
Spitty Bifs are Spiffy Bits: Interest-based context
dissemination using spatiotemporal bloom filters

TR-ARiSE-2012-005

 Evan Grim and Christine Julien

Mobile and Pervasive Computing Lab
The University of Texas at Austin

{evangrim, c.julien}@mail.utexas.edu
http://mpc.ece.utexas.edu

© Copyright 2012
The University of Texas at Austin

Spitty Bifs are Spiffy Bits: Interest-based context
dissemination using spatiotemporal bloom filters

Evan Grim and Christine Julien

Mobile and Pervasive Computing Lab
The University of Texas at Austin

{evangrim,c.julien}@mail.utexas.edu
http://mpc.ece.utexas.edu/

Summary. Acquiring accurate context information is crucial to mo-
bile and pervasive computing, and sharing context among nodes enables
unique applications. As context information and the applications that
consume it become increasingly diverse, they will need an efficient means
to indicate tailored interest in this context information. This paper pro-
poses a new probabilistic data structure, spatiotemporal Bloom filters
(SpTBF) or “spitty bifs,” which allow nodes to efficiently store and share
their context interests. SpTBF provide both spatiotemporal locality and
a fine-grained ability to control how context interests are disseminated.
SpTBF are evaluated by modifying the Grapevine context sharing frame-
work to inform its context dissemination capabilities, and the benefits
are characterized in a variety of network scenarios.

Key words: context awareness, publish/subscribe, mobile computing,
bloom filters

1 Introduction

Mobile and pervasive computing applications are strongly influenced by their
environments, and this has driven research to seek effective and efficient means
for sensing, characterizing, and acting upon this valuable context information.
Many approaches focus on purely egocentric notions of context, which limit the
information a node can directly collect or otherwise infer about its surroundings.
Mechanisms that allow nodes to efficiently share context information with nearby
nodes enhance local notions of context, enabling applications to better react to
their environments and allowing applications to leverage the shared context of
groups to stretch beyond solely egocentric approaches. For example, a group of
nodes that can individually only sense the direction in which an object of interest
lies can triangulate that information into a shared notion of where the object is.

Simple context dissemination approaches work well in networks where ev-
ery node is interested in the same context information throughout the system’s
lifetime. Efficiently sharing context becomes challenging when interests are less
static, and scenarios with more diverse and dynamic context needs abound.
Many smart phones run applications that have widely varying interests in avail-
able context information. Even within a single application context needs may

2 Grim et al.

change over time. For example, a vehicular application providing localized traffic
and safety information may find information from cars beside or near the inter-
state of no interest to vehicles speeding by. Furthermore, individual users may
have differing interests. For instance, an application facilitating social interac-
tion among park patrons need not enumerate all the capabilities of a multi-sport
athlete if all nearby patrons are interested in quieter games like chess.

Efforts that ignore these dynamics and heterogeneities will either share too
much context information, resulting in wasted network resources, or share too
little information, missing opportunities for providing valuable context. These
scenarios suffer when distribution relies on the producer of context information to
know what information is desired by nearby nodes, when it is the consumers who
are best suited to provide this information. What is needed is a lightweight means
for nodes to communicate consumers’ context interests to nearby producers.

This paper’s novel contribution is a means for applications to efficiently main-
tain an awareness of what context information is of interest to other nearby nodes
and a demonstration that this awareness improves the use of network resources
significantly. We introduce a Bloom filter variant, spatiotemporal Bloom filters
(SpTBF or “spitty bifs” for short), that allow a node to efficiently communi-
cate, acquire, and maintain information about others’ context interests within
the node’s spatiotemporal region of a mobile network. Our approach is rooted
in the publish/subscribe paradigm, which has demonstrated efficiency improve-
ment in the heterogeneous and dynamic network systems we target. The SpTBF
approach can represent generic types of context and provides consumers the
flexibility to control the scope in space and time within which their individual
interest is distributed. In this paper, we introduce the SpTBF data structure,
demonstrate it in practice by applying it to the Grapevine context dissemination
framework [9], and evaluate its performance.

2 Related work

Our task is to track context interests within a spatiotemporal region; our ap-
proach is informed by the domain of publish/subscribe (pubsub) mechanisms. We
survey these predecessors, first examining more generic approaches that build an
overlay to aid in the distribution and matching of publications and subscriptions.
We then focus on approaches that leverage spatial and/or temporal properties
for distribution, and discuss how they do not sufficiently address our challenges.

Many approaches provide pubsub capabilities by constructing overlay routing
structures that hierarchically organize the network. The content based approach
of [11] eschews address based routing entirely, opting instead to route only based
on content and leveraging Bloom filters to compress the routing information re-
quired to inform forwarding decisions. Other efforts maintain traditional address-
ing but cluster nodes in tree structures based on shared interests [2, 10, 12, 18].
These approaches provide interest-based distribution but require a relatively high
communication burden to maintain the overlay, especially in dynamic networks.
We strive to reduce this burden by recognizing that many applications involve

Spitty Bifs are Spiffy Bits 3

context information that is most useful to nodes that are here and interested
now and thus are served best by pubsub mechanisms that use inherent spatial
and temporal locality to quickly and efficiently identify interested consumers.

Other efforts have investigated pubsub informed by spatial and temporal
properties. TACO-DTN [19], B-SUB [21], and ZigZag [22] subscribe to infor-
mation using specified timing conditions, while [6] enriches subscriptions with
location. These approaches provide improved efficiency through more granular
subscription specifications that prevent unnecessary use of network resources.
Other work leverages location to guide information to “bazaars” [17] or provide
informed guesses as to where in the network information is most likely to be
useful [5, 6, 14, 15, 16]. Many of these lessons are synthesized in the abstract
context pubsub model in [8], which provides an expressive and generic system
for spatially and temporally guided subscriptions. Our work diverges from these
approaches by leveraging the fact that interest in context information will of-
ten be concentrated near where that information is generated. This allows us to
simplify the distribution of interest information by enabling nodes to indicate
interests that automatically decay over distance and time, i.e., a subscription is
concentrated in space and time around its originator.

As in other approaches [10, 11], SpTBF leverage the efficiencies made possible
by probabilistic data structures. We introduce a variant of the Bloom filter [3],
which has enjoyed recent popularity in network-centric applications due to its
ability to encode large amounts of information within very small space require-
ments [4]. The original Bloom filter allows set membership to be encoded in an
array of m bits using k hash functions to transform a potential set member into
addresses within the bit array. To insert an element, each of the k addressed
locations in the array is set to 1. Querying whether or not a value is in the set
involves hashing the value using the same k functions and checking to see if all
the bits addressed by the hash values are set. If any of the bits are 0, then it is
certain that the value was never added to the set. If all the bits are 1, then the
item is probably in the set. Applications use this functionality to solve varying
problems (e.g., quick cached value checks [4], privacy-preserving algorithms [13]).

One downside to Bloom filters is that there is no way to reliably remove an
element from the set. The Counting Bloom Filter (CBF) [7] replaces the array
of bits with an array of counters. Instead of setting a bit to 1 upon insertion,
a CBF increments the k associated counters; removal decrements the counters.
The ability to remove comes at the cost of additional space requirements and in-
troduces the possibility of a false negative (there is a small chance the associated
counters may all have been decremented by unrelated remove operations [4]).

B-SUB proposes a further extension, the Temporal Counting Bloom Filter
(TCBF) [21, 22], which modifies the semantics of the counters in CBF so that
entries are set to a time value representing the length of time the entry should
remain in the structure. As time passes, maintenance operations decrement all
counter values by the amount of time elapsed1. When any of the k counter
1 This restores the perfect false negative properties lost in CBF, since counter values
are all decremented simultaneously.

4 Grim et al.

values for an entry reaches 0, the entry is no longer in the set. This allows
entries to automatically expire after a given amount of time and thus provides
a subscription mechanism with a temporal component; however, the TCBF has
no notion of spatial proximity.

3 SpittyBifs

hops time

timebase = 42

4 6

0 0

1 21

0 0

1 21

0 0

4 6

4 21

Fig. 1. SpTBF

This paper proposes a Bloom filter variant that provides the
spatial component. We call this variant a spatiotemporal bloom
filter (SpTBF), or “spitty bif” for short. It uses a construction
similar to that found in TCBF involving k hash functions (hi
from 1 ≤ i ≤ k) but replaces the array of timer values with
an array a of m 2-tuples, each containing a hop limiter and a
timer. Fig. 1 shows an example of a small SpTBF populated
with values. The hop limiter is decremented each time the
structure is passed from one node to another2. Timer values
are all relative to a specific point in time, so each SpTBF also
includes a timebase tb that records this time value, allowing
operations to decay values relative to the current time (as in
TCBF). Entries are automatically removed from a SpTBF when any of the tuple
value components reaches zero, indicating that either the structure has traveled
a specified number of hops from its origin or a given amount of time has elapsed.

Operations

Table 1. Operation signatures

insert (label, hopLimit, timeLimit, currentT ime)

query (label, currentT ime)

merge (currentT ime)

decrementHops ()

adjustT ime (currentT ime)

A SpTBF supports the typical
Bloom filter operations, allowing
insert, query, and merge [3]. Two
housekeeping operations are also
required (decrementHops and ad-
justTime); these decay the tuple
components in space and time. These operations are similar to those found in
TCBF, however the use of a tuple requires a slightly different approach than
that employed when the underlying array holds a single value.

Insertion. To insert an item with label l, we use the k hash functions that each
map l into one of the m addresses in the SpTBF’s array a of tuples. The spatial
and temporal components from each tuple are compared with l’s specified limits,
and the maximum of each forms the new tuple, which is returned to the same
location in the array. This results in the following operation:

∀i ∈ {1, . . . , k}
{

a [hi (l)] .hop = max (a [hi (l)] .hop, hopLimit)
a [hi (l)] .time = max (a [hi (l)] .time, timeLimit+ δ)

}
2 For simplicity we use “hops” (number of node traversals) as a spatial metric. Future
work could add additional tuple entries to encode more precise notions of location.

Spitty Bifs are Spiffy Bits 5

insert "ctx"
hopLimit=3, timeLimit=15

currentTime=45

hops time

timebase = 42

4 10

0 0

1 21

0 0

1 21

0 0

4 10

4 21

hops time

4 10

3 18

1 21

0 0

3 21

0 0

4 18

4 21

query "ctx"
currentTime=48

hops time

timebase = 42

4 10

3 18

1 21

0 0

3 21

0 0

4 18

4 21

hops time

3 12

3 15

4 12

Result = true
since all adjusted tuple

values are non-zero

merge A and B
currentTime=50

hops time

timebase = 42

4 10

3 18

1 21

0 0

3 21

0 0

4 18

4 21

hops time

timebase = 45

0 0

3 5

0 0

2 18

2 18

3 18

3 5

0 0

hops time

timebase = 50

4 2

3 10

1 13

2 13

3 13

3 13

4 10

4 13

A B C

delta = 3 delta = 6

delta = 8 delta = 5 delta = 0

decrement hops
currentTime=53

hops time

timebase = 50

4 2

3 10

1 13

2 13

3 13

3 13

4 10

4 13

hops time

3 2

2 10

0 13

1 13

2 13

2 13

3 10

3 13

delta = 3

+

adjust time
currentTime=55

hops time

timebase = 50

3 2

2 10

0 13

1 13

2 13

2 0

3 10

3 13

hops time

3 0

2 5

0 8

1 8

2 8

2 0

3 5

3 8

delta = 5
timebase = 55

delta = 0

 SpTBF Example
Properties

m = 8 bins
k = 3 hashing functions

Hashing functions determine
bin addresses e.g.:

 h1("ctx") = bin 3
 h2("ctx") = bin 1
 h3("ctx") = bin 6

All time values are adjusted
by delta before operations

 evaluate them:
delta = currentTime - timebase (a) (b)

(c) (d) (e)

Fig. 2. SpTBF Operations

The timeLimit is adjusted by δ, the difference between the current time
and the timebase used for all the temporal components in the SpTBF. Fig. 2(a)
shows an example, where the starting SpTBF is shown on the left (which already
contains context interest elements). The label “ctx” is inserted with a hopLimit
of 3, and a timeLimit of 5, resulting in the updated SpTBF on the right.

Query. Querying whether an item with label l exists in a SpTBF again uses
the k hash functions to retrieve k tuples from the array a. Iterating through
these tuples, both the spatial and temporal components are checked. If either
component from any of the tuples is zero, l is not in the set—either it was never
inserted in the set or at least one of its components has decayed to zero. If all
the tuples’ components have non-zero values, then the item is likely to be in the
set, and the query result is true. This operation can be expressed as:{

true if for ∀i ∈ {1, . . . k} a [hi (l)] .hop 6= 0 ∧ a [hi (l)] .time− δ > 0

false otherwise

6 Grim et al.

Again, the temporal component is adjusted by the difference between the
current time and the structure’s timebase. Fig. 2(b), shows that the newly in-
serted item labeled “ctx” will result in an affirmative query because all of the
bins chosen by the hashing functions hold non-zero tuple elements.

Merge. Multiple SpTBF can be merged into a single structure by choosing the
dominant tuple values from each to create a space efficient representation of the
consolidated set memberships. Both structures must have the same underlying
array a size ofm; merging involves iterating over all the tuples in each, comparing
their spatial and temporal components and storing the maximum of each in the
new array at the same location. Merging A and B to create C is as follows:

∀i ∈ {1 . . .m}
{

aC [i] .hop = max (aA [i] .hop, aBm [i] .hop)
aC [i] .time = max (aA [i] .time− δA, aB [i] .time− δB)

}

tbC = current time

Each temporal component is adjusted by its timebase’s difference from the cur-
rent time. The temporal components are then relative to the current time, and
as such the new SpTBF uses the current time as its own timebase. Fig. 2(c)
shows an example. The new structure may end up using the spatial component
from one structure and the temporal component from another. For example,
imagine a SpTBF entry has existed locally for long enough that its temporal
component(s) are on the cusp of expiring, but since the structure has stayed
local, its hop count is still strong. If it is merged with a SpTBF with a more
recent entry that shares an array slot, but one that has come from several hops
away, then the resulting array entry would use the first spatial component and
the second temporal component. In these scenarios an entry will persist beyond
its originally intended spatiotemporal components if all of its array entries fall
prey to this situation. The likelihood of these collisions is determined by the un-
derlying array size m and the number of hashing functions used [4]; applications
can control this likelihood by appropriately tuning these parameters.

Housekeeping. Two additional operations support the decay of spatial and
temporal components, facilitating automatic removal of elements.

Spatial. Used whenever the SpTBF travels a network hop (i.e., is transmitted
from one node to another), spatial decay is accomplished by a simple decrement
of all the non-zero spatial components within each of the m tuples in the array
a, as seen in Fig. 2(d), and defined in the decrementHops operation:

∀i ∈ {1 . . .m} a [i] .hop = max {a [i] .hop− 1, 0}

Temporal. Decay in time involves adjusting the temporal tuple component values
and the timebase to which they are relative to match the current time. Periodi-
cally performing this operation minimizes the amount of space required to repre-
sent the temporal tuple component and is also useful when sharing with external

Spitty Bifs are Spiffy Bits 7

entities that may not use the same reference clock (e.g., preparing to transmit
a SpTBF over a network connection). This adjustment is accomplished by cal-
culating the difference between each temporal component’s timebase-adjusted
value and the current time, and then subtracting this value from each temporal
entry, as seen in Fig. 2(e). The structure’s timebase is set to the current time:

∀i ∈ {1 . . .m} a [i] .time = max {a [i] .time− δ, 0}

tb = current time

Application

SpTBF allow nodes to maintain an awareness of interest in context information
unique to their location in the network; nodes can use this awareness to share
only context information known to be of interest to nearby nodes. Tracking this
interest requires each node to store a single SpTBF, which is initially empty (all
tuple values initialized to zero) and is populated upon encountering other nodes.
When such an encounter occurs, a node creates a copy of its SpTBF, adjusts
its timebase to the current time, decrements the spatial components, and then
inserts labels for each context item it is interested in receiving before sharing
the newly constructed SpTBF with its neighbor. Upon receiving a SpTBF, a
node sets the timebase for the received SpTBF to its current time3 and merges
the received SpTBF with its own. The node can then query its SpTBF to deter-
mine whether nearby nodes are interested in receiving context information it has
available. Sharing the context of interest is outside the purview of the SpTBF
structure; it can be handled by a variety of existing techniques [9].

0 seconds
(a)

5 seconds
(b)

10 seconds
(c)

15 seconds
(d)

Fig. 3. Interest Lifecycle

Fig. 3 shows an example of a life-
cycle of interest awareness for a sin-
gle context interest. In (a), the cen-
ter node determines that it will be
interested in a given item of context
from neighbors up to 2 hops away and
for the next 15 seconds. It informs its
neighbors of this interest by inserting
the context item’s label into outgoing
SpTBF with a spatial component of 2
hops and a temporal component of 15
seconds. Within the next 5 seconds, as
seen in (b), the node has shared this
interest with its direct neighbors. Af-
ter another 5 seconds, each of these neighbors has shared their interest awareness
with their own neighbors and the central node’s interest has propagated to the
3 This timebase handoff between nodes allows them to share interest information
without requiring synchronized clocks but neglects any time that passes between
the sending and receiving the SpTBF (e.g., transmission latency).

8 Grim et al.

limit of its spatial component. After another 5 seconds, the temporal component
has decayed to zero, and the central node’s interest in the context information
will expire from each node’s SpTBF. The potential consumer of context can
specify the spatial and temporal lifetimes of each of their interests individually,
allowing fine grained control over how wide a net to cast for desired context
information on an item-by-item basis.

4 Evaluation

To evaluate the usefulness of SpTBF, we augmented the Grapevine context
dissemination framework [9] to use SpTBF to track interest awareness and to
improve context information sharing efficiency. Grapevine provides programmers
a simple and efficient library for sharing context and collaboratively forming
groups based on that shared context. Grapevine shares context by encoding it
into space-efficient context summaries that are piggybacked onto outgoing traffic.
In Grapevine, the onus of determining what context information to share rests
on the producers of that information. With a few simple modifications to the
existing framework, Grapevine can leverage SpTBF to send an interest summary
in addition to context summaries. Nodes do not include context information in
their context summaries until they know (via a received interest summary) that
a nearby node indicated interest in that context label.

The SpTBF interest summaries pack the spatial and temporal tuple compo-
nents into 1 byte. Each spatial component uses 2 bits, allowing up to 3 hops
to be specified, and each temporal component uses 6 bits, allowing just over a
minute (64 seconds) to elapse4. In total, an interest summary requires one byte
per array entry and an additional four bytes for the baseline timestamp.

We evaluated Grapevine with SpTBF interest summaries using OMNet++ [20]
and INET-MANET [1] to realistically simulate the communications of mobile ad
hoc networks. Our goal is to characterize when an interest-enabled context dis-
semination mechanism outperforms an interest-agnostic approach and gives rise
to two important questions: (1) how heterogeneous does context interest need to
be to benefit from tracking interest; and (2) how much space should be allocated
to the interest summary?

How heterogeneous does context interest need to be to benefit from tracking in-
terest? Interest-based dissemination requires additional bytes to be transmitted;
the goal is that this overhead can be reclaimed in savings from context informa-
tion that does not need to be shared. If all the nodes are interested in all the
available context, then the overhead of the interest communication is wasted.

To examine this question, we used 100 interest tracking Grapevine nodes us-
ing INET-MANET’s IEEE 802.11b network layer and mass mobility profiles to
simulate nodes traveling at a natural human walking speed and with realistic mo-
bility. We evaluated their network resource use in a variety of scenarios, varying
4 These choices are specific to our particular evaluation and can easily be adapted for
different spatial and temporal scopes

Spitty Bifs are Spiffy Bits 9

node density, interest allocation, and the number of hops over which interest and
context information were shared to determine the savings that interest tracking
provided over Grapevine’s previous resource consumption. Each scenario was run
for a simulated period of 20 minutes. We collected data using two different arena
sizes, one which provided a 5 km by 5 km square area, simulating a sparse node
density where nodes would encounter new neighbors relatively infrequently (ap-
proximating a neighborhood), and a smaller arena of 1 km by 1 km, simulating
a more densely populated area (approximating a popular park).

We allocated interests node in two different ways. In the first, each node
randomly selects a percentage of the available context labels for which they
indicate interest. In the second, we divide the context labels among a set of
applications and assign those applications to nodes in equal proportions. These
allocations are evaluated using the sparse and dense configurations and with a
handful of hop limits that determine how many hops both interest and context
summaries are forwarded. For each scenario, we compare the total number of
bytes sent by the nodes; the results are reported as percent savings of the SpTBF
approach over the interest-agnostic approach in the same scenario.

Figs. 4 and 5 show that savings can be significant for sparse networks with
diverse context interests. The savings are strongest in sparse scenarios with more
heterogeneous interest, where each node is interested in only a small portion of
available context (< 30% of the available contexts, as shown in Fig. 4) or when
more applications are present (> 3 applications, as shown in Fig. 5). As the
network density increases, so does the likelihood that a neighbor is interested in
the context a node has to share; it becomes increasingly likely that all context
information is shared from every node. As a result, savings are clearly less com-
pelling in denser networks, but there is very little penalty in adding the SpTBF
interest summaries (averaging at approximately five percent overhead) making
interest dissemination potentially beneficial in networks with varying needs.

Fig. 4. Percent Allocation

10 Grim et al.

Fig. 5. Application Allocation

How much space should be allocated to the interest summary? The amount of
space allocated to the interest summary can be chosen arbitrarily by using dif-
ferent values of m (the number of bins into which the tuples can be placed).
However, smaller values of m will result in false positive rates that negate the
benefits of interest tracking. To characterize the effects of this choice on false
positive rates, we allocated a variety of sizes for the interest summaries and
measured how much unnecessary context information was shared due to false
positives indicating there was interest when if fact there was not. The results
are reported in additional percentage of savings that could have been achieved
had these false positives not occurred. Fig. 6 shows the savings missed due to
false positives for various percent interest allocations (using the first scheme for
interest allocation in which each node is assigned a random set of the available
context types). We used a hop limit of three for all interest disseminations5.

Additional space allocated for interest summaries are important in systems
with heterogeneous interest, where the extra space provides significant benefit.
However, allocating space for bins beyond the number of context items available
(100 in this case) is unlikely to provide additional benefit. Furthermore, systems
with largely homogeneous interest can safely reduce their allocations without
significantly impacting the amount of context sent. This may allow the more
heterogeneous parts of context sharing systems to benefit from interest-based
context dissemination, while minimizing the negative impacts on more clustered
or homogeneous parts of the network.

5 Reflection

Sharing context information in mobile and pervasive computing environments is
necessary to supporting expressive and flexible application behavior. While many
5 Graphs for other configurations are similar and are omitted for brevity.

Spitty Bifs are Spiffy Bits 11

Fig. 6. Lost Savings Due to False Positives

approaches like the Grapevine context dissemination framework support sharing
context information, they traditionally accomplish context dissemination while
ignoring what interest nearby nodes have in context information. In this paper,
we clearly demonstrated that the efficiency of Grapevine’s context dissemination
can be improved by enabling nodes to share their interests in available context
information. Specifically, we explored using a novel probabilistic data structure
(the spatiotemporal Bloom filter, SpTBF, or “spitty bif”) to provide this interest
awareness with a minimum impact on network resources. The SpTBF ensures
that context information shared among network nodes is useful.

Reflecting on the results in this paper, we have opened several potential
avenues for future work. First, in situations when nodes’ overlap in context
interest is high (e.g., > 30%), the benefit of the SpTBF data structure is limited.
Future work should investigate how and when the benefits of SpTBF can be
achieved in these additional situations (e.g., in more diverse network scenarios).
As described earlier, incorporating additional definitions of space in addition to
network hops is also an item of future work.

Longer term, the traditional Bloom filter concept as we apply it in SpTBF
is binary—a value is either (probably) in the structure or it is not. The SpTBF
structure contains additional semantic information that could, for example, pro-
vide information about the strength of interest in a particular context label.
Not only could this information be used to influence future context information
dissemination, but applications might use it in other ways as well, for example
influencing node movement (e.g., nodes may move towards where interests lie)
or setting up interest gradients that can direct context information flows.

The presented SpTBF represents a promising new tool that aids in efficient
and expressive sharing of context information that is relevant locally in space and
time. This has potential to be useful in many application and network scenarios.

12 Grim et al.

References

1. The INET-MANET Framework for OMNeT++.
2. D. Balakrishnan and A. Nayak. CSON-D: Context dissemination in autonomous

systems using overlays. In Proc. of IE, 2008.
3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Comm.

of the ACM, 13(7):422–426, July 1970.
4. A. Broder and M. Mitzenmacher. Network Applications of Bloom Filters: A Survey.

Internet Mathematics, 1(4):485–509, January 2004.
5. I. Carreras, F. De Pellegrini, D. Miorandi, D. Tacconi, and I. Chlamtac. Why

neighbourhood matters: interests-driven opportunistic data diffusion schemes. In
Proc. of CHANTS, page 81, 2008.

6. P. Eugster, B. Garbinato, and A. Holzer. Location-based Publish/Subscribe. In
Proc. of NCA, pages 279–282, 2005.

7. L. Fan, P. Cao, J. Almeida, and A.Z. Broder. Summary cache: a scalable wide-
area Web cache sharing protocol. IEEE/ACM Trans. on Networking, 8(3):281–293,
June 2000.

8. D. Frey and G.-C. Roman. Context-Aware Publish Subscribe in Mobile Ad Hoc
Networks. In Proc. of Coordination, pages 37–55, 2007.

9. E. Grim, C.-L. Fok, and C. Julien. Grapevine: Efficient situational awareness in
pervasive computing environments. In Proc. of Percom Workshops, 2012.

10. P. Hebden and A. R. Pearce. Data-Centric Routing using Bloom Filters in Wireless
Sensor Networks. In Proc. of ICISIP, pages 72–77, December 2006.

11. Z. Jerzak and C. Fetzer. Bloom filter based routing for content-based pub-
lish/subscribe. In Proc. of DEBS, page 71, 2008.

12. Mujtaba Khambatti and K Ryu. Structuring peer-to-peer networks using interest-
based communities. In Proc. of DBISP2P, pages 48–63, 2004.

13. T. Korkmaz and K. Sarac. Single packet IP traceback in AS-level partial deploy-
ment scenario. In Proc. of GLOBECOM, page 5 pp., 2005.

14. I. Leontiadis. Publish/subscribe notification middleware for vehicular networks. In
Proc. of Middleware Doctoral Symposium, pages 1–6, 2007.

15. I. Leontiadis, P. Costa, and C. Mascolo. Persistent content-based information
dissemination in hybrid vehicular networks. In Proc. of Percom, pages 1–10, 2009.

16. I. Leontiadis and C. Mascolo. Opportunistic spatio-temporal dissemination system
for vehicular networks. In Proc. of MobiOpp, page 39, 2007.

17. M. Motani, V. Srinivasan, and P.S. Nuggehalli. PeopleNet: engineering a wireless
social network. In Proc. of MobiCom, 2005.

18. J. A. Patel, É. Rivière, I. Gupta, and A.-M. Kermarrec. Rappel: Exploiting interest
and network locality to improve fairness in publish-subscribe systems. Computer
Networks, 53(13):2304–2320, August 2009.

19. G. Sollazzo, M. Musolesi, and C. Mascolo. TACO-DTN: a time-aware content-
based dissemination system for delay tolerant networks. In Proc. of MobiOpp,
2007.

20. A. Vargas. OMNeT++ Web Page.
21. Y. Zhao and J. Wu. B-SUB: A Practical Bloom-Filter-Based Publish-Subscribe

System for Human Networks. In Proc. of ICDCS, pages 634–643, 2010.
22. Y. Zhao and J. Wu. ZigZag: A Content-Based Publish/Subscribe Architecture for

Human Networks. In Proc. of ICCCN, pages 1–6, July 2011.

