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M
any emerging pervasive health-care 
applications require the determina-
tion of a variety of context attributes 
of an individual’s activities and medi-
cal parameters and her surrounding 

environment. Context is a high-level representation of 
an entity’s state, which captures activities, relation-
ships, capabilities, etc. In practice, high-level context 
measures are often difficult to sense from a single data 
source and must instead be inferred using multiple 

sensors embedded in the environment. A key challenge 
in deploying context-driven health-care applications 
involves energy-efficient determination or inference of 
high-level context information from low-level sensor 
data streams. Because this abstraction has the poten-
tial to reduce the quality of the context information, it 
is also necessary to model the tradeoff between the 
cost of sensor data collection and the quality of the 
inferred context. This article describes a model of con-
text inference in pervasive computing, the associated 
research challenges, and the significant practical 
impact of intelligent use of such context in pervasive 
health-care environments.
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The wide availability of smart 
health-care appliances and a vari-
ety of standalone and integrated 
sensor devices makes it increasing-
ly easy to ubiquitously and continu-
ously monitor an individual’s 
health-related vital signals and her 
activity behavior and to integrate 
such medical and activity data into 
health-care information systems. 
We are already witnessing early 
commercial activity in this space, 
centered on remote monitoring of 
elderly individuals and chronically 
ill patients within smart assisted-
living homes. A combination of 
body-worn medical and nonmedi-
cal sensors (e.g., sensors to monitor 
blood oxygenation or accelerome-
ters to monitor movements) and in situ sensors (e.g., ther-
mal and motion detectors) is used to continuously monitor 
and automatically determine an individual’s context in 
such smart environments. Broadly speaking, context here 
refers to a variety of dynamically changing states, related 
to either an individual’s specific activities (e.g., walking ver-
sus sleeping) or biomedical conditions (e.g., elevated blood 
pressure, shortness of breath, or arrhythmia), or to sur-
rounding environmental conditions (e.g., atmospheric 
ozone levels or ambient temperature). In many health- and 
wellness-related applications, such context is the critical 
enabler of various capabilities, such as alerting a first 
responder if the individual is judged to be sleeping for an 
abnormal period of time or flagging a potential health risk 
by analyzing wellness data to detect shortness of breath 
after everyday physical activities.

In many scenarios of practical interest, the data 
streams are generated by a variety of battery-operated 
standalone or embedded sensors (e.g., accelerometers on a 
smartphone), and the act of transmitting the sensor 
streams to a backend server for context extraction can 
impose a significant energy burden. Accordingly, a crucial 
technical challenge in the area of sensor-based pervasive 
health-care applications centers on the question of how 
one can efficiently and reliably convert streams of low-lev-
el sensor-generated data into high-level abstractions of 
context. Previous work in the broader field of sensor-driv-
en context inferencing has largely assumed that the type 
and amount of low-level sensor data available to a specific 
application are invariant. This prior work has therefore 
focused on how to 1) automatically map low-level sensor 
data to appropriate abstractions of context states and 2) 
empirically establish whether the accuracy of inferred 
context is sufficient to enable automated adaptation [4].

In this article, we take a somewhat contrarian view and 
ask the question: How can we support the varying context 
requirements of multiple emerging context-dependent 

health applications while simulta-
neously trying to minimize the 
energy overhead of the sensor data 
collection process? In contrast, our 
previous work dealt with a single 
context-dependent health applica-
tion [12]. Our work is influenced 
by the observation that the land-
scape of remote health/wellness 
monitoring applications is chang-
ing from the earlier stove-piped 
model (where each application 
was customized for an explicit set 
of sensor devices) to a more fungi-
ble, standards-based model, where 
the underlying sensors are viewed 
as common, shareable resources 
that are simultaneously utilized by 
multiple applications.

◆◆ Smart assisted-living environments are gradually being 
equipped with a variety of different networked sensors 
(e.g., cameras, motion sensors, or light sensors) capable 
of programmatic data retrieval and control.

◆◆ Sensor-based health monitoring applications are grow-
ing, both in number and in the variety of medical con-
texts being monitored. In large part, the explosion of 
apps on the Apple AppStore and Google Googleplay  
are responsible for these recent phenomena—promi-
nent examples of health-care-related applications 
include Stress Check, Stress Doctor, Instant Heart Rate 
(http://www.azumio.com/), SmartRunner (http://www.
smartrunner.com/pages/), etc. 

As an illustration, consider a remote context moni-
toring scenario (shown in Figure 1) in a smart assisted-
living environment in which an elderly person resides. 
The smart home may be equipped with many sensors 
[light, humidity, electrocardiogram (ECG) electromyog-
raphy, etc.], some of which may be body-worn while oth-
ers may be embedded in the environment. A variety of 
applications and stakeholders (e.g., fall monitoring by a 
caregiver, wellness activity monitoring by a doctor, or 
vital sign monitoring by a nurse) need to access this 
low-level sensed information to abstract high level con-
text (both physiological and activity) about the resi-
dent. An important observation is that a specific 
application’s context can be satisfied by different possi-
ble combinations of sensor data types. For example, the 
fall-detection application may utilize data either from 
multiple video cameras, from a set of body-worn accel-
erometer and wall-mounted motion sensors, from a set 
of audio sensors, or from some arbitrary combination 
of these.

The preceding example motivates the need for a 
matchmaking software infrastructure that mediates 
between the context-driven health and wellness applica-
tions and the set of available sensors in a way that 

A key challenge in 
deploying context-
driven health-care 
applications involves 
energy-efficient 
determination or 
inference of high-level 
context information 
from low-level sensor 
data streams.
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minimizes the energy overhead, while still ensuring that 
the applications’ needs for high-quality context infer-
ences are met. To enable such a dynamic and automated 
association between application requirements and the 
available sensor resources in any environment, we make 
the following two key contributions in this article.

◆◆ First, we suggest the use of an explicit functional 
model to relate the accuracy of any inferred context 
to a measure of uncertainty about the true values of 
the sensor data.

◆◆ Then, we develop and evaluate an optimization-
based heuristic that uses the model to dynamically 
select both a set of sensors and the parameters of the 
sensors to satisfy the context requirements of multi-
ple context-aware applications, while minimizing the 
energy overhead of sensor-data transmission.

A Formal Model for Context Inference
Our goal is to determine the automated adaptation of 
sensors so as to reduce the energy overheads associated 
with data transmission from the sensors without compro-
mising the context requirements of any of the health and 
wellness applications. In achieving this objective, the accu-
racy or fidelity requirements associated with the context 
requirement are highly application dependent; for 

example, the fall-monitoring application may find an accu-
racy of 90% acceptable (i.e., it misses one out of ten cases 
of falls/stumbles), and the vital-signs-monitoring applica-
tion may require a much higher accuracy of 99.999%, 
while the wellness application may satisfied with a much 
lower fidelity of 50% in detecting the amount walked dur-
ing the day (i.e., it is okay to under- or overcount the 
amount of time spent walking by %50. ). Accordingly, 
we must first establish a formal functional model that 
relates the underlying accuracy/fidelity of the sensor data 
to the accuracy of the specific inferred context.

Given that a context metric is inferred from the com-
bination of values from multiple low-level sensors, we 
define the quality of inference (QoINF) as the error prob-
ability in estimating a context state, given the impreci-
sion in the va lues of the contr ibuting sensors. 
Concretely, we compute QoINF based on the average 
estimation error of the context; alternative definitions of 
accuracy (such as the percentage of false positives or 
false negatives) are equally reasonable and do not affect 
the remaining description of our model. Two key obser-
vations drive our use of QoINF.
1)	 While different combinations of sensor types may be 

used to infer the same high-level context at different 
levels of accuracy, it is almost universally true that the 

Figure 1. Multiapplication multicontext inferencing in a sensor-rich pervasive health-care environment.
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accuracy of the inferred context increases with an 
increase in the number and type of sensors utilized in 
the inferencing process. As a simple example, a combi-
nation of data from a body-worn accelerometer and 
ceiling-mounted motion sensors provides a more accu-
rate estimation of whether a person is immobile after a 
fall, compared to deductions based solely on one sensor 
or the other.

2)	 The quality of the inferred context is not just a func-
tion of the set of chosen sensors but also of the permit-
ted inaccuracy in the data values associated with each 
individual sensor. For example, the quality of the esti-
mation of the heart activity context will be less accu-
rate if the blood pressure sensor’s tolerance range is 

%20!  (indicating that the true reading may be up to 
20% higher or lower than the reported value) in com-
parison to a tolerance range of %5! .
Mathematically, we can then say that the quality of 

inference function, denoted as QoINF, for any given con-
text will be a function of i (the set of sensors used in the 
context inferencing process) and the qi values (called the 
tolerance range) associated with each sensor si. Concep-
tually, the job of our matchmaking algorithms is to find, 
given a specific QoINF function, the set i and the associ-
ated qi values (for those selected sensors) that minimize 
the communication energy overhead.

Quality of Inference for a Single Sensor
To simultaneously model the context accuracy and com-
munication overheads associated with different values of 
qi for a single sensor, we assume that each sensor utilizes 
the widely adopted event-driven reporting strategy, where 
it transmits a new sample only when its sensed value devi-
ates from the previously transmitted sample by qi! . In 
effect, this means that, at any instant, the context inferenc-
ing process is not aware of the sensor’s true current value 
but knows that this value will be within qi!  of the last 
value transmitted by the sensor. Of course, a larger toler-
ance range results in a reduction in a sensor’s reporting 
rate (frequency) and thus dramatically lowers its commu-
nication energy overheads [1], [2].

While many functional forms of the QoINF function are 
possible, we initially advocate and explore an inverse 
exponential functional model, where the accuracy of 

context inference or QoINF (for a specific application) for 
a specific sensor si and its associated qi value are related 
via the model

	 ( ) ,expi q1 1 1qoinf
i i io h= - -a k � (1)

where ,i ih o  are simply scalar constants. The choice of 
this inverse-exponential model is both mathematically 
motivated and empirically validated: not only does this 
functional model make our eventual goal of multicontext 
matchmaking tractable, it is also consistent with experi-
mental results we have conducted using a variety of sen-
sors (such as light, accelerometer, and motion sensors).

Context Inference with Multiple Sensors  
and Applications
Having established the formal relationship between a single 
sensor and a single context attribute, we now consider our 
target scenario: multiple applications, each requiring differ-
ent context inferences, potentially utilizing data from multi-
ple available sensors. To precisely elucidate our approach, 
we assume an underlying set S  of sensors. Determining 
the value of some context metric C may be viewed as a 
multidimensional mapping that uses the values sensed by 
some subset i of the available sensors (formally, S3i ) 
and maps them to one of the values associated with the 
context metric. To understand this relationship better, con-
sider the case illustrated in Figure 2, which depicts nine dif-
ferent sensors that may be used to support smart 
health-care applications. An application that senses heart 
activity may choose some subset of these sensors to assess 
its context; for example, heart activity can be assessed by 
the combination of a blood-pressure and a blood-flow sen-
sor. A domain-specific inference function uses these two 
low-level values and outputs a measure of heart activity.

To capture the reality that the same context may be 
inferred to varying degrees of accuracy using different 
sensor subsets, we associate a function that represents the 
accuracy of a certain subset of sensors with respect to a 
given context metric. That is, ( )QoINFC i  gives the expect-
ed accuracy of inferring a context metric C using the sen-
sors in the subset i. Figure 2 (where we implicitly assume 
that each of the sensors has a predefined tolerance range 
of 0.10) further illustrates this notion of multiple sensors 

Figure 2. The impact of different sensor subsets on QoINF (without considering tolerance ranges).
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and the QoINF values associated 
with different context variables. 
For example, the context measure 
activity state of an individual may 
be computed with an inferencing 
accuracy of 0.90 (i.e., with a 10% 
error rate) using a respiratory sen-
sor but only with 0.80 accuracy 
using a low-quality ECG sensor. 
However, by combining the data 
available from both sensors, we 
can achieve an inferencing accura-
cy of 0.98. Of course, this mapping 
itself will be a function of the toler-
ance ranges associated with each 
sensor. For example, if the tolerance range for the respira-
tory sensor degrades to 0.20 and the ECG sensor to 0.15, it 
is likely that the inferencing accuracy based on the combi-
nation of these two sensors will drop from 0.98 to 0.90. We 
describe a precise approach for expressing such compos-
ite QoINF functional models in the “Choosing a QoINF 
Function for Multiple Sensors” section.  

A Quality-Aware Context Architecture
Based on the preceding observations, we now present the 
high-level functional components of a QoINF-aware con-
text-determination service, i.e., the matchmaking function-
ality (Figure 3). External applications subscribe to specific 
context measures and indicate minimally acceptable 
QoINF values. The context optimizer determines the best 
(least-cost) combination of sensors and their tolerance 
ranges that can meet the specified QoINF requirement. The 
transmitted sensor data are received by the context estima-
tor, which continuously updates the application on the 
value inferred for the requested context measure(s).

The rest of this article focuses on the logic of the context 
optimizer. We describe how we can determine the subset of 
sensors and their associated tolerance ranges that best sat-
isfy the varying context requirements of multiple subscrib-
ing applications at the minimum cost. 
While many other measures of cost can be 
considered, we have explicitly focused on 
minimizing the sum of the transmission 
costs associated with each individual sen-
sor (as wireless transmissions cost is one of 
the most significant energy burdens in sen-
sor-based contextual applications). From 
past work [2], ( )cos t qi i  (the average trans-
mission energy overhead associated with 
sensor si) is proportional to both the num-
ber of wireless hops (hi) utilized to trans-
port the samples to the context estimator 
and the tolerance range qi 

( ) .cos t q q
h

i i
i

i
2?

Choosing a QoINF Function 
for Multiple Sensors
A QoINF funct ion expl icit ly 
relates the quality of a context 
measure to the sensors (and their 
tolerance ranges) that contribute 
the actual data. Similar work has 
used decision fusion rules based 
on counting policy using a Pois-
son sensor distribution model [6] 
or by exploiting statistical depen-
dencies (and independencies) of 
sensors [3]. If the QoINF function 
was completely arbitrary, the con-
text optimizer would have the 

mathematically intractable task of performing an 
exhaustive search of all possible combinations of sen-
sors and tolerance ranges. For a mathematically tracta-
ble approach (which is also supported well by our 
empirical results), we assume that the estimation error 
for each sensor is statistically independent of the others 
[11]. We can then define the QoINF value for a particular 
combination of sensors i (with the ith sensor having its 
own tolerance range qi) by 

	 ( ) { ( )},i1 1QoINF qoinf
| |

i 1

i = - -
i

=

% � (2)

where QoINF(i) is defined in (1). This definition satisfies all 
the following observations about valid QoINF measures: 1) 
its value is within (0,1) and 2) QoINF is nondecreasing in 
the size of i (i.e., incorporating data from an additional sen-
sor cannot degrade the inference quality) and degrades 
with increasing qi.

Context Optimization: Selecting  
Sensor Settings
We now focus on explaining our second contribution, i.e., 
describing a process by which the context optimizer can 
determine the best set of sensors and their tolerance 

Figure 3. An architecture for QoINF-aware context determination.
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ranges. Figure 4 shows two complementary views of the 
internal details of the context optimizer. We first examine 
the basic problem: that of selecting the appropriate set of 
sensors and their settings, given a single context to esti-
mate. We will then look at the more complex problem of 
simultaneously estimating multiple contexts.

Single Context Optimization
Given a single context measure, the goal is to choose a 
subset i of sensors (and their tolerance ranges) to infer 
that context measure with a QoINF value that is at least 
equal to the application-specified minimum required 
fidelity at a minimum communication overhead. If the 
subset, i, of sensors is predefined, then determining the 
best tolerance ranges (qi values) is a straightforward 
Lagrangian optimization problem. Accordingly, the chal-
lenge here is to determine, in the first place, which i to 
use. Clearly, one solution is to iterate through all possi-
ble combinations of available sensors. However, as sen-
sors become increasingly ubiquitous in our targeted 
smart-assisted living environments, such an approach is 
excessively computationally expensive. A heuristic 
search can drastically reduce the computational cost by 
performing an intelligent exploration of the possibilities.

Our proposed heuristic is based on the observation that 
the additional cost in adding another sensor to the set i is 
dependent on the sensor’s hop count from the context esti-
mator and the sensor’s sensitivity factors [the h and o 
terms in (1)]. Specifically, the algorithm favors sensors with 

lower hop counts (indicating a small update cost) and lower 
sensitivity factors (indicating a smaller degradation in 
QoINF with increasing tolerance ranges) [12]. The heuristic 
algorithm first sorts the available sensors based on their 
hop counts and sensitivity factors. It then incrementally 
considers larger sets of sensors, starting with the singleton 
set of the first sensor in the list. The algorithm computes 
the tolerance ranges (for each individual member of the set) 
needed to ensure that the application-specified QoINF 
bound is satisfied and then computes the transmission cost 
associated with using those sensors with the correspond-
ing tolerance ranges. If the QoINF requirement is not 
achievable with the considered set, the cost is set to 3 . 
The algorithm then compares this cost to the cost calculat-
ed in the previous round. If the cost has decreased, the 
algorithm continues its iterative exploration by growing i. 
If the cost has increased, the set computed in the previous 
round (and its associated tolerance ranges) is assumed to 
be the preferred solution [11].

Multicontext Optimization
To address our eventual vision of a smart matchmaking 
service that lets numerous health-care-related applications 
and services make the best possible concurrent use of an 
underlying substrate of multimodal sensors, we must 
extend the algorithm to consider the optimization of multi-
ple distinct contexts [14]. As a tangible illustration of this 
scenario, consider again a smart-home assisted-living 
deployment scenario depicted in Figure 1, with several sen-

sors: [blood pressure (BP), ECG, passive 
infrared sensor (PIR), force-sensitive re
sistor (FSR), accelerometer, ultrasonic, 
electromyography (EMG), motion, light, 
etc.]. Some of these (i.e., motion, light, PIR, 
FSR, and ultrasonic) are embedded in the 
environment, and some (i.e., BP, ECG, 
accelerometer, and EMG) are worn on the 
body. Multiple applications, like vital-signs 
monitoring, fall monitoring, and wellness 
management, execute simultaneously 
using these sensors and require different 
context attributes at different levels of 
accuracy. For example, the fall-monitoring 
application may require a person’s move-
ment context to be inferred using BP, FSR, 
and accelerometer sensors, while for the 
wellness-management application, context 
describing a person’s sleeping state with 
required accuracy can be achieved jointly 
by accelerometer, PIR, and ultrasonic sen-
sors. In this simple example, all of the con-
texts required by different applications 
can be satisfied by using only the BP, FSR, 
and accelerometer sensors (with the 
required accuracy and imposed tolerance 
ranges); the other sensors (ECG, PIR, and 

Figure 4. Context optimization in a QoINF-aware architecture.  
(a) A generic view and (b) a parametric view.
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ultrasonic) may be then turned off 
to conserve energy.

The preceding scenario can be 
expressed as a multiattr ibute 
optimization problem, whose goal 
is to achieve the required QoINF 
of multiple applications, while 
simultaneously minimizing the 
total communication overhead 
[12]. The extended heuristic algo-
rithm for solving the multicontext 
problem considers the added 
dimension of the problem; specifi-
cally, the set i that is best for a 
particular context metric in isola-
tion may no longer be ideal when considering contexts 
jointly. The heuristic algorithm still favors sensors with 
lower hop counts and lower sensitivity factors, but a sen-
sor’s sensitivity factors are dependent on the particular 
context being inferred. As a result, if we have L different 
contexts to jointly estimate, we have L sorted lists of the 
available sensors. Our goal is to satisfy all L contexts at 
the same time; our algorithm considers them sequential-
ly. When only the first context (C1) is considered, its sort-
ed list is used, and i is constructed exactly as in the 
single context case. When the algorithm moves on to the 
second context (C2), it first determines whether the 
existing i is sufficient for estimating C2. If not, the algo-
rithm adds new sensors using C2’s sorted list. As it does 
so, it also tests whether any sensors that were added to 
support C1 have become redundant; if so, they are 
removed. The algorithm continues this process incre-
mentally until it has considered all L contexts.

A Range-Based Sensor Selection  
for Multiple Contexts
Here, we discuss an enhanced version of the previous 
heuristic algorithm that, for each additional context, 
tries to compare the total cost from the following two 
approaches: 1) using the current set of sensors and 
determining if a modification of the tolerance ranges of 
this current set is enough to satisfy the QoINF require-
ment of the additional context metric or 2) adding an 
additional sensor to the set of sensors and seeing what 
tolerance ranges this modified set must have to satisfy 
all the QoINF requirements of the contexts considered 
thus far. After computing the costs of each approach, 
this second heuristic selects the one that both satisfies 
the QoINF requirements of all of the considered con-
texts and has the lowest cost. This is in contrast to the 
approach in the previous algorithm, where the compari-
son was made only between adding a new sensor and 
the cost incurred by the current set of sensors (with 
their tolerance ranges unmodified). In other words, the 
previous approach did not explore the option that one 
could satisfy the QoINF of the additional contexts, 

without altering the set of acti-
vated sensors, simply by tighten-
ing the tolerance ranges of the 
current set of selected sensors.

We have thus far assumed that, 
for a given context, the user is 
only in one context state at a 
time, i.e., either the user is in the 
sitting state, in the walking state, 
or in the running state. There are, 
however, other scenarios like 
watching television (TV) and 
speaking on the phone, which 
may happen concurrently. Such 
concurrent context states can 

also be determined using our model. As shown in our 
model, the minimum QoINF value and sensitivity factors 
for these multiple context states will be fundamentally 
different. For example, consider that we have one acous-
tic sensor for detecting the watching TV context state 
and one microphone sensor for recognizing the speaking 
on the phone context state. The operating analytics (tol-
erance range, etc.) of these two sensors can be computed 
by our proposed model while still maintaining the under-
lying objective of sharing sensor data streams to 
improve the accuracy and minimize the network cost.

Evaluation
To illustrate the promise of this formal model-based 
approach, we experimented with a laboratory-based 
deployment in which individuals were monitored with 
body-worn sensors taking readings from a motion sensor 
(an accelerometer), a light sensor, and a temperature sen-
sor. We have performed experiments with SunSPOT 
(www.sunspotworld.com) and Shimmer sensors (http://
www.shimmer-research.com/). Specifically, we have used 
a three-axis accelerometer, a light, and an embedded 
external gyro sensor on the SunSPOT platform and a 
three-axis accelerometer and gyro sensor on the Shimmer 
platform. This initial deployment gives important insights 
in the nature of context inference and the use of aware-
ness of quality to direct the acquisition tasks [11], [12]. Our 
experimental data and results can be summarized via the 
following key observations.

◆◆ A clear relationship between QoINF and tolerance 
range exists, but this relationship is neither linear 
nor continuous; for some data types, the quality of 
(context) inference possible using the data type can 
drop precipitously with just a small change in toler-
ance range.

◆◆ The expected relationship between cost and tolerance 
range exists: raising the tolerance range decreases the 
cost. Taken with the previous observation, it is possi-
ble to exploit the tradeoff between quality and cost by 
tinkering with the tolerance ranges, and this tinkering 
is specific to particular data types. Figure 5 shows this 

One of the main 
challenges in the 
application of 
our framework 
is establishing 
appropriate QoINF 
functions for context 
variables.
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tradeoff for the motion sensors we used in our experi-
mental deployment.

◆◆ Using multiple sensor types to jointly infer a single 
context metric provides a clear benefit, and our basic 
and extended heuristic algorithms take advantage of 
this benefit of joint sensing.

A Performance of the Range-Heuristic
Our range-based heuristic can achieve application-speci-
fied quality and reduce network resource usage substan-
tially. We compare our range-based heuristic algorithm 
with the naïve heuristic and brute-force search. Based on 
the derived sensitivity factors, we sort all of the sensors 
and generate the following sorted lists: 10 =  {Shimmer 
Accel, SunSPOT Accel, Shimmer Gyro} for context sitting; 

20 =  {SunSPOT Accel, Shimmer Gyro, Shimmer Accel} for 

context walking; and 30 =  {Shimmer Gyro, Shimmer 
Accel, SunSPOT Accel} for context running. We use each 
approach to compute the optimal sensor set ( )it  and asso-
ciated tolerance ranges ( )Q it  that minimize the ( )COST i\  
for a target QoINF. We also use the range-heuristic to com-
pute the q values for a target QoINFmin  and then use those 
q values to determine the achievable QoINF.

Figure 6 plots the minimal cost associated with the 
three search methods to determine the optimal subset of 
sensors and their tolerance ranges for the first context 
state considered, sitting in our case. In this example, the 
range-based heuristic and heuristic perform exactly as the 
brute force in finding the optimal sensor subset with mini-
mum cost. Figure 7 compares the performance of these 
three algorithms for the context walking. The range-based 
heuristic performs better than the heuristic, and it per-
forms close to brute force. Similarly, Figure 8 plots the per-
formance for the running context, where again the 
range-based heuristic algorithm outperforms the naïve 
heuristic. Due to the simple set theoretic addition of sen-
sors from one context to another (without examining the 
existing sensor set’s satisfiability for the new context) in 
the heuristic algorithm, we observe that first just the 
Shimmer accelerometer has been selected for the sitting 
context; then for walking, both the Shimmer and SunSPOT 
accelerometers have been selected; and then for running, 
all three available sensors have been chosen. In the range-
based heuristic, only the Shimmer accelerometer is select-
ed for all the contexts at the minimal cost by tightening 
the tolerance range.

We also evaluate our range-based heuristic’s ability 
to attain the application’s desired QoINF. First, we cal-
culate the tolerance ranges for the chosen optimal 

Figure 6. A range heuristic, heuristic, and brute-force 
minimal cost comparison for sitting.
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Figure 7. A range heuristic, heuristic, and brute-force 
minimal cost comparison for walking.
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Figure 5. Communication overhead and accuracy 
tradeoffs.

0

250

500

750

1,000

1,250

1,500

1,750

2,000
R

ep
or

tin
g 

F
re

qu
en

cy

Tolerance Range (q) in Degrees

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Q
oI

N
F

 (
%

)

Reporting Frequency

QoINF Accuracy



	 Apri l  2016    IEEE Systems, Man, & Cybernetics Magazine	 23

subset of sensors at minimal 
cost. Then with those specified 
tolerance ranges and the deter-
mined sensor set, we run our 
emulation on the already col-
lected data traces to determine 
the empirically achieved accura-
cy of the a lgor ithm. Figure 9 
plots the QoINF achieved by the 
range-based heuristic algorithm 
for the context running. The 
range-based heuristic performs 
well at no more than 10% lower 
than the target QoINF. Nevertheless, we do notice that 
our range-based heuristic does not perform well in 
achieving target QoINF accuracy for the other two 
context states. We believe this is a result of the large 
approximation in our curve-fitting approach. This 
incurs errors in determining the sensitivity factors 
and therefore introduces a larger deviation in the q 
values, which ultimately affects the attainable QoINF 
accuracy of the range-heuristic algorithm with respect 
to the target QoINF metric. Adding more sensors to 
the selection process (as is likely in future pervasive 
computing scenarios) would be expected to help limit 
this negative impact.

Insights and Challenges
Our initial work with this framework and its implemen-
tation provides enough evidence that our suggested 
approach of a) building formal functional models to 
characterize the relationship between context attri-
butes and individual sensors and b) applying joint 

optimization of multiple contexts 
over a common substrate of sen-
sors can provide significant sav-
ings in energy overheads for 
representative health and well-
ness applications. Accordingly, 
we believe that the technical 
community should explore this 
approach further. Our experi-
ence with the design and devel-
opment of this framework has 
also left us with several insights 
and open questions.

◆◆ What is the right QoINF function for a given 
context measure? One of the main challenges in the 
application of our framework is establishing appro-
priate QoINF functions for context variables. Much of 
the work on utility-based context models faces the 
practical difficulty of computing useful utility func-
tions [4]. We have used our inverse-exponential model 
and employed regression techniques on training data 
to derive the parameters for this model [12]. In reality, 
the functional relationship may be not only different 
(for instance, we already know that the ()infqo  func-
tion can be discontinuous) but also deployment spe-
cific (e.g., the correlation between a specific user’s 
movements and motion sensor data may vary signifi-
cantly based on individual behavioral characteristics 
or the layout of an assisted-living facility), and a sepa-
rate training phase may be impractical. In such situa-
tions, we need to explore a more continuous, adaptive 
learning framework, where the system dynamically 
learns the relationship between different sensor 

Figure 9. A range-based heuristic on achieving 
target QoINF for running.
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Figure 8. A range heuristic, heuristic, and brute-force 
minimal cost comparison for running.
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parameters and the true user 
context, perhaps obtained 
from explicit user feedback or 
implicit user actions (e.g., [4]).

◆◆ How does one distinguish 
and combine between toler-
ance ranges and sensor 
errors? In our model, the tol-
erance range is not an intrin-
sic characteristic of a sensor, 
but it is determined by the con-
text optimizer: e.g., if q 10i !=  
and the last reported value is 
120, the true value of the sen-
sor must lie in the interval 
(110, 130). Sensing errors (e.g., 
errors in sampling and calibra-
tion) are, on the other hand, intrinsic to a sensor and 
not application specific. For instance, if a sensor has 
an error of !2, a reading of 120 could correspond to a 
ground truth of (118, 122). One way to view the rela-
tionship between these two variables is to note that, 
given q and e and a last reported value of ,v  the 
ground truth of the sensed attribute should lie 
between ( ,v q e- -  ) .v q e+ +  For our approach to 
work with sensors from different manufacturers and 
with different error characteristics, the context opti-
mizer must be able to automatically derive and com-
bine these two independent parameters. One practical 
approach to this issue may be to have different sen-
sors automatically publish their error ranges in a 
standard format [e.g., using the SensorML format 
(http://www.opengeospatial.org/standards/sensorm1)] 
so that our framework can automatically incorporate 
these values. However, as it is well known that sen-
sors will deviate from these nominal values over time, 
we need more research to establish how such devia-
tions can be automatically detected under our qi- 
based reporting approach.

◆◆ How do we extend our QoINF-based model to 
consider concurrent and correlated context? In 
our formulation thus far, we have implicitly assumed 
that a context metric takes on only a single value at a 
time (e.g., a wellness management application assumes 
that the user is in only one of [sitting, walking, run-
ning] states at any instant) and that the different con-
text attributes are mutually uncorrelated (e.g., the 
determination of a person’s walking context is uncor-
related to her agitated with high BP context). In prac-
tice, if activity is defined to include both watching TV 
and talking on the phone, it is possible for an individu-
al to be engaged simultaneously in both. Similarly, 
there will be statistical dependencies across contexts; 
for example, it is unlikely for a person to be agitated 
with high BP to be also simultaneously in the sleeping 
state. A more advanced framework is needed (perhaps 

employing semantic reasoning 
over contexts [13] or a hierarchical 
context inference model [9], [10]) to 
automatically detect such correla-
tions and concurrency constraints 
and exploit them in selecting and 
tasking available sensors.

Related Work
The tradeoff between communi-
cation overhead (cost) and the 
quality of fused data has been 
studied with respect to the effect 
of the tolerance ranges on the rel-
ative frequency of sink-initiated 
fetching (data pull) versus source-
initiated refreshes (data push) [7]. 

The focus, however, has been on snapshot queries and 
not long-running subscription queries [8]. Temporal cor-
relations across successive samples have also been 
exploited to reduce communication overhead of snap-
shot queries [1]; this approach used training data to 
parameterize a jointly normal density function. The col-
lective adaptive precision setting algorithm [2] is 
designed for long-running aggregation queries (such as 
{min, max}) and computes the optimal set of tolerance 
ranges for a given set of sensors that minimizes commu-
nication overhead. Unlike such work, which focused 
purely on structured-query-language-like aggregation 
queries over a preordained set of sensors, our goal is not 
only to support generalized context queries but also to 
simultaneously find the best subset of available sensors 
and their associated tolerance ranges. An energy man-
agement framework for wireless sensor networks that 
simultaneously considers QoINF requirements with 
energy constraints was presented in [5] that views the 
consumption of energy versus QoINF gains game theo-
retically and can decide to provide lower QoINF if the 
cost of data acquisition is too high; in contrast, we focus 
on health-care-related environments, where the QoINF 
requirement is considered to be inviolable.

Conclusions
We motivate the need for a formal framework for ener-
gy-efficient determination of physiological context in 
pervasive health-care deployments, specifically using 
the scenario of remotely monitored assisted living. To 
this end, we introduce a formal framework for reason-
ing about the inherent tradeoffs between quality of con-
text and the cost of acquiring it, followed by the use of 
this formalization to derive two heuristic algorithms for 
computing the context inference supporting structure. 
The key idea is to express the accuracy of context infer-
ence through a QoINF function that captures the 
dependence of context estimation accuracy on both the 
set of sensors selected to support context acquisition 
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and their specified parameters of sensing. Such explicit 
recognition of the quality of sensed context within 
applications is an essential component of future con-
text-aware ubiquitous health-care applications and 
software infrastructures.
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