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Abstract—In pervasive computing environments, understanding
the context of an entity is essential for adapting the application
behavior to changing situations. In our view, context is a high-level
representation of a user or entity's state and can capture loca-
tion, activities, social relationships, capabilities, etc. Inherently,
however, these high-level context metrics are difficult to capture
using uni-modal sensors only and must therefore be inferred using
multi-modal sensors. A key challenge in supporting context-aware
pervasive computing is how to determine multiple high-level con-
text metrics simultaneously and energy-efficiently using low-level
sensor data streams collected from the environment and the
entities present therein. A key challenge is addressing the fact
that the algorithms that determine different high-level context
metrics may compete for access to low-level sensors. In this paper,
we first highlight the complexities of determining multiple context
metrics as compared to a single context and then develop a novel
framework and practical implementation for this problem. The
proposed framework captures the tradeoff between the accuracy
of estimating multiple context metrics and the overhead incurred
in acquiring the necessary sensor data streams. In particular, we
develop two variants of a heuristic algorithm for multi-context
search that compute the optimal set of sensors contributing to the
multi-context determination as well as the associated parameters
of the sensing tasks (e.g., the frequency of data acquisition). Our
goal is to satisfy the application requirements for a specified
accuracy at a minimum cost. We compare the performance of our
heuristics with a brute-force based approach for multi-context de-
termination. Experimental results with SunSPOT, Shimmer and
Smartphone sensors in smart home environments demonstrate
the potential impact of the proposed framework.
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I. INTRODUCTION

M ANY pervasive computing applications of interest
hinge on the ability to extract individual-level context

from sensor data streams provided by a combination of on-body
sensors and infrastructural sensor devices. One illustrative
example of such applications centers around remote health and
wellness monitoring of individuals, especially the elderly and
chronically ill, in smart homes. Commercial solutions already
offer remote monitoring within “smart assisted-living homes”,
using a combination of body-worn medical and non-medical
sensors (e.g., monitors and accelerometers) and in-situ
sensors (e.g., thermal and motion detectors embedded in the
home).1
Energy remains the most critical resource for both body-worn

and in-situ sensors [16], especially as we move towards bat-
tery-less infrastructural sensors that operate using energy har-
vesting. Accordingly, it is vital to develop techniques that can
reduce the energy overhead of such remote context monitoring,
without sacrificing (or only minimally degrading) the accuracy
of the context recognition process. Broadly speaking, context
represents a single or multiple, sequential or interleaved states
of a user. We make two key observations that apply to pervasive
applications associated with such relatively sensor-rich smart
home environments.

i) The first is that a specific individual context, especially
those related to activities of daily living (ADLs), can be
inferred (at varying levels of accuracy and energy costs)
via multiple different combinations of body-worn and in-
frastructural sensors [17]. For example, we can determine
that an individual has been stationary for an unusually
long period of time based on (see Fig. 1) either (a) the
accelerometer sensor data from the individual's smart-
phone, (b) passive infrared (PIR) or ultrasonic sensors
mounted on ceilings, or (c) force sensitive resistor sensor
(FSR) sensors embedded in beds and couches. Each of
them is associated with different types of errors—e.g.,
smartphone-embedded accelerometer data may generate
false negatives if the person leaves the phone on the table,
whereas PIR sensors may generate false positives due to
movement of animals or changing intensity of reflected
sunlight. Multi-modal sensing, or the fusion of disparate
data streams for inferring a single context metric, helps

1http://aperion.typepad.com/aperion_companies_weblog/aperion_health_
news/index.html.
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Fig. 1. Impact of choice of different subsets of sensors on (without
considering tolerance range).

mitigate errors that result from relying solely on a single
sensing stream [1]. Moreover, in general, the accuracy of
inferred context increases with the use of a larger set of
sensors.

ii) The second is that many applications are interested in
multiple distinct activity contexts simultaneously. For ex-
ample, remote wellness applications (see Fig. 1) may be
interested in (a) outliers in vital signs (e.g., drop in blood
pressure), (b) motion detection and (c) sleep duration
monitoring.

In this paper, we tackle a key aspect of a robust applica-
tion framework for energy-efficient determination of multiple
concurrent contexts, each of which may need differing levels
of context accuracy. The key idea is to exploit the overlaps
and correlations between the multiple distinct combinations of
multi-modal sensors that can be used to infer each individual
context, and the relation between the inferred context accuracy
and key operating parameters of each individual sensor, to de-
termine both (i) the best set of sensors that need to be concur-
rently sensed, and (ii) the optimal parameter setting for each
such activated sensor. Here, the terms “best” and “optimal” are
used to imply that the choices made should both (a) result in the
lowest cumulative energy overhead and (b) satisfy the accuracy
requirements associated with each distinct context.
More specifically, in this paper we focus principally on re-

ducing the wireless communication energy overheads associ-
ated with transferring the generated sensor data from the sensor
sources (i.e., the on-body or infrastructural sensors chosen) to
a central “server node”, where the contexts are computed. This
choice is motivated by the observation that communication is
often the most energy-intensive component in collecting infor-
mation and determining context from such embedded sensors.
A promising approach to reducing the communication overhead
relies on modeling the degree of context inaccuracy that perva-
sive computing applications can tolerate.
In our previous work [14], we formally defined such a

relationship in terms of a metric called Quality-of-Inference
( ). is defined as the average error probability
in estimating a high-level context state, given the imprecision in
the contributing low-level sensor values, and is related to both
(a) the set of sensors used to infer that context state and (b) the
imprecision allowed in data acquisition for each sensor in the
set. We refer to the latter as the sensor's tolerance range: a tol-
erance range of for a sensor implies that the sensor reports its
currently sampled value only when it deviates from the last re-
ported value by at least . A tolerance range based approach
allows us to apply an event-driven model of communication
by the sensing source; prior work [19] has demonstrated that
even a modest increase in tolerance often results in a significant
reduction in communication energy overheads. An alternate

approach to reducing the communication energy overheads
involves reducing the sensor sampling rate; indeed, many prior
activity recognition frameworks (e.g., [21] vary the sampling
rate (e.g., on accelerometer or gyroscope sensors) to reduce
both the sensing and data transfer costs. However, such prior
work has looked at an individual context state in isolation, and
failed to consider the reality that smart home applications often
require the determination of multiple contexts simultaneously.
This paper focuses specifically on the additional challenges

associated with the problem of simultaneously inferring mul-
tiple (abstract) context states from an overlapping set of sen-
sors, with the lowest possible energy overhead. To appreciate
the additional complexity involved, consider an example, de-
picted in Fig. 1, from an ambient assisted living environment.
In isolation, the single contextmoving person can be determined
with 94% accuracy by fusing two sensor streams: one from an
accelerometer and another from an ultrasonic sensor. However,
when the same environment is asked to simultaneously deter-
mine the context lying on bed the combination of the accelerom-
eter and a force sensitive resistor sensor (FSR) is best used to
help determine this new context, while moving person can be
determined by combining the accelerometer and FSR, albeit at
the reduced accuracy of 92%. As this example demonstrates,
solutions to the individual context optimization problem may
not be ideal for joint determination of multiple contexts when
the underlying sensor streams are shared. Note that Fig. 1 does
not explicitly relate the sensors' tolerance ranges to the achieved
quality of context recognition. These tolerance ranges add an-
other dimension to the problem. In the example under consider-
ation, however, it is easy to see that the estimation of themoving
person context will be less accurate in both cases if the ac-
celerometer sensor tolerance range is 40% (indicating that the
true reading may be up to 40% higher or lower than the reported
value) as opposed to a tolerance range of 10%.
To tackle this challenging problem, we shall significantly ex-

tend our previous formalization [14] of minimum-cost context
information using a generic function that captures the relation-
ship between and the set of sensors (and their assigned
tolerance ranges). Specifically, in this paper we propose a range
based sensor selection heuristic algorithm for multiple contexts;
this heuristic explores the option of satisfying the of
the additional context metrics without altering the set of acti-
vated sensors but simply by tightening the tolerance range of the
current set of activated sensors. The major contributions are:
• We formalize the problem of energy-efficient multi-con-
text estimation to incorporate the diversity of distinct
sensor streams (both body-worn and infrastructure-based)
that are likely to be available in emerging smart home
environments.

• We design two low-complexity Lagrangian-based heuristic
algorithms to approximate the selection of the best set
of sensors and associated tolerance ranges to achieve the
specified s for multiple contexts simultaneously
at a minimum cost (i.e., the energy expended to acquire
context). The first algorithm naïvely grows a set of sensors
by incrementally considering additional target contexts.
The second algorithm improves on the first's naïvety; it
evaluates the increase in cost not only due to the addition
of a new sensor to the growing subset but also by altering
the sensing parameters (tolerance ranges) of those sensors
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Fig. 2. Multi-application multi-context inferencing in a sensor-rich pervasive
healthcare environment.

already selected. We also present a brute-force algorithm
and compare it to our heuristic approaches.

• We develop an empirical method for our func-
tions. We experimentally evaluate the appropriateness of
our and sensor selection algorithms, using real
data traces collected from SunSPOT and Shimmer sensor
platforms.

Overall, we demonstrate how a function can be com-
puted for practical, real-world environments, and thereby de-
velop a systematic framework that intelligently utilizes the di-
versity of sensor devices to conserve energy, while satisfying
the diverse context accuracy needs for multiple concurrently ex-
ecuting context-based applications.

II. APPLICATION SCENARIO
The wide availability of smart healthcare appliances and a

variety of standalone and integrated sensor devices is making it
progressively easier to ubiquitously and continuously monitor
an individual's health-related vital signals and her behavior
(i.e., activity). For example, a combination of body-worn
medical and non-medical sensors (e.g., sensors to monitor
blood oxygenation or accelerometers to monitor movements)
and in situ sensors (e.g., thermal and motion detectors) can
be used to determine an individual's context in smart homes.
Broadly speaking, context here refers to a variety of dynami-
cally changing states, related to either an individual's specific
activities (e.g., walking vs. sleeping) or biomedical conditions
(e.g., elevated blood pressure, shortness of breath, arrhythmia),
or to surrounding environmental conditions (e.g., atmospheric
ozone levels, ambient temperature).
As an illustration, consider a remote context monitoring sce-

nario (shown in Fig. 2) in a smart assisted-living environment
in which an elderly person resides. The smart home may be
equipped with many sensors (light, humidity, PIR, ECG, elec-
tromyography, etc.), some of which may be body-worn, while
others may be embedded in the environment. A variety of ap-
plications and stakeholders (e.g., fall monitoring by a caregiver;
wellness activity monitoring by a doctor; vital sign monitoring
by a nurse) need to access this low-level sensed information
to abstract high level context (both physiological and activity)
about the resident. An important observation is that a specific
application's context can be satisfied by different combinations

of sensor data types. For example, the fall detection application
may utilize data either from multiple video cameras, or from a
set of body-worn accelerometer and wall-mounted motion sen-
sors, or from a set of audio sensors, or from some combination of
the above. Similarly, the sustained lack of movement inside the
home may be determined either from a body-worn accelerom-
eter, fromwall-mounted PIR sensors or from room-specific light
sensors.
The above example motivates the need for a “match-

making” software infrastructure that mediates between the
context-driven health and wellness applications and the set of
available sensors in a way that minimizes the energy overhead,
while still ensuring that the applications' needs for high-quality
context inferences are met. To enable such a dynamic and
automated association between application requirements and
the available sensor resources in any environment, we make
the following two key contributions:
• First, we suggest the use of an explicit functional model to
relate the accuracy of any inferred context to a measure of
uncertainty about the true values of the sensor data.

• Then, we develop and evaluate an optimization-based
heuristic that uses the model to dynamically select both a
set of sensors and the parameters of the sensors to satisfy
the context requirements of multiple context-aware appli-
cations, while minimizing the energy overhead of sensor
data transmission.

III. CONTEXT INFERENCE MODEL

We begin with an overview of our model of the
for context determination in pervasive computing applications,
which we developed in our prior work to determine a single con-
text from multiple underlying sensor streams [14]. We extend
this original model to support more challenging multi-context
recognition based on multiple underlying sensing streams. In
both problems, determining a specific context attribute may be
viewed as an inference obtained from fusing values acquired
through multiple sensor streams.

A. Model
Given set of sensors, , let represent the data value re-

ported by sensor . Let be the range of possible values
that could report. Determining a context variable may
be viewed as a mapping function that takes as input the
values from a subset of sensors and maps them into the
state space of the output context, .

(1)

Different values of the same context may be inferred with
varying accuracy using different subsets of sensors [6]. There-
fore, we need to associate an accuracy function with the context
inference that expresses the average accuracy in estimating the
context using the sensors in . We define a particular instance
of this accuracy function, to be one minus the av-
erage estimation error incurred by :

(2)

where is the probability of error, given ac-
curate readings from the sensor subset , when the value for
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the context variable is actually . Although alternative defi-
nitions of accuracy are possible, such definitions are merely al-
ternatives to our definition of ; we focus on the use
of such functions in expressing the quality of context estimation
in general and use the definition in (2) as a basis for quality of
information founded on sensing errors.
If the state space of is discrete, then the estimation error

is computed as the normalized number of incorrect inferences
made by the best possible estimator. If the context space is con-
tinuous, the error also depends on the tolerance in the computed
output (e.g., it may be acceptable for an inferred location to
be inaccurate by 3 feet). We do not delve into these techni-
calities, which relate to the precise specification of the
function. Our focus is how to exploit a given function
in defining . There exists an extensive body of litera-
ture in optimal estimators and the resulting lowest possible error
bounds [8], [9].
In our model, the tolerance range is a variable specified by the

application and constrains how correct the application's view of
the reported sensor value must be. For instance, if the tolerance
range is 10, and the last reported value was 120, then all the
application knows for sure is that all of the subsequent sensor
readings must lie in the interval (110, 130). Sensing errors (er-
rors in sampling, calibration etc.) are, on the other hand, an in-
trinsic part of a sensor. For example, a blood pressure sensor
may have an error of 2, indicating that a reading of 120 cor-
responds to a “ground truth” value in the range (118, 122). In
general, if the tolerance range is and the sensor error is , ap-
plications should typically specify . Also, given and
(which may not always be known) and a last reported value of
, we can say that the “ground truth” of the sensed attribute lies
between ( , ). In other words, the sensor-spe-
cific contributes an extra uncertainty in addition to the appli-
cation-specific .

B. Uncertainty in the Tolerance Ranges
The context inference model and associated func-

tions capture complex relationships between the context infer-
ence quality and the choice of sensors used to infer that context.
Such a model does not, however, completely capture the ben-
efits that can be garnered from using continuous event-driven
monitoring. In event-drivenmonitoring, sensors can be assigned
tolerance ranges, allowing them to only report changes that fall
outside these ranges.
Previous work has demonstrated a significant reduction in

the communication and hence energy overheads due to sensing
by providing individual sensors small non-zero tolerance
ranges [2], [7].
Let be the set of tolerance ranges for

the selected sensor subset , used to infer a single context metric.
We represent the error associated with this choice of sensors by
explicitly relating a context's value to the choice of not
only the sensors but also :

(3)

This computes the average error, summing across all possible
values of the context variable ; it implicitly assumes that all
context states are equally likely. Again, more sophisticated for-
mulations of are possible, but the above provides a

sufficiently expressive definition to enable adapting the sensing
task to the computed quality of information.

C. Cost Model
One of our primary goals is to reduce the energy consumption

due to communication, while ensuring an application-specified
minimum for a given context metric. The cost of ac-
quiring one of the sensor streams needed to update the context
variable is a function of both the sensor 's tolerance range
and the (possibly multi-hop) transmission cost from the sensor
to the sink. (Note: while the experimental results in this paper
all used a 1-hop transfer from each individual sensor source to
sink, multi-hop transfer of sensor data has been suggested for
both body sensor networks (BSNs) and infrastructural sensors
(e.g., based on multi-hop IEEE 802.15.4 links)). Thus, for gen-
eralization, we assume that this cost is linear of the number of
hops in the uplink path from sensor to the sink, given
a network in which all links have identical transmission power.
Intuitively, the cost and tolerance range should be inversely re-
lated: if the tolerance range is large, it is less likely for a value
to fall outside the permitted range, thus making communication
less frequently necessary. In the absence of any temporal cor-
relation among the sensed samples, we assume the underlying
data samples evolve as a random walk, and the is propor-
tional to [7]. In this case, the resulting cumulative cost
function for the subset of selected sensors is given by:

(4)

where is a scaling constant and is the hop count.

D. Choice and Characteristics of QoINF Function
While a completely arbitrary function requires

a brute-force search, there are forms of this function that lend
themselves to efficient heuristics. Intuitively, as a sensor's tol-
erance range increases, its data reporting frequency decreases;
ultimately, this causes a deterioration in the context inference
accuracy. A particularly attractive case occurs when the th
sensor's individual is represented by an inverse-expo-
nential distribution of the form:

(5)

where and are sensitivity constants for sensor . A larger
value of indicates a lower contribution from to infer con-
text . Consider the estimation of theMoving person context in
Fig. 1 using the accelerometer with different tolerance ranges.
The error rate of the accelerometer based on (5) can be repre-
sented as

where we assume that for simplicity. Clearly,
as the tolerance range increases, we observe an increase in
the error rate and a decrease in the context inference accuracy

. Moreover, for a selected subset of sensors , the
resulting function is:

(6)

This formulation assumes that the estimation errors of
different sensors are statistically independent of each other.
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It satisfies three key properties of a function: (i)
the value of the function always falls between 0 and 1; (ii)

is non-decreasing in in the sense that incorpo-
rating data from an additional sensor does not lead to a reduced

; and (iii) as a sensor's tolerance range increases, the
quality of contribution of that sensor decreases towards 0 in
the limit. We further validate this choice of function
empirically in Section V.

E. QoINF Function Independence
Our function is targeted towards scenarios where

the same context can be inferred through different modalities
of sensing. For example, the context that a person is walking
around may be detected by (i) a body worn accelerometer, (ii) a
wall mounted motion sensor, (iii) floor-embedded piezo sensors
or (iv) a video camera with gait recognition software. In gen-
eral, given the different sensing modes (the physical property
by which the sensing works), we believe that the errors of these
sensors will be statistically independent (i.e., uncorrelated). For
example, the accelerometer will give errors if it is not mounted
properly, the video camera may fail in low lighting, and the mo-
tion sensor may fail when multiple people are present in the
same room.
Our belief is that activity contexts-such as “the user is

walking” or “the user is sleeping” or “the user has been
watching TV for 30 minutes” tend to share this independence
assumption. On the other hand, specific medical contexts (e.g.,
“blood pressure is high” or “the body temperature is rising”) do
not share this independence assumption. Typically, such low
level contexts can be measured only by a single type of sensor,
and even when measurable by different modes (e.g., heart rate
by either Sp02 or blood pressure sensor), they are possibly
subject to correlated cases of failure (e.g., both of those may
have false readings due to human motion).
Note further that the above function formulation

assumes that at least one of the needed sensors is working.
Namely, we look for the context “the user is walking” and de-
clare the user to be walking if at least one of the sensors declare
her to be walking. This was done for ease of exposition and can
be considered a specific embodiment of the proposed model.We
plan to investigate other strategies (e.g., majority voting, etc.).
These will change the form of the function and the re-
sulting analytical optimal points, but it would not change the
fundamental approach.

IV. JOINT OPTIMIZATION OF MULTIPLE CONTEXTS
Pervasive computing environments entail multiple needs for

context information, necessitating simultaneous determination
of multiple context metrics from shared underlying sensor
streams. As sensor networks become more ubiquitous, they will
increasingly be treated as a platform for multi-modal sensing
for assessing multiple diverse context metrics simultaneously.
This diverges from the current paradigm of designing an
individual context recognition model from a specified set of
sensors. Recognizing multiple contexts simultaneously from
the underlying sensor data streams requires the selection of the
best subset of sensors along with their optimal tolerance ranges
in a way that simultaneously satisfies the thresholds
for all of the required context metrics with a minimum total
cost or energy overhead. However, sharing the same set of

sensors across multiple contexts may result in a reduction of
an individual context's accuracy (as compared to
the achievable for that context metric in isolation).
To gain a deeper understanding, we formalize the simulta-
neous determination of multiple contexts as a multi-objective
optimization problem. In particular, we propose two sensor se-
lection multi-context search heuristics to choose the best set of
sensors and their associated tolerance ranges. Our first heuristic
algorithm incrementally adds new sensors to a growing subset
to incrementally satisfy additional context metrics at minimal
cost. Our second algorithm is a range-based heuristic that can
either modify the tolerance ranges of sensors already in the
subset or add a new sensor to that subset based on the cost.
We also outline a brute-force algorithm for the purpose of
evaluating our heuristics.

A. Multi-Context Optimization Problem
We start with a single context determination [14] and extend

it for multiple contexts [15]. We first assume we are provided
the set of sensors and investigate how to determine the optimal
tolerance ranges; we then revisit this assumption and investigate
how to determine in the first place. Given , the optimization
problem for a single context variable is to choose the sensor
tolerance ranges that, when used together to infer
the value of context variable , minimize the total cost while
ensuring the application-specified , say .
Therefore, the objective is:

The above joint optimization of for applies to
a single context variable , which we have investigated in our
previous work [14]. Our goal here is to minimize both the total
cost (in terms of communication overhead) and the deviation
from the application's required quality of inference for multiple
contexts. The former is to reduce the energy consumption asso-
ciated with the communication in a distributed sensor network,
while the latter ensures that resources are not wasted acquiring
context information that is of higher quality than the applica-
tion requires. Instead, we make best use of shared sensor data
streams to satisfy the minimum quality requirements while re-
ducing the communication overhead and energy consumption.
Considering the problem of simultaneously determining sep-
arate context variables, , we propose
the following Lagrangian Optimization problem:

(7)
where denotes the minimum required quality-of-
inference value for context , and is the Lagrangian multi-
plier for a specific context . There are different sensitivity con-
stants and for each of the contexts being inferred because
each context has a different sensitivity to the tolerance range of
a given sensor . However, each selected sensor has a single
selected tolerance range for all contexts it contributes to (i.e.,
the sensing task is shared among the multiple contexts being
inferred). A sensor will report a new value only when the new
value diverges from the previous one by . In this multi-con-
text determination problem, sharing the same subset of sensors
across multiple context types (when possible) can help reduce
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the overall cost. For example, in Fig. 1, the two different con-
texts Lying on bed and Moving person can rely on the informa-
tion from an overlapping set of sensor streams, thereby reducing
the cost of overall context determination while maintaining the
applications' specified requirements. This also encour-
ages the use of similar functions across context types
(albeit with varying sensitivity values). If the
functions have the same inverse exponential form, then the col-
lective optimum values of tolerance ranges may be explic-
itly computed:

(8)

Lemma 1: If the functions for the set of contexts
and the set of sensors satisfy (5) and (6), then the optimal
choices of that minimize the cost function for context satisfy
the following relationship:

(9)

and the optimal value of (the tolerance range assigned to the
sensor ) across all contexts is given by:

(10)

The minimum cost to achieve the specified inference accuracy
using these values is given by:

(11)
The proof (in the Appendix) follows by solving the Lagrangian
optimization problem for multiple contexts in (8).
In addition to finding the minimum cost for a given subset ,

we also need to determine the best subset of sensors, that min-
imizes the overall update cost across all the contexts. Clearly,
a brute-force approach is to iterate through all possible combi-
nations and compute for each of the combinations of
sensors, for all contexts.

Fig. 3. Sensor set selection brute force algorithm for multiple contexts.

B. Brute-Force Sensor Selection for Multiple Contexts
The algorithm shown in Fig. 3 describes a brute-force ap-

proach to simultaneously determine multiple contexts. This al-
gorithm iterates over all possible subsets of sensors from the set
, determines for each whether it satisfies the require-

ments for all of the contexts, and, if so, what the cost is of using
that subset.
After computing this cost for all possible subsets, the brute

force approach returns the satisfying subset with lowest cost (if
one exists).
While this approach generates an optimal result, its time com-

plexity is impractical. Therefore, we have developed efficient
sensor selection heuristic algorithms for this multi-context de-
termination problem.

C. Sensor Selection Heuristic for Multiple Contexts
In this section we propose a heuristic for selecting

the set of underlying sensors and associated tolerance
ranges for simultaneously determining multiple contexts

. The heuristic is based on the observa-
tion that the additional cost of adding a sensor to an existing
subset is principally dependent on the term .
This can be derived from (11) by considering the limiting
case of the function . This term can be generalized
so that each sensor can have a different sensitivity and hop
count factor for each context , where , thus
accounting for the possibility that decreasing the quality of a
particular sensor stream may have different degrees of impact
on the determination of different context metrics. Since a lower
value of this term indicates a greater preference for selecting a
sensor, our selection heuristic sorts the available sensor set in
ascending order of this term for each context, thus generating
sorted lists, . Our approach is to incrementally create a subset
of sensors, iteratively considering additional context metrics
and adjusting the selected sensor subset to continue to satisfy
the growing set of considered context metrics. We first select a
single context metric, say , and find the subset of sensors
from such that 's function can be satisfied with
the least cost. We then consider additional context metrics (e.g.,

is considered next) and determine whether the subset
of sensors selected for determining the previously considered
context(s) can also satisfactorily determine each additional
context metric. If not, sensors are added to the selected subset
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Fig. 4. Sensor set selection heuristic algorithm for multiple contexts.

to help determine the newly added context metric given its
function at the least cost. This process continues until

all of the contexts have been considered. Fig. 4 shows the
pseudocode for this heuristic

D. An Illustrative Example
Consider a set of five sensors for used

to determine three different contexts for . Our
goal is to determine the subset of sensors that minimizes the
overall update cost. We sort the set of available sensors based
on their values and generate a sorted list for
each context; for our example, this results in the following lists:

; and
. For list , assume the optimal

choice for the sensor subset is ; with minimum cost,
these two sensors together can achieve the specified ,
and including any more sensors increases the update cost. After
selecting sensors and , our algorithm determines what other
sensors (if any) need to be added to the subset to satisfy the
context with its required . In each step, we ex-
clude the already chosen sensors from consideration and there-
fore in this example generate new lists and

. In both cases, we can already assume the
participation of sensors and , if they can also contribute
to the determination of contexts and . Considering
the modified next list , assume we have an optimal subset

with minimal cost. In other words, adding only
sensor to satisfies 's requirement at a minimal
cost. Considering the final list, , assume we have the op-
timal subset of sensors, with minimal cost.
The worst case time complexity of the heuristic is .
In contrast, the brute-force search algorithm iterates over the

power set of , which, in this example, contains elements,
across three different contexts , and . Starting
from a singleton sensor subset, we assume that subset
is good for context but not satisfactory for contexts
and simultaneously. After iterating all subsets of three sen-
sors across all contexts, we find the subset simul-
taneously satisfies and , but not with the re-
quired conditions. Next iterating over all subsets of four and
five sensors across all contexts, we derive an optimal sensor

Fig. 5. Range-based sensor set selection heuristic algorithm for multiple
contexts.

subset that holds across the three contexts
with minimal cost and satisfies the accuracy. Clearly,
the time complexity of the brute force algorithm is exponential
in the number of sensors multiplied by the number of distinct
context metrics being inferred.

E. Range Based Sensor Selection for Multiple Contexts
Here we propose an enhanced version of the previous

heuristic algorithm, shown in Fig. 5, that, for each additional
context, tries to compare the total cost from the following two
approaches: (a) using the current set of sensors and determining
if a modification of the tolerance ranges of this current set is
enough to satisfy the requirement of the additional
context metric; or (b) adding an additional sensor to the set
of sensors and seeing what tolerance ranges this modified
set must have to satisfy all the requirements of the
contexts considered thus far. After computing the costs of each
approach, this second heuristic selects the one that both satisfies
the requirements of all of the considered contexts
and has the lowest cost. This is in contrast to the approach in
the previous algorithm shown in Fig. 4, where the comparison
was made only between adding a new sensor and the cost
incurred by the current set of sensors (with their tolerance
ranges unmodified). In other words, the previous approach did
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not explore the option that one could satisfy the of the
additional contexts without altering the set of activated sensors,
simply by tightening the tolerance ranges of the current set of
selected sensors.
We have thus far assumed that, for a given context, the user

is only in one context state at a time, i.e., either the user is in
the state or in the state or in the
state. There are, however, other scenarios like Watching TV
and Speaking on the phone, which may happen concurrently.
Such concurrent context states can also be determined using
our model. As shown in our model, the minimum
value and sensitivity factors for these multiple context states
will be fundamentally different. For example, consider we
have one acoustic sensor for detecting theWatching TV context
state and one microphone sensor for recognizing the Speaking
on the phone context state. The operating analytics (tolerance
range, etc.) of these two sensors can be computed by our pro-
posed model while still maintaining the underlying objective
of sharing sensor data streams to improve the accuracy and
minimize the network cost.

F. Time Complexity of the Heuristics

In this section, we discuss the time complexity of our two
proposed heuristic algorithms, (a) naive heuristic and (b) range
heuristic. We do a step-by-step run time analysis for both
algorithms.
1) Naive Heuristic (Figure 4/Algorithm 4): Line 1: Assign-

ment statement runs in constant or one unit of time. Line 2: Run-
time of a sorting function such as quick sort is where
denotes the cardinality of the sensor set S. Lines 3 & 4: Nested
for loop has a runtime of where L represents different
number of context states. If L, the number of context states is
close to the cardinality of the sensor set S, the runtime becomes

. Lines 5 to 11: All simple operations consisting of ad-
ditions, subtractions, comparisons, and conditional statements
count for one unit of time. Line 12 & 13: For loop with runtime

. Lines 14 to 17: Again all the simple operations and return
statement count for one unit of time. Given the above analysis,
the worst case and best case runtime for the Naive Heuristic
is . In case of best case analysis, the only improvement
over the worst case we can introduce is running the sorting func-
tion in time, though it does not help improve the
asymptotic runtime of the Naive Heuristic from .
2) Range Heuristic (Figure 5/Algorithm 5): Line 1: As-

signment statement runs in constant time. Line 2: Runtime
of a sorting function such as quick sort is . Line 3:
A single for loop has a runtime of . Lines 4 to 16: All
simple operations consisting of additions, subtractions, com-
parisons, and conditional statements count for one unit of time.
Lines 17 & 18: While loop accounts for . Lines 19 to
31: Again all the simple operations and return statement count
for one unit of time. Given the above analysis, the worst case
runtime for the Range Heuristic is . In case of best case
analysis, the improvement over the worst case we can have is
to improve the runtime of the sorting function to
time, which helps to boost the overall asymptotic runtime of the
Range Heuristic from to . We can further
improve this by employing a linear time sorting algorithm such
as bucket sort; as a consequence, the best case time complexity
of the Range Heuristic turns out to be .

Fig. 6. Single chip dual-axis gyro sensor with SunSPOT.

TABLE I
CALIBRATED ACCELEROMETER (ACCEL.) SAMPLE VALUES

V. EXPERIMENTAL STUDY AND RESULTS
To validate our heuristic approaches and understand the inter-

play between the tolerance ranges and inferencing error,
we have performed experiments with SunSPOT2 and Shimmer
sensors.3 Specifically, we have used a 3-axis accelerometer, a
light, and an embedded external gyro sensor on the SunSPOT
platform and a 3-axis accelerometer and gyro sensor on the
Shimmer platform. Fig. 6 shows the gyro sensor on the left
and the wiring of the gyro with the SunSPOT on the right. For
our experimental studies, we have utilized readings from these
varied sensors to characterize multiple activity contexts such as

, , and . We used this setup to eval-
uate a medical monitoring application that infers a patient's ac-
tivity using different types of sensors.

A. Initial Setup and Methodology
We first describe the capabilities of our experimental plat-

forms and characterize the sensors' values. We used the built-in
accelerometer to measure the tilt of the SunSPOT (in degrees)
when an individual user was in three different context states:

, , and ; this is similar to what the
commodity sensor Fitbit4 does. From the collected samples,
we computed the 5th and 95th percentile of the tilt readings
(normalized X-acceleration values in degrees) corresponding
to each context state. Table I shows the resulting ranges in
the accelerometer tilt readings observed for each of the three
states.There is indeed an observable separation in the ranges
of tilt values, i.e., context states can be distinguished with
reasonable accuracy even under moderate uncertainty.
We also used the SunSPOT light sensor to measure light in-

tensity for different contexts. Intuitively, low values of light in-
tensity may indicate a Sleeping (or inactive) state, while higher
values are likely to indicate that the user is Active (i.e., ,

, or ). Table II shows the observed ranges
for light intensity for these two states. The accuracy of an ac-
tivity context from the light sensor is much lower, as users may
reasonably be Active in low light.

2www.sunspotworld.com
3http://www.shimmer-research.com/
4http://www.fitbit.com
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TABLE II
LIGHT SENSOR SAMPLE VALUES

TABLE III
GYRO SENSOR SAMPLE VALUES

Finally, we used the external gyro sensor to measure the vari-
ation of the rate of angular rotation when the user is in the

and states. As the gyro is quite sensitive, we
use a calibration function to measure the range of average an-
gular rate variation for both states, as shown in Table III.
Given these sensors, we constructed an experimental method-

ology that relies on event-based data collection emulating an
activity monitoring scenario deployed by wellness management
professionals to monitor a user's daily activities. We used
real collected traces from the SunSPOT wireless sensors. We
recruited 5 participants who we instrumented with SunSPOT
sensors mounted on their wrists. We logged data onto a laptop
through a SunSPOT base station. To study the potential impact
of our heuristics, we collected initial traces for the SunSPOT
motion, light, and gyro sensors for five participants, who
engaged in a mix of three activities ( , , and

) for a period of three days. These participants were
all adults with no known serious medical conditions but with
differing levels of physical fitness. We then used an emulator to
mimic the samples that a sensor would have reported given the
trace and an assigned tolerance range and compared the context
inferred from the values reported by the emulation against the
ground truth. This trace-driven, event-based approach allows
us to make meaningful comparisons, as the uncontrollable
physiological and environmental variations would otherwise
make it impossible to obtain the exact same data stream from
two different sessions from the same user.

B. Results for Indistinct Context States
We next investigate various aspects of using the SunSPOT

sensors to infer high level context. We ran the experiments on
the data collected, , , and together;
without partitioning the data with respect to the corresponding
context states. Marginal decrease of requirements can
significantly reduce energy consumption. To quantify the im-
pact of adaptation on energy consumption, we define
the power consumption of SunSPOT sensors using the average
power of the eSPOT board (95 mA) and application daughter
board (400mA) in runmode and awireless radio trans-
mission power (18mA). Based on (12), we calculate the average
power consumption of each sensor for a given communication
frequency.

(12)

Fig. 7. Motion sensor.

Fig. 8. Light sensor.

Fig. 9. Gyro sensor.

Figs. 7, 9, and 8 show the power consumption and the
accuracy achieved for different values of tolerance range
for the motion, light, and gyro sensors, respectively. In general,
there is a continuous drop in both the power consumption and

as increases for all three types of sensors. For the
motion sensor, a accuracy of 81% is achieved for

; using this tolerance range reduces the sensor power
consumption by 63% .
This suggests that it is indeed possible to achieve significant sav-
ings in energy consumption if one is willing to tolerate a mar-
ginal degradation in accuracy. A similar behavior is observed
for the light sensor where incurs a 5% loss in accuracy
vs. 62% reduction in power consumption

. However, as the difference between the light
intensity (lumen) ranges for Active versus Sleeping is only 10
(Table II), increasing beyond 10 leads to a sharp fall in

. Similarly, for the gyro sensor, increasing leads to a
decrease in power consumption although the accuracy
remains constant 49% after it crosses the ranges for at
8. For , accuracy remains 49%, whereas the
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Fig. 10. Communication overhead vs. tolerance for motion sensor.

Fig. 11. Accuracy vs. tolerance for motion sensor.

power consumption is reduced to almost half
.

These results demonstrate the applicability of our framework
and model for multi-context recognition. Let an application
specify and be interested in recognizing
all three activity contexts ( , , and )
simultaneously with an objective of reducing the energy cost.
We can conclude that the use of the motion sensor with a
tolerance range of would achieve a
with a cost (energy) reduction of 63%.
Personalizing functions can help maximize the

benefits of quality-aware context sensing. We investigated the
tradeoff between tolerance ranges and for the five
participants in our experiments. The goal was to study the
sensitivity of the tradeoff to individualized activity patterns;
we focused on results from only a single sensor (the SunSPOT
motion sensor). We replayed the traces through the emulator
as before. Figs. 10 and 11 depict the variation, across users,
in the communication overhead and inferencing accuracy, as
a function of the tolerance range. There are clearly significant
differences in the accuracy across users; in particular,
user 2 has a much sharper drop in once the tolerance
range exceeds 40 degrees.
These figures suggest that personalizing the func-

tion is important in maximizing the benefits of inference-quality
aware sensing. However, even in the absence of personaliza-
tion, the benefits from quality-aware context inference are sig-
nificant. For example, if a tolerance range of is applied to
all users, the lower bound of the accuracy achieved is 71% (for
User 3); at the same tolerance range, the worst case (smallest)
reduction in the reporting overhead is observed to be 60% (for
User 4).

TABLE IV
AND VALUES OBTAINED BY CURVE FITTING

Fig. 12. Heuristic and brute-force compute costs.

The heuristic algorithm (Algorithm 4) which approximates
the target accuracy well. Our initial results demon-
strate that significant savings can be achieved by relaxing the
tolerance of each sensor without compromising the context es-
timation accuracy. To validate and quantify these benefits, we
apply our results to our formal model. First we fit the

accuracy versus curves from Figs. 7, 8, and 9 to
the inverse exponential model of (5). After obtaining the best
parametric fit (using a linear least squares regressor), we use the
heuristic to compute the values for a target and
then use additional traces to verify if this approach can provide
the required accuracy.
We further compare the performance of our heuristic to the

brute-force technique.While the latter uses the least-square esti-
mator to compute the “best” inverse-exponential func-
tion, it uses an exhaustive search over the possible com-
binations, where is the number of sensors. Table IV shows
the estimated coefficients ( and ) for each of the sensors for
User 1, based on the empirical data. We then use the heuristic
and brute-force algorithms to compute the optimal sensor set
and associated tolerance ranges that minimize the commu-
nication overhead for a target .
Fig. 12 compares the computational cost of the heuristic and

brute-force methods. Our heuristic always incurs lower cumula-
tive computational cost than the brute-force search. It converges
much more quickly than brute-force when the target
value is high or moderately high ( 0.6). At higher values of

, the heuristic search substantially decreases the com-
putational cost (about 97% for ).
We plot the minimum cost for the heuristic and brute-force re-

sults for different values of in Fig. 13; as expected,
the brute-force method outperforms the heuristic in all cases. In
these experiments, the sensor set selected by the heuristic re-
mains simply until since the
inclusion of other sensors incurs an increase in cost. Beyond
that point, the heuristic selects both motion and light sensors.
In contrast, in the brute-force approach, at the minimum cost
point, the optimal subset of sensors remains until

. The optimal set becomes
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Fig. 13. Heuristic & brute-force minimal costs.

Fig. 14. Heuristic on achieving target .

when , and beyond that the optimal
set becomes .
More importantly, the heuristic is able to accurately attain

the target at the minimum cost. For a given target
, we first calculate the tolerance range for all sen-

sors and the minimum cost point, and then determine the op-
timal subset associated with that minimum cost. Using the de-
termined and individual values, we calculate the empirically
observed values, which are plotted in Fig. 14 against
the target values. We observe that the heuristic ap-
proach is able to approximate the target objectives well; in par-
ticular, the inference accuracy observed by the heuristic is no
more than 5% lower than the target .

C. Results for Distinct Context States
In the next set of experiments, we collect data for dif-

ferent context states of the user simultaneously from both
the SunSPOT (accelerometer) and Shimmer (accelerometer
and gyro) sensor platforms. For the SunSPOT, we follow
the same procedure as before but this time we collect dif-
ferent context states separately. We ran the experiments on
the partitioned data stored distinctly for individual context
states, , , and . The Shimmer was
attached on the back of the user's shoe in a vertically down-
ward-facing position. The raw data of , and acceleration
from the Shimmer ADC have been converted to .
We consider the ADC output 4096 as equivalent to the max-
imum voltage reading of 1200 mV based on the Shimmer
accelerometer data sheet.5 Also as ; equiv-
alent to 800 mV, we convert each ADC output to
using . We also
normalize the acceleration values and calculate the 5th and

5www.sparkfun.com/datasheets/Accelerometers/MMA7260Q-Rev1.pdf

TABLE V
CALIBRATED SHIMMER ACCELEROMETER SAMPLE VALUES

TABLE VI
CALIBRATED SHIMMER GYRO SAMPLE VALUES

95th percentiles to determine the range for different context
states as shown in Table V. Similarly, for the Shimmer gyro
sensor, considering the sensitivity factor as 2 mV/deg/s and
full-scale range as ( 500 deg/s) based on the data sheet,6 we
convert the ADC output from the Shimmer gyro using

degrees/sec. The value of the
rotational output has been used to calculate the 5th and 95th

percentile as shown in Table VI.
Communication overhead and accuracy decrease

with increasing tolerance ranges for distinct context states.
We ran the data traces through the emulator to determine the

accuracy and sensor reporting overheads with respect
to the tolerance ranges for different context states. The results
are plotted in Figs. 15, 16, and 17 for the SunSPOT accelerom-
eter, in Figs. 18, 19, and 20 for the Shimmer accelerometer; and
in Figs. 21, 22, and 23 for the Shimmer gyro.
In general, we do notice that there is a continuous drop in

reporting overhead and accuracy with the increase in
tolerance ranges as before. In some cases, due to the speci-
ficity in the percentile interval of the sensor values for a spe-
cific context and the selected step-size of the tolerance ranges,
the results do not follow the continuous drop in reporting over-
head and accuracy with the increase in the tolerance
ranges. We have also plotted the 95% confidence interval of

accuracy for , , and con-
text states respectively for the Shimmer motion and gyro sen-
sors in Figs. 24 and 25. For the Shimmer motion sensor, the
mean values do not vary beyond 9% for a confi-
dence interval of 95%. Similarly for the Shimmer gyro sensor,
the mean values vary within a 7% bound for a con-
fidence interval of 95%. We fit each of these accuracy
curves with respective tolerance ranges to the inverse exponen-
tial model of (5) to determine the sensitivity factors of each
sensor for different contexts (Table VII). In a few cases, we have
to make an approximation (with moderate or large RMS error)
in our regression techniques to fit those accuracy
versus curves and thus determine the sensitivity factors of the
sensors.
Our range-based heuristic can achieve application-spec-

ified quality and reduce network resource usage substan-
tially. We compare our range-based heuristic (Algorithm 5)
with the naïve heuristic (Algorithm 4) and brute-force

6www.invensense.com/mems/gyro/documents/PS-IDG-0500-00-06.pdf
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Fig. 15. Communication overhead & accuracy vs. tolerance for SunSPOT
accel. (Sitting).

Fig. 16. Communication overhead & accuracy vs. tolerance for sunspot accel.
(Walking).

Fig. 17. Communication overhead & accuracy vs. tolerance forSunSPOT
accel. (Running).

Fig. 18. Communication overhead & accuracy vs. tolerance for shimmer accel.
(Sitting).

Fig. 19. Communication overhead & accuracy vs. tolerance for shimmer accel.
(Walking).

Fig. 20. Communication overhead & accuracy vs. tolerance forshimmer accel.
(Running).

Fig. 21. Communication overhead & accuracy vs. tolerance for shimmer gyro
(sitting).

Fig. 22. Communication overhead & accuracy vs. tolerance for shimmer gyro
(walking).
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TABLE VII
AND VALUES OBTAINED BY CURVE FITTING

Fig. 23. Communication overhead & accuracy vs. tolerance for shimmer gyro
(running).

Fig. 24. 95% confidence interval of QoINF accuracy for shimmer accel.

Fig. 25. 95% confidence interval of QoINF accuracy for shimmer gyro.

Fig. 26. Range heuristic, heuristic & brute-force minimal cost comparison for
.

Fig. 27. Range heuristic, heuristic & brute-force minimal cost comparison for
.

search. Based on the derived sensitivity factors, we sort
all of the sensors and generate the following sorted lists;

for context ;
for context ; and

for
context . We use each approach to compute the
optimal sensor set and associated tolerance ranges
that minimize the for a target . We also
use the range-heuristic to compute the values for a target

and then use those values to determine the
achievable .
Fig. 26 plots the minimal cost associated with the three search

methods to determine the optimal subset of sensors and their tol-
erance ranges for the first context state considered, in
our case. In this example, the range-based heuristic and heuristic
perform exactly as the brute force in finding the optimal sensor
subset in minimum cost. Fig. 27 compares the performance of
these three algorithms for the context . The range-

based heuristic performs better than the heuristic, and it per-
forms close to brute-force. Similarly, Fig. 28 plots the perfor-
mance for the context, where again the range-based
heuristic algorithm out-performs the naïve heuristic. Due to the
simple set theoretic addition of sensors from one context to
another (without examining the existing sensor set's satisfia-
bility for the new context) in the heuristic algorithm, we ob-
serve that first just the Shimmer accelerometer has been selected
for the context; then for both the Shimmer
and SunSPOT accelerometers have been selected; and then for

all three available sensors have been chosen. In the
range-based heuristic, only the Shimmer accelerometer is se-
lected for all the contexts at the minimal cost by tightening the
tolerance range.
We also evaluate our range based heuristic's ability to attain

the application's desired . First we calculate the toler-
ance ranges for the chosen optimal subset of sensors at min-
imal cost. Then with those specified tolerance ranges and the
determined sensor set, we run our emulation on the already
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Fig. 28. Range heuristic, heuristic & brute-forceminimal cost comparison for
.

Fig. 29. Range-based heuristic on achieving target for .

collected data traces to determine the empirically achieved ac-
curacy of the algorithm. Fig. 29 plots the achieved by
the range-based heuristic algorithm for the context .
The range-based heuristic performs well at no more than 10%
lower than the target . Nevertheless, we do notice that
our range-based heuristic does not perform well in achieving
target accuracy for the other two context states. We
believe this is a result of the large approximation in our curve
fitting approach. This incurs errors in determining the sensi-
tivity factors and therefore introduces a larger deviation in the
values, which ultimately affects the attainable accu-

racy of the range-heuristic algorithm with respect to the target
metric. Adding more sensors to the selection process

(as is likely in future pervasive computing scenarios) would be
expected to help mitigate this challenge.

D. Performance Evaluation in Smart Home Environments

We evaluated the performance of our Quality-of-Inference
(QoINF)-aware model in smart home environments. Our ex-
periments are conducted with real-life smartphone sensor data
traces. We have recruited 10 participants and asked them to
perform a variety of activities of daily living (ADLs) and in-
strumental activities of daily living (IADLs) in their own home
environment.
App Development and Data Collection. An android applica-

tion has been developed to collect accelerometer and gyroscope
data from an Android based Google Nexus smart phone device
for monitoring the activity of a typical user. We included the

TABLE VIII
FEATURE EXTRACTED FROM THE RAW DATA

feature to collect data at different sampling frequencies. To col-
lect the ground truth, we created an option in the app such that
the user can label the activity by its semantic name. The user
has also the option to label the activity before performing the
intended ADLs/IADLs and activating the sensor app for data
collection purposes. The user has been asked to keep the smart-
phone in their pants pocket during the staged experiments.
Activities and Data Processing. We collected sam-

ples of ten users performing a variety of low-level and
high-level activities. We have collected data for 6 low-level
activities first and asked the user to label those as:

.
Similary we have collected data for 6 high-level activ-
ities and asked the user to label those as:

. We collected samples for time periods between five
to sixty minutes based on a specific activity, with sensor data
collected respectively at 80 Hz, 70 Hz, 60 Hz, 50 Hz, 40 Hz,
30 Hz, 20 Hz and 10 Hz.
QoINF-Aware Activity Classification. We investigate the be-

havior of the QoINF-aware activity recognition model in the
presence of traditional classification and machine learning al-
gorithms. Our objective in this specific set of experiments is
two fold. First, we note the interplay between sampling fre-
quency or sensor sending rate reduction with activity recog-
nition accuracy; second, we quantify the role of sampling fre-
quency reduction, particularly on low-level and high-level ac-
tivity classification.
We apply feature-based classification techniques such as

Multi-layer Perceptron for classifying both the low-level and
high-level activities in the presence of a different subset of sen-
sors at different sampling frequencies. The 3-axis accelerometer
and the 3-axis gyroscope data streams were broken up into
successive for different sampling frequency levels.
A 30-dimensional feature vector as shown in Table VIII was
computed over each frame. The ground-truth annotated training
set (aggregated across all 10 participants) was then fed into
the classification algorithm (Multi-layer Perceptron) in the
presence of various combinations of smartphone sensors,
sequence of low-level and high-level activities, and sampling
frequency levels. The accuracy of the classifiers was tested
using 10-fold cross-validation. Fig. 30 and Fig. 31 plot the
average classification accuracy for the low-level and high-level
activities at different sending rates; we see that low-level
activities such as sitting, standing, walking etc., are classified
with higher accuracy even at a lower frequency because they
are simple locomotive context states. On the other hand, be-
cause the high-level activities such as cooking, medication,
sweeping, washing hands, watering plants etc., are composed
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Fig. 30. QoINF (classification) accuracy vs. sending rate for smartphone
accelerometer.

Fig. 31. QoINF (classification) accuracy vs. sending rate for smartphone
gyroscope.

Fig. 32. QoINF (classification) accuracy vs. sending rate for smartphone ac-
celerometer and gyroscope.

of several of low-level activities, the classification accuracy
increases monotonically with the increase of the sending rate.
It should be noted here that, in general, the high-level activities
are not well recognized by only the accelerometer, gyro, or a
combination of both. Next we run the experiments for both the
accelerometer and gyroscope smartphone sensor and observe
the similar behavior. We combine the features from both the
accelerometer and gyroscope sensor and use them jointly to
understand the effect of sending rate reduction with low- and
high-level activity recognition accuracy (Fig. 32). In presence
of multiple sensors, low-level activities are classified better
at a lower sampling frequency compared to the individual
sensor-activity recognition cases.
Looking at Fig. 30 and Fig. 31, we observe that classifying the

low-level single state activity (e.g., sitting, standing, walking,

etc.) with moderate accuracy ( 70%) can be achieved with a
lower sampling frequency ( 40 Hz) compared to high-level ac-
tivity classification using the individual accelerometer or gy-
roscope sensor on the smartphone. Fig. 32 shows that com-
bining the accelerometer with gyroscope helps improve the clas-
sification accuracy ( 70% to 90%) of low-level activity while
holding the same sampling frequency ( 40 Hz). This corrobo-
rates the fact that instead of changing the tolerance range of a
preselected sensor (in our case smartphone accelerometer/gyro)
adding another sensor may provide more help in improving
the classification accuracy of certain context states. Note that
for high-level activity recognition we observe only a slight im-
provement in classification accuracy ( 30% to 40%) with in-
creasing sending rate as shown in Fig. 32.

VI. RELATED WORK

The tradeoff between communication overhead and the
quality of reconstructed data was first studied in [13], which
envisioned the effect of tolerance ranges on the frequency of
sink-initiated fetching vs. source-initiated proactive refreshing.
The focus, however, was on snapshot queries and not on
continually satisfying the bound of a long-standing
subscription. In [5] the authors developed a distributed re-
gression based method for modeling sensor data in wireless
network in order to reduce the amount of data transmitted
wirelessly while maintaining more complete information about
the original data than most aggregation schemes (e.g., aver-
ages, maxima, histograms). The idea of exploiting temporal
correlation across successive samples of individual sensors
for reducing communication overhead for snapshot queries is
addressed in [2], which used training data to parameterize a
jointly-normal density function. While a precursor to our work,
the focus there was on meeting the requirements
for a class of aggregation queries, whereas in this paper we
focus on arbitrary relationships between a context variable and
the underlying data. A near optimal sensor placement model
has been introduced in [9], which maximizes the information
gain while minimizes the communication cost regardless of
the applications. The authors therein proposed a probabilistic
framework of Gaussian Processes not only to model the moni-
tored phenomena, but also to predict communication costs and
a polynomial time algorithm for selecting sensor placements
at informative and cost-effective locations. Entropy-based
sensor selection heuristic algorithms have been proposed in [3],
[11], [20]. These works have taken an information theoretic
approach for specific application scenarios, where the belief
state of the target value is gradually improved by repeatedly
selecting the most informative unused sensor until the required
accuracy is achieved. The CAPS algorithm [7] is designed
for long-running aggregation queries (such as )
and computes the optimal set of tolerance ranges for a given
set of sensors that minimizes the communication overhead,
while guaranteeing the accuracy of the computed response.
In contrast, our objective here is to compute the optimal
subset of available sensors and their tolerance ranges to achieve
the desired accuracy for arbitrary context variables. A prob-
abilistic model to deduce the context prediction accuracy at
different context abstraction levels has been proposed in [18].
The optimum processing order of feasible context processing
operations that maximizes the expected context processing
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accuracy was investigated therein. In [4], the authors developed
a dependence mapping between contexts, features and sensors
for context prediction and then used it to parameterize sensor
usage, sampling and feature generation in order to reduce
unnecessary power consumption of the sensors on board of a
mobile device.
Additionally, quality of information (QoI) has been studied in

the existing literature related to data collection and storage for
database systems, with a focus on data consistency, complete-
ness and currency [13]. However, the development of formal
models of quality of information (or inference) has not been
extensively addressed in the context of sensor-generated data
streams. Recent work [22] has suggested the use of specialized
QoImodels to capture the accuracy of detecting transient events,
given a set of sensors. However, this approach does not focus on
the optimal joint selection of sensors and their tolerance ranges,
which is the distinguishing characteristic of our work.
AdaSense [24] proposed a framework that reduces the

BSN (Body-area Sensor Networks) sensors' sampling rate
while meeting any user-specified accuracy requirements. A
lower-power single activity detection sampling strategy and
a higher-power multi-activity classification sampling strategy
were proposed. To optimize the sampling rate for the sake of
saving energy, a genetic programming based algorithm has
been employed to select the optimal subset of features that
effectively tunes the minimal sampling rate of multi-activity
classification under any accuracy requirement. A similar integer
programming based quality and energy-aware data acquisition
for activity and locomotion recognition framework has been
proposed in [23]. While this adaptive sampling [24] and opti-
mization [23] strategies help balance the accuracy and energy
efficiency, our approach exploits the sensor's context sensitivity
and tolerance ranges to determine an optimal subset that holds
across multiple contexts and prevents unnecessarily wasting
wireless sensor network resources.

VII. CONCLUSIONS

We have presented a formal framework for energy-efficient
recognition of contexts in pervasive computing environments.
The key idea is to express the accuracy of context estimation,
for arbitrary contextual attributes, through a quality of inference

function that captures the dependence of estimation
accuracy on the selected sensors and their specified tolerance
ranges. Such a multi-context model in terms of the uncertainty
range of the underlying sensor data streams has not been rig-
orously investigated in the past and holds promise for reducing
the communication overhead in sensor data transmissions. We
have described two multi-context search heuristic algorithms to
solve the proposed optimization problem dealing with quality-
versus-communication cost tradeoff. Experimental traces col-
lected in a laboratory setting demonstrate the significance of our
approach and establish that the proposed heuristic is able to pro-
vide a close-to-optimal tradeoff between the value and
the communication overhead, at the cost of only modest compu-
tational requirements. Experiments using a combination of mo-
tion, light and gyroscopic sensors show that our model-based
approach provides a value that is within 5% of the
desired target, but is able to achieve significant reduction (within
5% of the theoretical minimum) in the communication cost.

APPENDIX

Proof of Lemma 1: The multi-context optimization
problem can be stated as:

subject to different constraints, where the constraint is:

(13)

Taking the logarithm of each constraint and setting up the La-
grangian, we obtain:

(14)

Now taking their derivatives with respect to each , we get:

(15)

which yields:

(16)

Further derivatives of the Lagrangian with respect to yield,

(17)
In order to derive the values of , we solve together the set of
equations ((17)) and the set of equations ((15)). Rewriting

(15) as follows:

(18)

and replacing with the help of (17), we get:

For the base case, when ,

(19)

Similarly for ,

...
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