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ABSTRACT
Despite increasingly realistic vehicular network simulations,
the effects of real-world mobility on network and application
performance in vehicular networks are still not well under-
stood. We present Pharos, a small-scale vehicular network
testbed with“push-button”experiment repeatability and de-
velop a framework for analyzing network performance of ve-
hicular networks simultaneously in simulation and in the
real world. We empirically study the differences between
real-world and simulated connectivity. Early experiment re-
sults using our vehicular testbed show significant differences
between simulated and actual movements resulting in differ-
ences in wireless connectivity. Because of this, we implement
a trace mobility model that allows the OMNeT++ simula-
tor replay actual GPS-based movement traces collected by
the testbed and scale to larger networks.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer
Communication Networks

Keywords
Vehicular Networks, Testbeds, Mobility Frameworks, Per-
formance

1. INTRODUCTION
While research in mobile and opportunistic vehicular net-

works is becoming common, the effects of real-world mobil-
ity on network and application performance are not well-
understood. Potential deployments of opportunistic vehic-
ular networks include urban networks in which wireless en-
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counters between cars and buses are used to transfer mes-
sages from disconnected portions of the network to areas
with Internet access [12]—such disruption-tolerant (or delay-
tolerant) networks make use of data ferries, i.e., autonomous
roving vehicles that provide Internet connectivity [5, 22].
When vehicles travel together on a highway, they commu-
nicate to form convoys and exchange information about fu-
ture hazards to increase both efficiency and safety [7]. As
autonomous vehicles increase in numbers, stop signs and
traffic lights can be replaced with new intersection manage-
ment schemes in which approaching vehicles communicate
to traverse the intersection while reducing delays [10]. In
all of these examples, connections unpredictably appear and
disappear though in ways that vary between scenarios and
significantly impact communication protocol performance.

Vehicular mobility affects communication protocol perfor-
mance often in ways that are difficult to understand and
quantify. Evaluations are usually performed in simulators
or testbeds that restrict experiments to a small number of
mobility models and generally decouple measuring mobil-
ity properties from network properties. We believe that
given the significant interdependencies between movement
and network performance, evaluations must consider both
mobility and the network stack to understand the nature
and magnitude of their interactions.

Evaluations of vehicular networks often rely on simula-
tions that often inaccurately model real network stacks [1,
20]; however simulations can scale to very large systems that
would be difficult to implement for real, and many provide
increasingly realistic network behavior, e.g., in terms of radio
propagation models and network protocols. What is sorely
lacking, however, is the ability to acquire a concrete and
empirical understanding of the impact of vehicular mobility
on real-world network protocol performance. This makes it
challenging to understand how a new protocol or application
for mobile vehicular networks will be affected by different
mobility scenarios; simulation cannot model every facet of a
real-world system.

While simulations are important, they do not enable com-
plete understanding of opportunistic vehicular network be-
havior. For this reason, we developed a mobile autonomous
vehicular network testbed called Pharos for small to medium
scale network evaluations. Although our nodes are not full-
sized vehicles, our testbed serves as a bridge between sim-
ulation and full-scale vehicular network deployments; we
provide the ability to run experiments using real network
hardware and software on a system that provides “push-
button” repeatability, something that is difficult, if not im-



possible, to do with real vehicles that are available today.
Pharos improves upon the information provided by typical
testbed-based experiments by explicitly tying network pro-
tocol performance in the testbed to network statistics gath-
ered through simulation. This allows us to reason about how
testbed results will scale beyond the physical limitations of
the testbed.

In this paper we introduce a pair of frameworks (one for
simulation, and one for real networks using Pharos) that
jointly evaluate mobility and network performance. This
means one can associate statistics that quantify the mo-
bility observed in the experiment and quantitatively relate
mobility to network performance. Each framework can en-
act numerous mobility models or mobility traces and enable
simultaneous collection of statistics about node movement
and network protocols. Our frameworks are unified; we can
collect the same network performance statistics and execute
the same mobility patterns in simulation as we do in the real
testbed and vice versa. The first of our pair of frameworks
performs this task within a well-known and widely used net-
work simulator, OMNeT++ [25]. The second framework
transitions these mobility models to Pharos [24], a real-world
testbed based on miniature autonomous vehicles, allowing
the same kind of mobility driven validation on real vehicular
nodes. We describe OMNeT++ and Pharos, justify our use
of them, and provide details of our frameworks’ implemen-
tations in Section 4. We use these frameworks to evaluate
the differences between simulated and real-world network
performance and mobility of a small vehicular network in
Section 5. The paper ends with lessons learned in Section 6.

2. RELATED WORK
Before describing our frameworks in detail, we first con-

sider the state of the art in modeling, simulating, and con-
trolling mobility.

The seminal work characterizing mobility models’ effect
on network performance compared several random models
with more realistic mobility patterns [6]. However, statisti-
cal analysis was not applied to newer more realistic mobil-
ity models. Baumann et al. developed a Generic Mobility
Simulation Framework (GMSF) [3] for comparing mobility
models for vehicular communication networks. GMSF can
export simulation traces to formats accepted by many net-
work simulators and computes several statistics that can be
used to reason about the mobility models. However, GMSF
omits a number of statistics that are important to oppor-
tunistic networks, e.g., network partition sizes and member-
ships, and lacks a realistic radio model forcing researchers
to export traces to other simulators to use the latest ra-
dio models—this prevents evaluation of scenarios in which
mobility and communication influence each other [5].

Our desire to collect comprehensive statistics to charac-
terize the differences between mobility models is not unique.
BonnMotion [9] implements several popular mobility mod-
els and provides a comprehensive statistical analysis of each.
However, similar to GMSF, BonnMotion is not a simulator
but rather a movement trace generator and mobility analysis
tool—it can therefore not capture the complex relationship
between mobility and communication. Other frameworks
provide statistics on network performance given mobility
models as input [17, 16] but none of these tie real-world
results to simulated results for the same mobility input.

The challenge is somewhat different in testbed evalua-

tions. Here, real mobility is required as the network nodes
operate in physical space. Numerous autonomous multi-
vehicle testbeds exist. For example, Kolodko and Vlacic
used golf-cart-like Imara vehicles [19] and focus on evaluat-
ing an autonomous intersection; we focus on analyzing the
differences between multi-vehicle simulations and real-world
behavior. RAVEN [13] is an indoor testbed for UAV control
systems, and, like many other autonomous robotic testbeds,
the focus is on control systems and not on the validation of
simulated communication protocols and the analysis of its
performance. Other testbeds for mobile networks in general
enable mobile devices to follow traces of mobility provided
by the experimenter [4, 8, 15, 21]. To our knowledge, there
is no existing work on providing a framework that directly
incorporates mobility modeling into the testbed, allowing
a single testbed to execute different mobility models repre-
senting different targeted scenarios while evaluating both the
network performance and statistics of the mobility pattern.

3. CHARACTERIZING PHAROS
The Pharos vehicular testbed consists of numerous au-

tonomous vehicles called Proteus. Designed for modularity
and economy, Proteus uses commercial-off-the-shelf (COTS)
equipment to maximize robustness, flexibility, and cost-
effectiveness. Below we discuss the design in four major
functional sections: software support, mobility, behavior,
and interaction.

Software support. To reduce component coupling, we
use well established APIs whenever possible. The Player
API [2] allows movement definition (e.g., drive forward) to
be fully differentiated from the hardware implementing the
behavior. This approach also extends to the interface be-
tween the Proteus node and experimental behavior. Concep-
tually, individual pieces of an experiment can be developed
and validated independently using off-the-shelf simulators
tailored for a particular purpose (e.g., Stage [2] for move-
ment or OMNeT++ [25] for networking). Once validated
individually, they can be quickly integrated with the nodes.

Physical Mobility. Physical mobility is provided by one
of three options: an iRobot CreateR©, a SegwayR© RMP50,
or a customized Traxxas Stampede, a high-performance re-
mote controlled truck with Ackerman steering and 4-wheel-
independent suspension. Each platform provides its own
power to reduce dependencies on other components. While
the Traxxas is not a COTS component, the low cost, light-
weight, outdoor compatibility, and range of speeds makes it
a desirable option. Details on the hardware, assembly, and
software are all available publicly [24].

Behavior and Communications. A low-power
VIA EPIAR© x86 Linux-based computer coupled with a
FreescaleTM 9S12 micro-controller (MCU) constitutes the
platform for Proteus node used in this paper. This dual
architecture offloads low level tasks to the micro-controller
while allowing the x86 to focus on higher level aspects. The
MCU opens a wide range of I/O options for connecting sen-
sors and other peripherals. Basic communication is provided
by an on-board 802.11 b/g wireless interface controller with
a 5.5 dBi antenna.

Environmental Interaction. The Proteus’s fourth func-
tional area is sensing and actuating. We support various
range-finding sensors, a digital compass, global positioning
system (GPS), and cameras, as well as ambient sensing de-
vices including MEMSICR© motes.
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Figure 1: The Proteus Mobility Architecture

3.1 Software Architecture
The Pharos testbed’s software architecture is shown in

Figure 1. At a high-level, it consists of three main com-
ponents: a Pharos client residing on a laptop that wire-
lessly communicates with one or more Proteus nodes, the
Pharos Server running on each Proteus’s x86 computer, and
sensor/actuator drivers that reside within Proteus’s micro-
controller.

Pharos Client. The Pharos client is written in JavaTM

and serves as the experiment coordinator. It assigns mo-
tion scripts to Proteus nodes and initiates the execution of
the motion script. Upon receiving the motion scripts and
experiment configuration, which contains the node specifi-
cations and motion script assignments, the Pharos client
wirelessly connects to the Pharos servers on each node, con-
figures them, and coordinates the start of the experiment.
At this point, the nodes may move out of range of the Pharos
client, and it has no further role until the experiment is over
when it collects log files, organizing them by experiment
identifier and node ID.

Pharos Server. The Pharos server consists of a Motion
Script Follower and a Navigation component. The Motion
Script Follower informs the Navigation component of the
next waypoint and desired speed; upon arrival it pauses for
the specified amount of time and repeats the process. The
software that implements the network protocol being eval-
uated runs in parallel with the Motion Script Follower and
can influence the sequence of waypoints that a node visits
and the speed at which it travels. The Navigation compo-
nent requires compass and GPS data, using both to adjust
the steering angle and speed. The Navigation component
obtains the sensor data and issues the movement commands
through a Player server that also runs on the x86. Hardware
actuation and feedback is accomplished through a combina-
tion of the well-known Player Server robot API and custom
micro-controller drivers.

4. FRAMEWORK TO SUPPORT NETWORK
EXPERIMENTS

We developed Pharos because it is insufficient to rely only

Figure 2: Unified Simulation and Testbed Analysis
Framework

on simulation to evaluate vehicular networks, and we wanted
a real-world mobile testbed upon which to test such sys-
tems. To establish correlations between simulated and real-
world performance, we provide a pair of unified frameworks
in which to evaluate and quantify the impacts of mobility on
protocol performance in opportunistic vehicular networks.
The framework has two components, one that runs in the
OMNeT++ simulator, and one that runs on the Proteus
nodes. To unify simulation and testbed results, it is impor-
tant to execute the same code in both places. This increases
the validity of the comparison and decreases the overhead of
moving experiments between simulation and the real world.
For the simulation-side, we chose to use the OMNeT++
simulator and for the Pharos testbed framework we use the
Click modular router [18]—the two have similar architec-
tures easing the burden of porting protocol implementations.

Figure 2 shows the general architecture of our frameworks;
it consists of three parts, (i) StatisticsControl: the OM-
NeT++ mobility model analysis framework, (ii) ClickStats:
the Click-based testbed implementation of the same, and
(iii) tools to transfer mobility traces from simulation to the
real-world, and vice versa.

4.1 OMNeT++ Statistics
We previously designed a StatisticsControl package for

OMNeT++ to help us reason about how characteristics of
node mobility affect routing performance and other higher
layer protocols [23]. These statistics enable us to draw con-
clusions about the similarities and differences between mo-
bility models. For example, it is interesting to discover that
two models that appear to be quite different on the surface
result in similar values for those metrics that govern the per-
formance of a particular routing protocol. StatisticsControl
works within the INET framework for OMNeT++ versions
3.3 and 3.4 and collects the following statistics for every node
in a network:

Core Statistics: The module samples each node on a
user-defined interval. It collects the following basic statistics
for each node in the network and records their time-varying
values and their averages: node position, number of neigh-
bors, and number of unique neighbors (which indicates how
many other unique nodes the node encountered during the
course of the simulation).

Connection and Partition Tracking: The module
records possibilities for connections, or “contacts,” every
time two nodes come within ideal radio range. It records
the number of these contacts over the lifetime of the simu-
lation and their average duration per node. It also tracks
the number of partitions in the network, their sizes, their



memberships, and the number of disconnected nodes at any
given time.

Relative Mobility: The module also samples the posi-
tion of all nodes on a separate user-defined timer and records
the relative velocities of all nodes with respect to each other.
This metric is used to calculate the network’s total relative
mobility using the algorithm given in [14]. Relative mobil-
ity is useful for describing the level of node movement in a
network.

Message Delivery Possibilities: We have also defined
a notion of potential message delivery opportunity. A given
experiment can be split up into any number and duration of
“epochs,” during which every node starts with a unique mes-
sage and attempts to deliver it to every other node. For the
heuristic, any recorded contact between two nodes results in
a hypothetical exchange of every unique message they cur-
rently hold, and each node records the time at which it first
receives any message. The “routing algorithm” is thus an or-
acle that shows how perfect routing could perform if every
contact was fully utilized. Although unrealistic, this estab-
lishes a best case delivery latency for every message, and
one can also easily see which (if any) messages remain un-
delivered at the end of an experiment. Since the user can
define any number of epochs, it is easy to observe how the
delivery potential changes over time due to the nature of the
mobility model.

4.2 Click-based Real-World Statistics
For this paper we developed a real-world implementa-

tion of the statistics package that we previously built for
OMNeT++. The real-world implementation uses the Click
Modular Router [18] and runs on the Linux-based robots of
the Pharos Testbed (see Section 3). The Click-based statis-
tics package uses the 802.11 radios of the Proteus robots to
send and receive UDP beacons at user-defined intervals to
directly measure the core statistics described above. The
other statistics connection and partition tracking, rel-
ative mobility, and message delivery probabilities are
global statistics in that they cannot be sensed or estimated
without global information. They are instead computed off-
line using GPS data to estimate relative mobility and using
the connectivity information to estimate both the connec-
tions and partitions and message delivery probabilities.

4.3 Conversion Tools
Another key element of our dual mobility model analysis

frameworks is the ability to transfer mobility traces from
simulation to real-world nodes, and vice versa. To accom-
plish this, we built a set of tools to automate the conversion
of OMNeT++-style mobility traces into GPS waypoints that
can be followed by the Proteus robots. These conversion
tools coupled with our TraceMobility module allow us to
recreate the movements of any real-world GPS-based node
traces in OMNeT++. Finally, it is also possible to draw
freehand mobility models using a GPS-based mapping tool
such as GPSVisualizer [11] and to run these on both the
Pharos testbed and in simulation.

5. EARLY PHAROS TESTBED RESULTS
In this section we present several sets of early results using

Pharos. The first uses our framework to evaluate differences
between real-world connectivity and simulated connectivity
and demonstrates our methodology for applying simulated
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Figure 3: Real-world vs. simulated connections (us-
ing 50m simulated radio range)

mobility patterns to real (small scale) vehicular mobile au-
tonomous nodes. The next two quantify other aspects of the
testbed.

5.1 Comparing Simulation to the Real-World
Our framework allows us to analyze mobility models using

Pharos with traces generated in OMNeT++ and to compare
the results. We also sought to characterize the difference be-
tween simulated connectivity between mobile nodes and the
real-world connectivity of the vehicles in Pharos. To begin to
understand the relationships between the real-world connec-
tivity in Pharos and simulation results, we measured connec-
tivity by sending wireless beacons between the nodes in all
of our experiments and recorded when any node saw another
nodes’ beacon. The beacons themselves were UDP packets
sent to the subnet broadcast address by Pharos’ middleware
(at user-configurable intervals) containing a sequence num-
ber to allow us to track which beacons were lost.

We sent nine Proteus vehicles along a lollipop-shaped mo-
bility script in Figure 6, starting each robot 30 seconds
apart. Temporally separating the nodes in this manner re-
duces the likelihood of robot collisions at the start of the ex-
periment. The nodes were configured to broadcast beacons
on a random interval between five to ten seconds apart. To
precisely simulate the same experiment using OMNeT++,
we converted the resulting traces of the nine robots and ran
them in simulation using our TraceMobility model.

In the OMNeT++ simulation, we recorded the number
of neighbors each node had at each sample point and com-
pared it to the recorded beacons showing which nodes were
actually connected at that same sample point in the Pharos
testbed experiment. These sample points were defined based
on the beacon interval in the Pharos testbed; to ensure fair-
ness for the simulator, the finest grained sampling rate we
could use was 10 seconds. We compared one real-world run
of this experiment with simulations using simulated radio
ranges of {10m, 25m, 50m, 75m, 100m, 150m, and 200m}.

Neighbor Connectivity Differences: To illustrate the
difference between real-world connectivity and simulated con-
nectivity, we plot the simulated connections and real connec-
tions seen by each node during every 10 second interval for
various simulated radio ranges. Figure 3 shows the connec-
tivity we measured on one node alongside a simulation of
the same mobility and communication trace using a simu-
lated radio range of 50m. The figure shows a number of
possible connections (around t=300s) present in simulation
but missed by the Proteus node and also illustrates that
the simulated connectivity (although close to the real-world
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Figure 4: Neighbors missing from simulation (left
axis) and extra neighbors in simulation (right axis)
vs. simulated radio range
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Figure 5: Neighbors vs. time for simulation (25m
simulated radio range) and the real-world

data) consistently reported one to two extra neighbors near
the end of the simulation. Naturally, we observed that the
chosen simulated radio range had a significant effect on the
number of extra neighbors. However with an appropriately
chosen simulated radio range, the connectivity trends ap-
peared to be the same between the real-world and simulation
for most of the graphs.

Comparing Effective Radio Ranges: From our em-
pirical results, we are also able to estimate the effective ra-
dio range of a given experiment. To reason about the real-
world range experienced by the 802.11 radios on the Pro-
teus nodes, we compared the number of recorded neighbors
a node saw in a ten second interval to the“expected”number
of neighbors from simulation. We accounted separately for
neighbors that were missing in the simulation but present
in the real-world (which was rare) and neighbors that were
extra in the simulation but unaccounted for in the real-world
(which was, as expected, common). This data is presented
in Figure 4 with 95% confidence intervals. It is interesting
to note that any simulated radio range greater than 50 me-
ters, on average, results in more than two extra neighbors
that the real-world node “should” have been able to see but
did not. This could be due to a number of reasons such as
interference or wireless propagation effects, given that our
radios were approximately one foot off the concrete parking
lot. Additional experiments resulted in similar real-world
ranges.

5.2 Experiment Repeatability with Pharos
To analyze our claim of Pharos’ “push-button repeata-

bility,” we analyze geographical path divergence between dif-
ferent runs of the same experiment.To ensure comprehensive
evaluation of the vehicle’s motion characteristics, the motion
script contains segments of varying length and turns of dif-
ferent directions and angles. The actual paths that one ve-
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Figure 6: Seven executions of the lollipop-shaped
motion script
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Figure 7: Absolute path divergence

hicle took for these seven trips are shown in Figure 6. While
the vehicle did not travel the exact same path each time, it
did follow the same general path. Figure 7 shows Lonestar’s
average absolute divergence over the seven runs, i.e., the
distance between the node’s route and the ideal route. The
error bars indicate 95% confidence intervals. Note that the
average divergences are 0-5m and the confidence intervals
are 0-1.29m, which are small relative to 45m, the average
edge length. The small divergence values is evidence that
Pharos achieves movement repeatability across experiment
rounds.

6. LESSONS LEARNED & CONCLUSIONS
Simulations of vehicular networks heavily depend on the

choice of mobility model as the varying connectivity op-
portunities presented by each greatly impact network per-
formance; the connectivity heuristics of different mobility
models and real mobility traces present different challenges
to network protocols. These differences in mobility mod-
els are not extensively categorized, and the relationships
between mobility and the ultimate aim of “good network



performance” are unexplored. Our frameworks provide a
mechanism to not only reason about the differences between
mobility models, but to also examine their best case routing
performance—in both simulation and the real-world.

In examining differences between real-world and simulated
results of the same mobility pattern, we also learned that
real-world GPS-based autonomous vehicles do not follow the
“perfect”trajectories of their simulated analogues. Although
this was expected given the unavoidable error in digital com-
passes, GPS receivers, motor controllers, and navigation al-
gorithms, we did not expect the skew between real-world
mobility and simulated mobility to be as large as it was—the
difference between expected node placement and real-world
node placement affected communication opportunities even
during relatively short tests. In fact it is due to the mag-
nitude of this difference that we chose to implement our
TraceMobility module for OMNeT++, which allows us to
replay exact GPS traces taken by the robots in simulation
to better model real-world movements.

In conclusion, we developed a pair of novel frameworks
for evaluating network performance simultaneously in sim-
ulation and the real-world, using the OMNeT++ simulator
and the autonomous vehicles in the Pharos testbed. We
provide an empirical study categorizing the similarities and
differences of real-world connectivity versus simulated ra-
dio ranges and show several other early results obtained us-
ing our vehicular testbed. Additionally, we categorize our
testbed’s ability to repeat the same mobility trace providing
“push-button” repeatability of network experiments. Our
frameworks are generic and reusable, and can be deployed
on any Linux-based vehicular or robotics platform.
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