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Abstract—Smartphones have become the perfect companion
devices. They have myriad sensors for gathering the context of
their owners in order to adapt the behaviour of different applic-
ations to the device’s situation. This information can also be of
great help in enabling the development of social applications that,
otherwise, would require a costly and intractable deployment of
sensors. Mobile Crowd Sensing systems highly reduce this cost,
but realizing this vision using traditional centralized networking
primitives requires a constant stream of the sensed data to the
cloud in order to store and process it, which in turn leads to the
individuals about whom the data is sensed losing control over the
privacy of the data. In this paper, we propose an architecture for
a device-to-device Mobile Crowd Sensing system and we deepen
on a new privacy model that allows users to define access control
policies based on their context and the consumer’s context.

Index Terms—Privacy, Mobile Crowd Sensing, Device-to-
Device, Pervasive computing, mobile applications.

I. INTRODUCTION

Context-aware applications are increasing in their import-
ance on mobile phones because of their adaptability and ease
of use. These applications behave differently depending on the
user’s context, thus adapting themselves to provide services
that can be most useful to their users. To do so, these ap-
plications feed on contextual information, which includes data
such as the location or identity of the user, time-related data or
the activity being performed [1]. Context-aware applications
can even infer higher-level information from combinations of
lower-level data in order to offer the most relevant information
or services to a specific user.

These applications are nowhere more evident or important
than in new smart city infrastructures [2]. In these environ-
ments, context-aware applications must also be social, that
is, the contextual information from different users must be
shared to enable collaboration in the smart city. One approach
would be to deploy infrastructure-owned sensors to collect
information from the inhabitants of the smart city. However,
such an approach requires the deployment and maintenance
of many sensors—an approach that is costly and intractable.
Another possibility is to leverage the sensors that the city’s
inhabitants carry with them in any case—sensors connected
to their wearable devices and smartphones. We refer to these
devices throughout as companion devices. These devices are
already imbued with myriad sensors, from accelerometers to
GPS receivers. Existing applications use these personal devices
to support individual user’s needs, but it is also possible to
offer them and the data they collect to be consumed by other

nearby users and their devices [3]. For instance, the user’s
location, which is normally used by the smartphone to provide
the user services about where they parked or information about
the bar, shop, or restaurant where the user currently is, can also
be shared so that other users can know if a bar is crowded or to
let the city council to know which are busiest streets so that
public policies can be better planned, for instance to make
pedestrian routes more accessible for disabled people.

While this device-to-device cooperation is technically feas-
ible, there remain unsolved challenges. First, there is a need for
a technological architecture that allows companion devices to
offer the information they sense to other devices, providing a
gateway to access the surrounding context information. What’s
more, the architecture must provide mechanisms to allow
different devices to communicate opportunistically. Second,
these virtual context profiles potentially contain particularly
sensitive and private information, such as the location or
trajectory of the user or the activities they perform, that could
be used for malicious purposes. Therefore, it is not enough
to have an architecture that allows devices to offer their
contextual information to others, but the architecture should
also ensure the privacy of the user in a way that is tunable by
the user directly.

An initial approach could be to constantly upload the
information sensed by user’s devices to a cloud service that
is able to create virtual profiles and distribute context in-
formation, but this would imply a constant data flow, would
require a constant Internet connection from every device, and
would result in an increased response time due to the latency
added by the communication with the cloud [4]. In addition,
such an approach requires all of the communicating parties to
place their trust in a shared third party service provider. We
explore an alternative that mitigates these concerns by storing
the virtual context profiles in the users’ companion devices,
and providing services for allowing other devices to consume
that information by means of different sharing mechanisms
(device-to-device, opportunistic networks, etc.). An additional
access control layer is required to empower users to explicitly
control what and how other devices and users are authorized
to access the data. In the end, a full system will likely entail a
hybrid of both approaches, one that mixes cloud interactions
with opportunistic ones. In this paper, however, we isolate the
latter and focus only on enabling privacy-preserving device-
to-device context sharing.

In this paper, we present PADEC (Privacy-Aware DEvice



Communication), an architecture that allows companion
devices to create and provide context information so that other
devices can query that data to enable their applications to
adapt their behaviour to their users’ needs and surroundings.
This architecture includes elements to store this data in mobile
devices, offer this information to neighboring devices, commu-
nicate with other devices through different communications
mechanisms, and control the access to this data by using user-
set policies through a novel system based on contextual and
dynamic keys, keyholes and locks.

The remainder of this paper is structured as follows: Section
II presents the motivation behind the PADEC architecture.
Section III shows the high-level architecture of PADEC.
Section IV provides the details of an example communication
abstraction, while Section V describes our proposed access
control privacy layer in detail. Finally, Section VII concludes
the paper.

II. MOTIVATION AND BACKGROUND

Mobile Crowd Sensing (MCS) refers to the reliance on
personal device resources to support gathering information
about humans and their surroundings [5]. This information is
commonly used to create a collective intelligence to provide
services to the users based on the collected information.

In the following subsection, we present a running example
of an MCS and our motivations behind a privacy-aware
framework to provide personalized MCS services.

A. Running example
Imagine a smart city that provides an application to be used

by both residents and tourists. The app provides information
about restaurants and bars by collecting and sharing crowd-
sensed information. The app collects and stores users’ context
information, such as locations, activities (e.g., eating, walking,
working), presence of others (e.g., friends and family), etc. The
app can use this personal information to provide recommenda-
tions, nudges, or other services to the user based on the user’s
own contextual history [6].

Other users could benefit from the availability of this crowd-
sensed contextual information. For instance, a tourist visiting
the city could use the app to query nearby residents for a
restaurant recommendation. Also, the app can be used to query
other users’ devices (and their stored context information) to
find what is popular nearby, potentially with a day-specific
special or happy hour. Additional contextual information (e.g.,
the tourist’s food preferences, the size of the tourist’s dinner
party, or where the tourist ate lunch) could also be added to
the query to improve the results. Residents can also benefit
from being able to query the contextual information sensed
by other residents (or even visitors). For instance, individuals
could query for information about where their friends or family
members might prefer to get drinks on a Friday evening so
they can make a recommendation for a group outing.

B. Motivation
The presented running example requires a large amount of

contextual information from many different devices. To get

and process this information, one approach can be to offload
all of the context information to the cloud, an approach akin
to that of Google Cloud’s Places [7]. For instance, MCS
platforms such as PartcipAct [8] and Vita [9] gather the users’
contextual information using their smartphones and store it on
a server so that complex algorithms can be executed. However,
this style of approach requires users’ devices to constantly
stream information to a cloud server and enables the third
party owner of the cloud server to know and track the situation
of each individual.

When the crowd-sensed data is offloaded, the owner of the
data loses control over it. The third party becomes responsible
for protecting and sharing the data. In these situations, users
tend to eschew sharing their data with others. However,
research has shown that, while users might not be willing
to share their spatiotemporal data publicly, they are more
prone to share the information with others who are physically
nearby [10], [11].

An alternative approach is to on-load the contextual inform-
ation to the user’s device, keeping all stored mobile crowd-
sensed information persistent only on the device belonging to
the user. [6], [12], [13]. Once the information is on-loaded
to a user’s companion device, it can be shared opportunist-
ically with other users nearby. This approach comes with its
own set of challenges. First, because companion devices like
smartphones may be resource constrained in terms of battery,
computation, and storage, the device needs an intelligent
mechanism to constantly sense contextual information and
maintain an accurate yet lightweight representation of that con-
text. Second, each companion device needs to offer some kind
of interface to other devices so they can consume the stored
information on demand. Third, both devices need a common
communication medium.Finally, the shared information is still
sensitive and private, and the users should retain control over
what other nearby devices have access to.

The first challenge has been addressed by Paco [6], an on-
loading context storage mechanism that uses a companion
device’s location sensor and other on-board context sensors to
create a spatiotemporal context database stored entirely on the
user’s companion device. Paco leverages the spatiotemporal
tags associated with contextual information to determine how
novel a sensed data item is before storing it; spatiotemporally
reducing the memory footprint of the sensed context. Paco
exposes a query interface that allows applications to access
the contextual data at varying levels of abstraction, opening
the possibility of defining access rules for snapshots of a user’s
contextual data.

For the second challenge, i.e., offering interfaces to make
the contextual data available to other devices, APIGEND [14]
allows for easy code generation and deployment of Application
Programming Interfaces (APIs) in companion devices. These
APIs are composed of a series of endpoints that can be exposed
and called from other devices. These endpoints wrap some
business logic, which, for this work, will be the ability to
access some context data and return it to the device that called
the endpoint.



In this paper, we tackle the remaining two challenges:
unifying the communication medium and providing context-
sensitive approaches to controlling access to the stored contex-
tual data. For defining the communication mechanism, there
are a variety of protocols and platforms that can be use
for device-to-device communication. Classic request-response
protocols such as HTTP are not ideal in this situation due
to the highly dynamic an unpredictable nature of the op-
portunistic device-to-device environment. Simply put, request-
response protocols are host-based, and thus, one must know
the address (normally the IP address) of a device to perform a
request on it. This is not so simple when the device is mobile,
since these devices often have private IPs that are unreachable
from the outside.

There are a variety of opportunistic or publish-subscribe
protocols that can be used to solve these problems. In this
paper we focus on publish-subscribe protocols, but different
techniques can be used. This communication model is prom-
ising and privacy-preserving, since it is possible to use a
secure but distributed intermediate broker to mediate requests
and responses [15]. To be clear, this is different than a fully
centralized approach because the collaborating parties are
interacting directly with one another and can secure their
end-to-end communications. In the centralized approaches,
information is released in the clear to the third party to allow
the third party to perform data processing and analysis.

Within publish-subscribe communication models, Google’s
Firebase [16] is one popular approach. Another possible
approach is to use the open MQTT protocol [17], but it
requires setting up a dedicated broker rather than relying on
the central broker provided in Firebase. On the other hand, this
approach can reduce the reliance on the third party to mediate
communication. In this work, we explore allowing applications
to optionally use either of these publish-subscribe approaches.

The meat of this paper focuses on the final challenge:
addressing and protecting the privacy of users’ shared con-
textual information. The contextual information that must be
exposed to enable the application uses described above is
potentially highly sensitive. This information can be used
by malicious parties, for instance, to spy on the user [18].
This necessitates a privacy layer that provides user-tunable
access control for the contextual information. A wide variety
of access control models exist, one of the most interesting
being the NIST-standard Role-Based Access Control (RBAC)
[19]. Other works have extended RBAC to consider con-
text, such as Team-Based Access Control (TMAC) [20] or
Dynamic Sharing and Privacy-Aware RBAC (DySP-RBAC)
[21]. However, these models were designed for collaborative
working environments. Smart cities with decentralized device-
to-device communications demand new techniques that allow
access control to be dynamic and to consider the identity (and
context) of both the provider and the consumer of information.
In this work, we present a new access control model designed
for these environments: Dynamic Context and Identity-Based
Access Control (DCIBAC).

III. ARCHITECTURE OVERVIEW

In this section, we provide a high-level overview of the
complete PADEC architecture, before drilling into the details
of each of its constituent components. Figure 1 provides a
pictorial representation.

Figure 1. PADEC high-level architecture

In PADEC, a user’s companion device can collect, store, and
share contextual data. In addition, a context-aware application
executing on a companion device can request contextual data
from other nearby devices. In practice, devices will commonly
perform both tasks. For simplicity, Figure 1 distinguishes
these two roles; the device on the left is acting as a context
collector and provider, while the device on the right consumes
that context information via a remote connection. In PADEC,
a device can only consume information if it also provides
endpoints; this “sharing economy” style is PADEC’s approach
to incentivizing device participation. To describe the PADEC
architecture, we walk through each element in the figure,
starting at the bottom left of the figure and working up, to
the right, and then back down.

The first layer focuses on storing the contextual information
gathered by both internal and external sensors. In PADEC, we
implement this layer using the Paco contextual data storage
framework [6]. In Paco the gathered information is indexed
within a database based a spatiotemporal context stamp that
includes the coordinates and time at which the context in-
formation was collected. This spatiotemporal information is
associated with the relevant semantic information (e.g., re-
views, ratings, etc.) or data sensed by others sensors (e.g.,
temperature, noise, etc.). The key contribution of Paco is
reducing the size and complexity of the stored contextual
information so that it can be stored and queried entirely on the
companion device. For this purpose, Paco also provides an API
for issuing spatiotemporal queries for the stored information.

The second layer allows other devices to consume the
information stored by Paco (API in Figure 1). This layer



allows the deployment of OpenAPI-based APIs, to ensure that
the endpoints exposed to applications are properly defined
and documented so that remote applications can easily access
them. These endpoints serve as the gateway between external
devices and the local Paco data store. They serialize all of the
exchanged information and they provide a first line of defense
protecting the private spatiotemporal information stored within
the Paco data store. To reduce the effort required to implement
these APIs, we rely on the APIGEND tool [14]. This tool takes
as input the API specification and generates the skeleton of an
API for Android mobile devices and microcontrollers, so that
developers only have to implement the business logic to invoke
the query methods exposed in Paco’s interface. For the time
being, we simply expose the generic Paco interface, which
allows queries asking the probability of knowledge of the Paco
data store about a region, to retrieve the context data items
contributing to that knowledge, or to trace a trajectory of the
data owner through space and time. In the future, we could use
APIGEND to expose more application-specific endpoints to
further simplify the use of PADEC. For instance the endpoints
used for a smart traffic application might focus queries on
the density of cars on roadways, while endpoints for a smart
tourism application might expose thematic walking tours.

Without additional protections, the deployed endpoints can
be consumed by any PADEC-enabled connected device, which
can be a problem for the privacy of the stored data. The
next layer in the device on the left of Figure 1 implements
a dynamic and multi-dimensional access control system for
every endpoint (labeled “Privacy layer” in the figure). This
layer enables the definition of access control policies that
restricts a remote party’s access to the context information.
Access can be allowed at various levels of abstraction based
on whether the requester and the provider meet concrete
user-defined rules. These rules can define different contextual
situations that have to be satisfied for the information to be
shared. For instance, for our smart city example, a tourist
may only be able to access stored information about the best
restaurants if he is currently in the city. Furthermore, the level
of detail of the information provided may also be different
depending on different contextual situations. In our example,
a tourist might be able to uncover a part of town that is likely
to have many good restaurants rather than discovering exactly
which restaurants the context provider has frequented.

The very top of Figure 1 shows the layer that manages
the communication between the devices. In the current im-
plementation of PADEC, we support two different publish-
subscribe communication protocols (Firebase and MQTT) that
can be employed individually or in combination. As future
work, we plan to support other technologies such as direct
device-to-device communication or opportunistic networks. By
providing multiple options under the same umbrella, PADEC
makes it possible for different devices in different situations
to consume the provided information in the way most suited
for the situation. The required infrastructure for implementing
these protocols is also generated using the APIGEND tool.

In the following sections we will focus on the addressed

Figure 2. Communication Channel structure.

challenges: how the communication medium is unified and
the contextual access control policies are defined.

IV. COMMUNICATION MODEL

The communication layer at the top of Figure 1 mediates
information sharing among devices to allow the exposed APIs
to be consumed by other devices. The main responsibilities of
the communication layer are to support different communica-
tion protocols for invoking the endpoints and to provide a first
line of defense protecting the exchanged data.

In the current implementation of PADEC, the communic-
ation layer unifies diverse publish/subscribe protocols. Con-
cretely, PADEC currently supports MQTT and Firebase Cloud
Messaging. Communication through such protocols is com-
monly based on a central element, i.e., a “broker”, that
manages the entire communication. Devices can interact with
the broker by establishing topics that create communication
channels. With entities that publish information to a given
channel, and subscribers receiving that information.

These roles are used in PADEC to request or send inform-
ation by publishing in a channel and to receive the published
information by being subscribed to that channel. Different
channels are used to simulate the request-response commu-
nication pattern. To organize the communication among the
myriad different entities and to enable strict access control,
PADEC defines a topic structure that is automatically initial-
ized when a device connects to the broker or when the device
creates a new API endpoint or application component. This
structure is shown in Figure 2.

PADEC creates two types of topics: private and public. The
first time a device registers with the broker, a private channel
is created, dedicated to communication destined to that device.
Any device can publish in this channel, but only the registered
device (the “owner” of the topic) is subscribed to it and is
the only one that is notified of any published information.
This private channel can be useful for multiple purposes. For
instance, an endpoint provider can use its private channel
to receive the private messages required to exchange the



information used to determine access control of a requesting
device. Likewise, a device invoking an endpoint can use its
private channel to get the results of the invoked endpoint. More
generally, when any device knows the ID of another device
and wants to establish a device-to-device communication, it
can use this private channel for the communication exchange.
For devices not knowing the private channels, public channels
for each provided endpoint are also created.

PADEC automatically creates public channels when a new
API is deployed; the system creates a new topic for each
provided endpoint. These channels are open, and any device
can publish a message to them. In general, a message in one
of these channels indicates a desire to invoke the particular
endpoint. Only the device providing the endpoint is able to
subscribe to and consume messages published to the topic.
This provides one level of privacy for the devices invoking
the endpoints; only devices hosting the target API will be
able to see the request, preventing other devices from reading
the content of the device’s endpoint invocation. At the same
time, this architecture provides a form of spatial decoupling
in which the device wanting to invoke the endpoint does not
need to know the details of the hosting device, like its address
or location. These channels only support the invocation of
endpoints, any subsequent communication for exchanging the
intermediate messages or the requested data is maintained
through private topics with the aim of not leaking private data.
In addition to the decoupling that this provides, it also enables
PADEC to create more sophisticated endpoints out of the
aggregation of base endpoints to provide higher level services.
For example, to ascertain whether a specific bar or area of
the city is crowded, a requesting device can invoke a public
endpoint offering information about the target location. Any
device within this area willing to share crowd information can
provide the endpoint and be subscribed to the channel. Upon
receiving a notification of the published invocation, all of the
devices providing the endpoint will reply, and the requesting
device can aggregate the information to acquire a more robust
measure of crowd density.

In PADEC, we implement this same functionality with both
MQTT and Firebase Cloud Messaging. The former can be
deployed in networks without any external connectivity to the
Internet, while the latter relies on access to the Firebase cloud
servers. Currently, the broker deployment is out of the scope
of the paper. Nevertheless, for MQTT a hierarchical model can
be used in order to improve the scalability. In the next section,
we describe the PADEC privacy model defined to dynamically
control the access to the information.

V. PRIVACY MODEL

For PADEC’s privacy layer, we propose a new access
control model named Dynamic Context and Identity-Based
Access Control (DCIBAC) that is designed with decentralized
smart environments in mind, while inheriting some elements
from access control models such as RBAC [19] or DySP-
RBAC [21]. As its name implies, DCIBAC uses information
about the identities and context of coordinating parties to

determine whether access is granted. In PADEC, this means
that information is used about both the endpoint provider and
the requester to determine whether the invocation is allowed
and how the invocation result can be presented, e.g., in terms
of abstraction or granularity of the data returned. In contrast to
approaches for access control of data shared in a cloud-based
system, because PADEC performs access control locally, it
can compare a requester’s contextual information to the data
owner’s very private contextual information without requiring
the provider to release the personal data to the third party that
completes the access control decision.

In DCIBAC, pieces of information that need to be protected
are called objects, and the agents that either own or try to
access objects are entities. DCIBAC is based on putting locks
over objects, so only authorized entities can access them.
The entities who try to access objects are named requestors.
The authority controlling if some specific information can be
provided to the requestors is distributed and delegated to the
providers. In PADEC, the data is the contextual data kept in
a Paco data store, and the entities are the devices requesting
remote access to information stored in Paco.

DCIBAC’s locks are implemented via user-defined rules that
can impose conditions, mainly on the context or identity of
the owner of the object or on those of the requester. For
instance, a user may allow access to information about the
specific restaurant they are in at the moment to be accessed
only by their near family. A user may allow their boss to
access their position but only during working hours. These
conditions can be combined using logical or, and and not,
thus allowing for complex and rich conditions. For instance,
it is possible to allow friends to access information about the
restaurant the user is in only during Friday nights and there is
not a scheduled appointment in the user’s calendar for Friday
night. DCIBAC also allows locks to include conditions on
the intended use of the information, for instance the particular
application consuming the information. A user’s instantaneous
location data may not normally be released to a stranger’s
device, but it might be released to smart traffic app if there is
a nearby traffic accident.

To enable devices to request access to a protected object,
DCIBAC uses, as far as we know, a novel concept called
keyhole. Before requesting access to the object, the requester
must first get the keyhole of the object. This keyhole identifies
the information that the requester must send to open the lock
request access. For instance, if a lock allows access to friends
as long as they are nearby and their purpose is not marketing,
its keyhole would be the position of the requester, their
identity, and their purpose. This interaction does not reveal
the exact conditions of the lock, only the type of information
on which the decision is based. This message sent from the
requester with the needed information is termed a key.

Figure 3 summarizes the workflow that has to be followed in
order to validate an endpoint’s defined access control policies.

1) The requesting device invokes an endpoint publishing a
message in the associated topic.

2) The provider checks whether the endpoint is available in



Figure 3. Communication workflow.

the provider’s current context. For instance, a user may
disallow access to an endpoint that shares their recently
taken photographs while on an outing with their family.

3) If the endpoint can be consumed, the provider sends
to the requester the keyhole that specifies any needed
contextual information.

4) The requesting device acquires the contextual informa-
tion required by the keyhole using the device’s own local
data store, on board sensors, or by invoking a remote
third party service.

5) The requester packages the obtained information as
a key that can be used to attempt to open the lock
protecting the endpoint.

6) The endpoint provider executes the lock to check that the
provided information is sufficient to grant the requester
access to the protected endpoint. The provider invokes
the endpoint if the lock is successfully opened.

7) After invoking the endpoint, the provider publishes a
notification on the requester’s private channel with the
information requested, if access is allowed, or with a
rejection notice if not.

8) Finally, the requesting device processes the obtained
information.

Only the first message is published on a public channel, spe-
cifically the public channel associated with the target endpoint.
The subsequent messages use the devices’ private channels.
This process allows us to create and support a dynamic and
multidimensional privacy model able to provide or reject the
consumption of information depending on the context of both
the provider and the requester.

The final concept in DCIBAC is the definition of access
levels of a lock. In Paco, each request to retrieve information
from the Paco data store is made with a certain profile. This
profile determines the degree of spatiotemporal granularity
with which the request is allowed to view the contextual
data store and the maximum number of requests an individual

requester is allowed to make. These restrictions further protect
the privacy of the owner’s spatiotemporal information.

These profiles are mapped to access levels in DCIBAC
locks. A single lock has by default a single access level, but
it can also have many levels. These access levels are ordered,
with the first being the level that releases data from the Paco
data store with the least precision. Each level can have its
own conditions, meaning a lock with multiple levels may be
associated with each lock. Each level has a keyhole associated.

Since each access level can use different contextual in-
formation, it is possible that a single lock is associated with
multiple keyholes. When a lock exposes multiple keyholes, it
exposes some information about how its access decisions are
structured. While this can aid requesters in understanding the
conditions of access it also potentially exposes decision logic
of the endpoint owner. Navigating this trade-off is left flexible
for the endpoint owners to navigate.

When a user invokes an endpoint, all the keyholes associated
with the endpoint’s lock are sent to the requester together with
the precision of the information they will get. The requester
can analyze this precision in order to create the key for
the keyhole with the required precision. This also allows
the requester to leak, with the key, the minimal contextual
information to get the needed information.

As an example, consider a lock with two access levels: level
1 that provides abstract, granular information for unknown
nearby devices and level 2 that provides more detailed in-
formation for close family. Two different keyholes would be
created, one per access level. A keyhole for level 1 (position)
and another one for level 2 (position and identity). While this
makes sure the requester knows the information required to
open each level of the lock (meaning the requester is able
to protect its own private contextual information more), the
requester can also discern some of the logic relating to the
lock’s access control policies.

Figure 4 shows this example. In this example, DCIBAC
secures a single endpoint that gives access to the restaurants
visited by the user. To control access to this endpoint, the
user uses a lock with two access levels. Nearby strangers
can request access information about the restaurants that the
endpoint owner likes (level 1) and only nearby close family
members can access information about how often the endpoint
owner frequents particular restaurants. Two keyholes are cre-
ated,such that the keyhole for level 1 of the lock requires the
requester to provide position information, while the keyhole
for level two requires both position and identity. In the example
process depicted in Figure 4, the device of a tourist at the same
bus stop as the endpoint owner will try to access good places
to have a drink. To do so, the tourist’s device first publishes the
endpoint request to the endpoint’s public topic (1) and receives
a message generated by DCIBAC containing the keyholes of
the lock (2). When this response is received, the tourist’s
phone will decide which level it needs to get access to, will
collect its current position using its GPS sensor and place this
information in a message that will serve as the tourist’s key
(3). The key is then be sent to the secure endpoint (4) via the



Figure 4. DCIBAC example usage.

endpoint’s private topic. Once received, DCIBAC will check
if the key is valid according to the lock and access level. Since
the tourist is near the user and access level 1 was requested,
access is granted (5). The secured endpoint will then invoke
the necessary request on the endpoint’s Paco data store and
then send the information about the favourite restaurants of
the user to the tourist’s phone (6).

The permission to access an object in DCIBAC is dynam-
ically checked and granted during execution time. This means
that every time a requester wants to access some information,
it must send its key, and there is no guarantee that a key will
stay valid for any period of time, since the number of queries
might be restricted depending on the access level.

VI. DISCUSSION

Context-aware and MCS applications have proven useful
during the last few years to distribute sensing and computation
tasks in order to develop social and collaborative environments
at an affordable way. For instance, [22] presents a framework

to opportunistically offload computation in smart vehicles by
accounting for context information. This framework uses the
context of nearby vehicles, such as their speed or direction,
to determine the best candidate to execute some tasks. [23]
presents another framework that offloads data from social
networking services to mobile devices based on their social
context to maximize the quality of service of those services.
These are also commercial examples of social applications
that need contextual information from nearby users, such as
Facebook Safety-Check [24].

A common approach to develop these platforms is to offload
the data, or most of the data, to the cloud. This entails
added resource consumption and a significant potential loss
of privacy when the user’s private contextual data resides in
the Internet. These approaches also require a constant data
flow, which can be problematic when the user has a limited
mobile data plan. Such an approach also requires the user’s
device to be permanently connected to the Internet, which
may not be possible in rural areas or even in urban canyons.
This approach also relies on the third party infrastructure
provider for protection and storage of data, and this third
party provider is able to know and track every single device
using the application. These challenges motivate PADEC’s
approach to onloading computing and data storage, which in
turn enables device-to-device opportunistic provision of data
access endpoints.

However, even when the data is stored locally, the user’s
privacy can be at risk, since other devices could potentially
access that data if endpoints are not protected. To protect
this information from malicious parties, storing and sharing
contextual information is not enough, and an architecture that
also accounts for privacy is required.

PADEC addresses these concerns head-on by providing an
architecture that empowers users to store sensed contextual
information in their own devices and to define dynamic and
multidimensional access control policies that allow them to
indicate what information can be accessed, by whom, and
under what contextual circumstances.

This architecture also resolves other associated challenges,
such as making it easier for developers to build mobile crowd
sensing systems and applications that are especially complex
due to device-to-device communication. PADEC’s mechan-
isms for resolving these ancillary challenges comprise a series
of modules that abstract developers from the implementation
details on how to store information efficiently, how to expose
the stored information to other users, and how to implement
the communication workflow.

An open remaining challenge is to create methods to help
and guide users in the definition of privacy policies, making
the keyholes and locks that are fundamental to PADEC easier
to use and more robust. Ideally, application users will be
guided in establishing these rules in a clear, simple, and
accurate way. Further, users should also be given a clear image
of what information they are exposing or not depending on the
established rules.



VII. CONCLUSIONS

In this paper, we presented PADEC to simplify the con-
sumption of contextual information from other devices for
context-aware and Mobile Crowd Sensing systems, which are
important not only for the development of social applications,
but also in paradigms such as the Internet of Things, Web of
Things, or Human-in-the-Loop applications that require some
devices to collaborate and adapt their behaviour depending on
the context and the users’ needs.

PADEC on-loads spatiotemporally tagged contextual in-
formation to the owner’s device, and then enables this stored
data to be queried by other devices. PADEC relies on the Paco
framework for onloading the contextual data and APIGEND
to define flexible API endpoints that expose Paco interfaces
for remote queries. In this paper, we focused on providing
user-tunable protection of the exposed endpoints by defining
DCIBAC, a flexible access control mechanism that relies on
the users’ identities and context to determine whether access
is allowed and what level of granularity of spatiotemporal
information should be exposed. DCIBAC allows the definition
of access control policies that protect the privacy of both
coordinating parties.

Currently, we continue to work on evaluating the effect-
iveness of the PADEC architecture with respect to both the
consumption of resources needed for the companion devices
to on-load the computation and the communication load that
the defined medium presents. On the other hand, we are also
working on how to provide accurate information to users about
the information they are exposing and the risks that this entails
for their privacy. Finally, as future work, we will also define
incentives and policies in order to foster information sharing.
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