac-
ing with sensing devices. Future studies will include both
more experienced mobile developers and even more novice
programmers.

We minimize learning effects by randomizing the order of
the use of BraceForce and the Android Platform. For those
participants who cannot complete the evaluation applica-
tions, we use the users’ estimate on how long it would take
them to finish the application. It is a guess at best and
it might be different for professional mobile application de-
velopers. We did find that those participants who rate their
programming capabilities as“Above Average”tended to give
much higher time estimation (e.g., five times more). From
this, we hypothesize that the more experience a developer
has, the more accurate the time estimation is; and those
with average programming skills tend to give an optimistic
estimation. The hypothesis is not validated.

External Validity. We have implemented the BraceForce
prototype only for the Android operating system. We there-
fore cannot draw concrete conclusions about the external
validity in terms of BraceForce’s applicability to other oper-
ating systems and platforms. We have attempted to mitigate
these concerns by avoiding proprietary interfaces whenever
possible and, when not possible, wrapping those interfaces
in a generic way that should be repeatable for other plat-
forms and systems. The same is true for our use of external
sensors connected via the Arduino board. While we have
focused our prototype implementation on the Android and
Arduino platforms, we have looked at a wide variety of de-
vices, and our design and implementation has focused on
abstractions that are, in theory, easily transferable to other
domains. Future work will include this translation to addi-
tional platforms as well as a novel MDDA tailored for the
needs of the mobile applications.

7. CONCLUSION AND FUTURE WORK
We motivated the need for a generic and principled frame-



work that allows for cross-platform integration of networked
sensing capabilities with mobile applications. This is impor-
tant in a variety of use cases, most notably to support de-
velopers of mobile applications that interact with on-board,
external, and networked sensors and to support debugging of
mobile applications that require direct interaction with the
physical world. BraceForce provides a layered architecture
that explicitly separates the application developer from the
low-level complexity of interacting with sensing devices and
enables the programming task to instead focus on the ap-
plication logic and the integration of sensing into that logic.
Our evaluation demonstrated that BraceForce does indeed
lower the barrier to creating these applications.

Future work includes demonstration of this middleware in
a large-scale realistic application (e.g. autonomous robots
coordinated patrol) where the middleware can be ported to
a different platform and performance/scalability impact can
be further studied. We will also investigate the correlation
of sensor data and the MDDA models used and enhance
network auto-discovery across multiple-gateways.
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