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Abstract—Mobile and pervasive computing applications de-
pend on environmental awareness, not just of their own local
system and immediate surroundings, but increasingly of the net-
work as a whole. Traditional models of context do not sufficiently
account for the trade-off between accuracy, availability, and
efficiency when considering the mechanisms by which context can
be gathered and shared in mobile, ad-hoc networks. Traditional
approaches to context remain egocentric, but next generation
environments demand coordination among entities and access
to shared context resources, and thus context must be treated
as a combination of local and shared information. We motivate
our perspective on the future of context in mobile pervasive
environments staring with historical framing of the problem, and
present our recent efforts in adaptive shared context perspectives.

I. INTRODUCTION

Many of today’s computing systems are characterized by
very large numbers of interconnected devices that represent
users and their changing digital situations. These devices are
integrated with the environment and connected to each other
via highly volatile and resource constrained wireless links.
Such networked environments include, among many others,
pervasive computing systems, mobile networks, intelligent
transportation systems, and the Internet of Things. In these
environments, an entity’s situation is characterized by myriad
facets of the nearby physical and cyber environments. To
fully characterize its situation, an entity must assess its local
information, including sensing its own capabilities, status,
location, and environmental conditions.

Traditional approaches to context-awareness have provided
these views, but they remain largely egocentric. Specifically,
research in context-aware computing has created egocentric
applications that adapt to location (e.g., in tour guides [1]),
time (e.g., in reminder applications [12]) and even weather
conditions (e.g., in automated field-note taking [32]). Several
toolkits have long provided abstractions for accessing such
context information [13], [19], [21].

In emerging environments, entities must also coordinate
with other entities via the wireless network to assess shared
local conditions, including the state of the network, availability
of data and resources, physical characteristics of the environ-
ment, and social network connections. Consider an opportunis-
tic network of mobile devices in a public park where collective

context identifies a group of people interested in a pick-
up game of football and having similar skill. Alternatively,
a device on an automobile may generate an individualized
group containing nearby automobiles that can collide with it.
Knowledge about connection qualities in a neighborhood of
a dynamic mobile network can enable nodes to jointly select
the best routing protocol for a region of the network [24]. For
many emerging applications, the availability of the combina-
tion of egocentric and shared context information is essential
because it enables these applications to adapt to the current
situation and take advantage of currently available resources.

Generating context data is becoming increasingly easier and
cheaper. Any run-of-the-mill smartphone is now shipped with
myriad on-board sensors. Popular consumer devices support
various personal and social sensing tasks, including many
varieties of networked fitness monitors. In the Internet of
Things (IoT) [3], ordinary objects become smart objects,
imbued with computation, sensing, and networking capabil-
ities [7], [27]. Participatory sensing [9] relies on these new
capabilities and explicitly allows users to sense and share
local information. The Open Data Kit (ODK) [20] connects
with participatory sensing applications to aid in collecting
expressive context. Extensions to ODK, e.g., ODK Sensors [8],
provide programming constructs that simplify access to exter-
nal sensors connected to smart devices. Dandelion [29] and
Gadgeteer [39] have similar motivations. Our own work has
recently focused on how to assess shared context [16], [23].

Given the significant increase in both egocentric and shared
context availability, the ability to and interest in creating
adaptive behaviors has also increased. In Section II, we
take a retrospective look at context and context-awareness
capabilities, given our changed perspective on context and the
importance of context sharing. Key foci of this discussion are
the dual notions of efficiency and expressiveness of context
acquisition and sharing. Efficiency is extremely important,
as existing context acquisition and sharing mechanisms have
largely proven to have too high of an overhead to be practically
feasible. Expressiveness is important in ensuring that the right
context is acquired with the right level of quality (or fidelity)
for application requirements.

We rely on this history to motivate a shift in perspective
from egocentric approaches to collaborative and cooperative



approaches to context awareness. In Sections III and IV,
we present some of our own recent work related to ac-
quiring and sharing context information, both conceptually
and through practical systems contributions. Given the in-
creasing availability of expressive context information that
is efficiently gathered, Section V looks at potential untapped
uses of context, which largely entail adaptation of user and
application behavior. We close with a forward-looking view
on the application of this new view of context to pervasive
computing and the potential impacts on the widely varied
research landscape.

II. A HISTORY OF CONTEXT

We begin our discussion with a framing of the history of
context-awareness and context sensing. In the next section,
we use this view to motivate our shifting perspective on
the need for collaborative and cooperative sensing of context
information with the potential to increase the expressiveness
and efficiency of context awareness.

Context awareness is crucial in developing dynamic perva-
sive computing applications, and recognition of this has driven
abundant research in how context can be more efficiently
sensed and shared. One of the earliest contributions, the
Context Toolkit [37], draws inspiration from the graphical
user interface (GUI) domain and proposes abstracting context
producers into “widgets” that ease the burden in developing
context enabled applications. Building on this foundation the
Context Fabric [21] proposed a broader vision where context
needs would be met by an underlying infrastructure, and [19]
further demonstrated how generalizing notions of context and
simplifying the burden placed on developers serve as important
goals in facilitating flexible and powerful applications.

These early contributions provide important capabilities, but
the resource-constrained systems used in pervasive computing
applications require extremely efficient solutions. This has
guided additional efforts to focus on identifying ways to
provide these capabilities with a primary goal of minimizing
the processing and network resources necessary to support
them. Researchers have found this efficiency using a variety of
methods, such as relying on passive eavesdropping [4], [34],
driving sensing at the application level [41], or by sending
only changes to context values [25].

In addition to focusing on efficiency, researchers are also
exploring how low-level data can be aggregated into useful
higher-level context information. In [26] context is aggregated
from a personal network to automatically add semantic tags to
documents created or accessed on a personal device. Similarly,
the Solar system [11] provides a framework for aggregat-
ing streaming context information in peer-to-peer pervasive
computing networks, and [5] proposes a system of “sentient”
objects that simplify the process of fusing and interpreting
context information from multiple sources. Aggregation can
itself be a means of improving efficiency, as seen in many
sensor network applications where aggregating sensor readings
can be used to reduce the overhead of sending redundant
information to a single sink [14], [28], [30].

The sustained research interest over the past decade is a
testament to the promise and power that context can wield
when solving important mobile and pervasive computing ap-
plication challenges. However, the field lacks a unified set of
tools that excel in efficiently sensing, aggregating, and sharing
context in a manner generalized for a wide range of real-
world pervasive computing applications. Our group focuses
on crafting context awareness tools that provide software
engineers with the expressive and efficient building blocks they
need to easily create applications that generate and consume
context without requiring them to understand or worry about
the underlying mechanisms.

The Time is Now. Advances in smartphone technology
have elevated these platforms to a level that is sufficient for
distributed and cooperative context-sharing applications. In
fact a number of “distributed” context sensing mechanisms
already exist commercially, for example in the guise of WiFi
geo-location [2]. Many of these new applications fall under the
guise of participatory sensing, which explicitly engages users
in generating context information. However, despite the wide
availability of peer-to-peer connections among these smart
devices, if context is shared at all, it is only shared with
centralized services.

It is our premise that unified and cooperative sharing
of context will open up entirely new technologies like in-
network caching of context information, cooperative mobile
data offloading, intelligent pre-fetching using user mobility
prediction, etc. Many of these ideas have been posited in
ubiquitous and pervasive computing research, some as long
as twenty years ago, but means to accomplish them within
realistic overhead limitations remains a challenge. There are
also a number of other challenges to wide-spread context
sharing, privacy being the most often-cited. This could be
partially solved by user-centric context models that leave the
user in charge of what is shared and when [18], [38]. These
approaches necessitate the design of intuitive user interfaces
that expose appropriate settings without overwhelming users.
Alternatively, in-network context aggregation can promote
context privacy by blurring the data across many users before
sharing it with the network.

III. CONTEXT SENSING AND SHARING

The evolution and wide-spread integration of context aware-
ness has been limited both by a lack of attention to the
efficiency with which context can be acquired and by a lack
of expressiveness in the resulting context information. Mobile
and pervasive computing applications are heavily dependent
on the availability and accuracy of contextual information.
We have previously elicited types of context that could be
collected in mobile pervasive computing environments and the
types of context-based adaptation that could be accomplished
given good contextual awareness [35]. Table I provides an
overview of context types and their potential uses from our
prior work; it is by no means exhaustive. Precious few of these
metrics have good estimators or predictors available today,
even though the sensors upon which these primitives must be



built are nearly ubiquitous. Part of the problem is battery life—
accurate context awareness almost always comes at a cost of
high battery consumption.

Achieving the goals of acquiring and adapting to the context
types shown in Table I requires extending the reach of context
beyond the simple egocentric views described in the previous
section. In this section, we look at mechanisms to mitigate
these concerns, focusing first on efficient ways to acquire
context information that requires using more than just locally
connected sensors. We then look at how it is possible to make
sharing of context views possible, addressing both goals of
efficiency and expressiveness. The former specifically because
sharing of context information, especially across resource-
constrained wireless networks, must be resource-conscious.
We conclude with a discussion of how expressive and efficient
sharing enables the aggregation of context from multiple
entities to generate a broader view of context.

A. Passive Context Sensing: Efficient Context Acquisition

There are a number of ways to target efficient context
sensing in resource constrained environments, however, there
is always a trade-off between accurate context sensing and
resource utilization. This is especially important in regards
to network resources, which are expensive both in terms of
battery usage required to send and receive wireless messages
and the fact that communication relies on a limited commodity
that many devices must share. Traditional mechanisms that
extend context sensing beyond a device’s own local sensors
rely on active metrics, or metrics that generate additional net-
work traffic in order to measure context (for example network
latency) or at the very least exchange information such as
location (for example to measure node mobility). However,
much useful context can be measured through passive means
through eavesdropping on existing network traffic. We have
developed a framework, the Passive Sensing Suite, to gather
passive context metrics; we also examined the correlation
between the passively sensed context in the real world, and
a ground truth estimation based on simulation [34]. We used
our framework to examine several important context metrics
including network load, network density, and network dynam-
ics. The former two are self-explanatory; the latter attempts to
capture the relative mobility between pairs of nodes. Although
we found—unsurprisingly—that passive metrics are not as
accurate as their actively sensed counterparts due in part on
the reliance on existing network traffic, several metrics can be
correlated (for example packet error rate and load) to increase
the sensing accuracy. We found through experimentation that
passively sensed metrics can be good estimators of their
actively sensed counterparts.

B. Grapevine: Expressive and Efficient Context Sharing

In pervasive computing applications, the local context in-
formation on any given node can often prove useful to nearby
nodes as well; however, such context is unavailable unless it is
distributed. Indeed, in many pervasive computing applications,
sending context information represents the vast majority of

all communications. For example, an application that facili-
tates opportunistic activities, such as a serendipitous game of
football among park visitors, is keenly interested in whether
anyone nearby would also like to play. In such applications,
actively sharing context information enables unique capabili-
ties but must be extremely efficient to be feasible in any real
system. We developed the Grapevine context dissemination
framework to aide in the development of applications that
actively consume context information from nearby nodes [16],
generalizing the common aspects of sharing context so that
developers can focus on the tasks that are unique to their
application.

There are two key challenges in developing a framework
with Grapevine’s goals: the expressivity it offers developers in
specifying the context information it shares, and the efficiency
with which it shares it. To address the challenge of expressiv-
ity, we needed a means for application developers to identify
individual context items that provide the maximum flexibility
with a minimum of a priori requirements. To provide this we
developed Grapevine so that context information is tracked
using the familiar abstraction of a mapping from keys to val-
ues. A producer of context provides a unique identifier along
with a value for that context item. Consumers can check the
value for any given context item by querying Grapevine with
the appropriate identifier. This high-level abstraction provides
applications a large degree of freedom in choosing identifiers
that can range from simple alphanumeric strings to more
complex hierarchical/tuple-based identifiers. Furthermore, as
long as the generation of the identifiers is consistent between
nodes, they can be generated dynamically at runtime, avoiding
the limitations of requiring static identifiers determined a
priori.

For efficiency, we turn to probabilistic data structures. The
most well known probabilistic data structure, the Bloom filter,
allows for the membership of a set to be encoded with
significant space savings over traditional set data structures [6].
The savings come with the tradeoff that false negatives will
occur with a configurable probability (e.g., occasionally the
filter will indicate that a member is in the set even though it
was never added)'. However, false negatives are not possible
(e.g., the filter will never indicate that an item is not in the set
when it actually was added). Grapevine uses Bloomier filters,
a variant with similar properties and construction that allows
a value to be associated with each member of a set [10]. This
capability mimics the mapping abstraction described above
while providing a very space efficient representation.

Grapevine uses this expressive and efficient representation
of context as the foundation of its context dissemination strat-
egy. Each Grapevine-enabled node forms an individual context
summary that contains the context information it is willing to
share. These summaries also include a hop-count that specifies
how many hops away it believes the context information might
prove useful (thus limiting context dissemination to some set

IFalse positives can be mitigated by optimizing data structure properties,
but a discussion of this is beyond the scope of this paper.



] Type of Context Examples

Usage

System Context battery level, charging status,

CPU load, free memory

selectively enable/disable a client’s participation
in mobile caching and ad-hoc content sharing

Network Context network type, roaming status,

calling status, WiFi state

can influence sharing patterns; enables content
prediction, which is required for advanced delivery

Location Context GPS location, speed, heading

can provide common mobility patterns for
prediction; correlated with cache availability

common activities, social
connections

Aggregate Context

servers can learn popular locations for caches
and popular data to cache

Data Context creation time, time-to-live,

data size, priority labels

influence which data can be off-loaded
depending on the network cache capabilities

TABLE I
POTENTIALLY USEFUL CONCRETE CONTEXT METRICS

of local neighbors). Nearby nodes periodically share their
individual context summaries along with the summaries they
have received from any other neighbors that have not yet
traveled beyond the summary’s internal hop count?. Sharing
summaries in this manner gives each node access to the context
information of nearby nodes.

This strategy has proven effective in systems where all the
nodes are interested in the same set of context information;
however when interest in context information differs between
nodes, it quickly becomes inefficient because context informa-
tion is being transmitted that no nearby node is interested in
receiving. To improve efficiency in these situations, Grapevine
provides an interest tracking capability that allows nodes to in-
dicate the context information they wish to receive. Efficiently
tracking this interest offers yet another challenge, leading to
the development of a new probabilistic data structure variant,
a spatiotemporal bloom filter (SpTBF, or “spitty bif”) tailored
for this purpose [17]. SpTBFs allow each node to keep track
of the context information that neighbors recently indicated
interest in receiving by storing a single local data structure
that is attached to each Grapevine communication. This data
structure maps the entire set of possible context identifiers to
a smaller set of entries in an array of 2-tuples. False positives
are again possible since multiple context items are mapped to
each tuple, but the probability of these false positives can be
tuned by adjusting parameters such as the array size. Each of
these tuples tracks both a spatial component that decays as
the interest-tracking SpTBF is passed around and a temporal
component that decays as time elapses. To indicate interest in a
context item, a node sets the tuple values for that context item
to the amount of spatial and temporal permanence it desires for
that interest—this controls persistence. Before sending context
summaries, a node checks its local interest-SpTBF to see if
anyone nearby is interested in the context information it has
available and will only send that piece of context information
if the tuple values for each context item are non-zero.

With these mechanisms for expressive and efficient context
sharing in place, a natural next step is to allow individual con-

>The hop count is decremented each time the summary is shared, and
dissemination is squelched when the count reaches zero

text summaries to be aggregated into summaries that contain
context information from multiple sources. This aggregation
allows for a new notion of the shared context of groups and en-
ables additional efficiency while simultaneously extending the
reach of context information. Returning to our pick-up football
game scenario we find that a list of individuals interested
in playing can be aggregated into a single group summary.
Similarly, the locations of many nodes can be aggregated
into a bounding box that defines the region they occupy.
By aggregating context, the applications no longer need to
receive individual summaries from each participant and can
instead receive a single aggregated summary containing the
information they require. This concept of aggregation opens
the doors to an exciting new area of research where the context
of the group enables applications otherwise not possible. We
continue to explore these group dynamics as an active and
ongoing research topic.

IV. A STRAWMAN:
THE CONTEXT AGENT FRAMEWORK

In this section, we bring together the conceptual perspec-
tives from the previous section and motivate a lightweight
and general purpose framework that supports context sensing,
sharing, and adaptation. As a strawman for discussion, we
present our Context Agent Framework, which was originally
motivated by our prior work using context to inform routing
decisions in opportunistic ad-hoc networks [33]. The context
agent is a general systems framework for context aggregation
and context-based adaptation; its scope is broad and embodies
several concepts:

o the context types of interest cannot be entirely known
a priori; any universal context solution must consider
dynamic typing to remain flexible to new context types;

o broad categories of context exist (system, data, user,
network, etc.), and they each have different aggregation
strategies; a universal context framework must allow for
all such strategies to coexist;

« adding new context types, collection, aggregation and
sharing mechanisms, and implementing context-based
adaptation should be straightforward and simple; and
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o a universal context framework should support multiple
programming abstractions, allowing for ease of use, as
well as context sharing across multiple nodes to allow
for automatic context distribution.

These concepts motivate our Context Agent Framework
(CAF), a modular and flexible framework for collecting, ag-
gregating, sharing, and adapting to context. CAF embodies our
new perspective on context, which combines both egocentric
and shared context while supporting efficient and expressive
context-awareness. CAF is a multi-threaded architecture com-
prising one or more Context Agents that either “produce”
context updates (by sensing, aggregating, or both), or “con-
sume” context to produce context-based system adaptations; a
given context agent can be both a producer and a consumer
of context. Fig. 1 shows a high-level view of the CAF
architecture. The framework is designed to run as a privileged
user-space process, and each element of the architecture is
embodied by one or more threads within the framework. This
was done to provide concurrency among multiple context
agents collecting independent context samples, as well as to
allow blocking within the implementation of any given agent.
The following describes the elements of our framework.

Context Agents. The purpose of the Context Agent is two-
fold: (1) gather context from the system, user, or network
and (2) use context to adapt application behavior. The passive
context sensing approaches described in the previous section
can be incorporated into passive context sensing agents in the
CAF architecture. In general, CAF is intended as a framework
for quickly, and easily developing new context agents rather
than an exhaustive set of all useful context agents. There are
two basic types of agents listeners, and gatherers. As the name
implies, listener agents implement a server process that waits
for incoming connections from outside sources (e.g., sensors)
to provide context. CAF supports any kind of blocking service
implementation, although in our implementation we have
limited ourselves to TCP sockets. Naturally, the listener must
understand the exact format of the incoming context to be
able to parse it, and this format must be agreed upon before
CAF is instantiated. The gatherer implements a proactive agent
that fetches context. The means by which a gatherer can
gather context is limited only by the possibilities available
to a privileged user-level process. For example, a gatherer
context agent could read battery life by calling a battery
monitoring daemon, by reading the appropriate node in the
Linux proc filesystem directly, or even by opening a file

that stores battery life samples taken in the past. The main
difference between gatherers and listeners is that gatherers
proactively fetch context, usually on a timer-based trigger.
Both types of agents can post context to the CAF’s World
View (described in more detail below), where it will be stored
and made available to any local agents that subscribe to the
type of context.

The second purpose of Context Agents is to use context
to adapt application behavior. Essentially this can be thought
of as evaluating some context-adaptation function using the
available context in the World View to generate some output—
the output is then used to inform some system change to
tweak the behavior. Once again, the is intended to be open-
ended in regards to how exactly this is accomplished. Since
each agent runs as a separate thread within CAF, context-
based adaptations themselves can be anything a privileged,
user-space process can accomplish—in our experiments, we
have limited ourselves to adapting the parameters of routing
protocols, but there is no limit to the possibilities. Similarly
to context aggregation, context-based system adaptation can
be accomplished by any combination of system calls, file
or socket writes, inter-process communication, etc. The re-
evaluation of the adaptation function can be triggered in two
ways; either with a timer, or on a context sample update.

Context Formats and Types. CAF is purposefully open-
ended in regards to the formatting of context samples. How-
ever, all context samples must conform to a loose standard
based on the tuple concept [15]. Every sample must be asso-
ciated with a type, which is itself just string representation. A
context sample is formatted as: {type:timestamp:value(s)}. For
example, location might be encoded as {location : rimestamp :
longitude : latitude}. There are two general classes of context
available in CAF: local context and global context. Local
context is relevant only to the local system and potentially to
nearby neighbors. Examples might include a device’s battery
life, or a user’s interest in a pick-up game of football. Global
context is context that is intended to be shared across the entire
network. In reality, global context can be shared only among
nodes that meet, so there is no guarantee of coverage. Global
context types are also generally tagged with the geographic
location at which they were sampled. Examples might include
geo-tagged node density estimates or geo-tagged network
congestion estimates. The size of these geographical areas is
user-configurable, and is discussed further on.

World View. The World View acts as the local context cache.
As the CAF collects and processes context, it generates a
synthesized view of the salient context types in the operating
environment. This world view consists of (generally geograph-
ically tagged) global context samples stored in a dynamically
generated “map” of the network. This map is split into user-
configurable sized cells, and each cell contains a collection of
context tuples (i.e., {type:timestamp:value(s)}) that correspond
to that location. Context tuples that are not tagged with a
location are stored in a single non-geographically-associated
container. To accomplish context distribution, every node
periodically shares its world view with its neighbors using



an efficient encoding such as the bloomier filter employed by
Grapevine. When a node receives the world view of another
node the two are merged according to a merge algorithm. In
practice, this merge algorithm is generally simply replacement
(the sample with the latest timestamp is the one that is kept)
but could easily be a more sophisticated aggregation like those
described above, including a rolling average, or some other
similar operation. This sharing and merging of views allows
CAF to provide applications an approximate view of the global
context.

The World View supports two main operations, publish,
and subscribe. Publish operations allow context agents to add
new context samples to the World View (analogous to the
out() operation of tuple spaces). Subscribe operations allow
agents to register their context interests with the World View,
and in doing so receive updates; this is analogous to reactive
capability common to many tuple space implementations. In
subscribing to context, an agent can pass in a list of types, even
type wildcards, and that agent automatically receives updates
to any sample, or any new samples, that conform to the type.
Contrary to traditional publish/subscribe systems, our publish
and subscribe primitives are only available locally—an agent
can only subscribe to context updates generated in its own
local World View. It cannot subscribe to updates from another
node’s World View. This limitation exists because of the
unpredictable nature of wireless network links, which cannot
be predicted or relied upon with any level certainty. However,
since context samples are spread across the network by means
of the World View sharing and merging capabilities, agents
on one node can and do receive context samples generated on
other nodes.

V. ADAPTING TO CONTEXT

While uses of egocentric context have been explored in
existing applications, the ability to efficiently and expressively
sense aggregate forms of context and further share them with
other nearby entities enables new uses of context. In this
section, we explore a few of these concretely, showing how
each new use is related to our new perspective on context.

A. Context-Based Adaptation of Network Coded Routing

In our prior work, we have used the CAF to adapt routing
protocols for delay-tolerant networks (DTNs). Such networks
are characterized by high mobility, poor connectivity, and long
(minutes to hours, even days) delays in packet delivery. Rout-
ing is generally accomplished through probabilistic store-and-
forward strategies, since end-to-end connections are rarely, if
ever, available to a pair of communicating nodes. The general
routing strategy for such networks involves creating multiple
copies of data to improve the probability of eventual delivery.
Network coding, one of the more recent and promising routing
techniques to emerge for DTNs, has the potential to both
reduce overhead and delivery latency through the mixing of
packets from multiple sources [42]. The probabilistic mixing
produces linearly independent combinations of packets; this
mixing, among other things, improves the chances that any

given communication will contribute “novel” information to
the network [40].

We have adapted a network coded DTN routing proto-
col [36] using context to further optimize the bandwidth
usage. In short, influencing routing decisions using context
centered on information diversity has given us up to 300%
improvements in delivery latency over non-context aware
network coded implementations [33]. Our context, information
diversity, measures the total information available in various
geographically separate portions of a DTN. Mobile nodes
take information diversity samples as they move though the
network, and they share the samples through the World View
element as described in Section IV. The routing protocol can
then use this context, combined with information about the
intended waypoints of mobile nodes to prioritize how packets
are sent across the channel to maximize the increase in overall
information diversity of the network.

B. Context-Based Adaptation of Mobility

Shared context information can also play an important role
in adapting the navigation patterns of mobile platforms. In
several recent experiments, we explored how the CAF-like
capabilities of our Grapevine context dissemination framework
simplified development of mobile applications. These experi-
ments used the Pharos Testbed, a collection of general purpose
x86-based computers with access to modular sensors (e.g.,
infrared proximity, GPS, etc.), a standard 802.11b network
connection, and mounted atop a rugged mobility plane.

In one series of experiments, we developed software to
patrol a perimeter consisting of fixed waypoints, deploying
multiple coordination strategies to evaluate which was best
at spacing the robots evenly along the perimeter. Two of
these strategies are interesting for their use of context. In
the first, we created a custom communication protocol that
allowed a node to inform the node in front of it that it had
arrived at a given waypoint. Robots would not proceed until
they received a notification that the trailing robot had reached
it’s waypoint. We then implemented the same functionality
using the Grapevine framework, which vastly simplified the
required code. Instead of a program that required configuring
sockets and handling a custom protocol, the Grapevine-based
code simply included its current waypoint within its context
summary and created a local world view that allowed it to
monitor the summaries it received from other nearby nodes.
Using the world view perspective, a robot could learn when
another robot arrived at the trailing waypoint [16].

Building upon this, we are currently evaluating an applica-
tion that eschews manually configured waypoints altogether.
Instead, in these experiments we deploy multiple robots that
each use their sensors to search for a specified target (e.g.,
a person wearing a bright pink shirt). This low-level sensor
data is provided as context information to Grapevine, which
allows the the group of patrolling robots to aggregate it into
an accurate assessment of where the target is along with the
number and location of patrolling robots. All of this context
information is fused to dynamically determine a perimeter



around the target and inform each robot as to where it should
go to best patrol that perimeter. Furthermore, since each node
is aware of the locations of other all the other robots, mobility
can be adjusted to ensure that collisions are avoided. Sharing
and gathering the context information involves using extremely
simple primitives, allowing for much easier development of
such applications.

C. Context-Based Data Offloading for Cellular Networks

We have also used network, data, and location context to
design an intelligent mobile data offloading web service archi-
tecture [35]. Intelligent data offloading moves data from the
over-burdened cellular networks (usually 3G or 4G networks)
onto to higher bandwidth but shorter range WiFi networks
without degrading the user experience. Our design splits web
content among multiple independent delivery vectors based on
context. The key issues in designing our architecture, dubbed
MADServer, were (i) what context to acquire and (ii) how
to distribute and respond to the acquired context intelligently.
Using concepts from the Context Agent Framework, we pro-
totyped a web service architecture that relies on context to
inform its data offloading decision, splitting responses to client
web requests into two parts: Response’, to be delivered using
the existing cellular wireless network, and Response’, to be
delivered to a context cache location provided by the client.
The dual delivery vectors allow us to provide uninterrupted
connectivity to any given web service, even as the user moves
between content caches and WiFi access areas promoting a
frustration-free user experience, while at the same time saving
precious cellular bandwidth by moving “heavy” content over
the cheaper, higher bandwidth offloading vector. Our prototype
showed promising results both in terms of cellular bandwidth
savings and in content delivery speeds.

Similar architectures will be more widespread in the fu-
ture as cellular bandwidth becomes an increasingly precious
commodity. The growth in demand of cellular spectrum is far
exceeding the increase in availability, and offloading is one of
the more promising solutions. However, “smart” and efficient
offloading relies not only on distributed content caches but
also on efficient and expressive context awareness. The web
services must know where to send the data, and when; in
a world of mobile devices, this is not an easily answered
question. Context aggregation and sharing architectures such
as the Context Agent Framework are a key step in realizing
the kind of context-awareness that intelligent mobile data
offloading requires.

VI. FUTURE DIRECTIONS

In this paper, we have promoted a shifting perspective
on context and context-awareness for mobile and pervasive
computing. This shift has been motivated by both technolog-
ical advances that make varying types of context information
more prevalent and widely-available, and applications that
demand shared views of group context situations. This shift in
perspective opens many new avenues for intellectual pursuits.

One of the most obvious directions relates to privacy. A
first observation comes from recent studies of aspects of
information sharing in pervasive computing environments [22],
[31]. Such studies have providing enlightening insight into
people’s willingness to share information; specifically, people
may be willing to share with other co-located users (even
unknown ones) what they would not share publicly (i.e., on
the Internet). This motivates our perspective on local sharing,
in which context information is not posted to a centralized
source but instead is shared locally through a peer to peer
network. In many instances, however, simply restricting shar-
ing to locally connected peers will not be enough to maintain
adequate privacy. Future research must study how entities can
share information, even locally, without exposing sensitive
information linked to users’ identities. One promising direction
is to explore the interplays of trust, information aggregation,
and privacy.

Other privacy controls may rely on user-centric models that
explicitly allow users to control what is shared when and with
whom. Of course exposing this control to the user opens up
obvious user interface concerns; it is not yet evident what
the right abstractions are for communicating context privacy
concerns to users, and developing these abstractions will be
essential to mediating user-centric models.

As we sense context information from a wider variety
of sensors and share that context information more broadly,
questions naturally arise relating to the quality of context
information. Furthermore, as we aggregate information with
the goal of maintaining some degree of privacy, we may in-
tentionally add noise to otherwise perfect data. These concerns
motivate new metrics for context quality that are particularly
sensitive to the joint notions of efficiency and expressiveness
as well as to aggregation and sharing.

Finally, the dynamics of context are also related to these
notions of quality. Given that we have aggregated and shared
context views, how do we maintain them, updating them with
new information as it becomes available and timing them
out when they have effectively expired. This is especially
challenging when considered jointly with privacy; if a context
value has been aggregated or obfuscated to protect the entity
that contributed the value, it is not clear how to handle an
update to an already shared value. This is further complicated
by the fact that the environment of sharing and aggregating
is inherently distributed and subject to unpredictable network
mobility and disconnection. Even finding the right values to
update proves challenging.

We argue that a unified view of context—combining ego-
centric perspectives with distributed global perspectives—is
the right direction and will be a key step in alleviating these
kinds of problems. Our own recent efforts in adaptive, shared
perspectives have yielded positive results. Next generation
mobile and pervasive computing environments will depend on
the kind of holistic view such an approach can provide.
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