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Abstract. The increased pervasiveness of mobile devices like cell phones,
PDAs, and laptops draws attention to the need for coordination among
these networked devices. The very nature of the environment requires
devices to interact opportunistically when resources are available. Such
interactions occur unpredictably as device users have no advance knowl-
edge of others they will encounter. The openness of these environments
also requires users to protect themselves and their data from unwanted
interactions while maintaining desired, yet unscripted, coordination. As
the ubiquity of communicating mobile devices increases, the number of
applications supported by the network grows drastically and managing
access control is crucial to such systems. Application agents must directly
manipulate and examine access policies because these networks are often
decoupled from a fixed infrastructure, rendering reliance on centralized
servers for authentication and access policies impractical. In this paper,
we explore context-aware access control policies tailored to the needs of
agent coordination in open environments that exhibit mobility. We pro-
pose and evaluate novel constructs to support such policies, especially in
the presence of large numbers of highly dynamic application agents.

1 Introduction

Ubiquitous computing devices communicate wirelessly, opportunistically form-
ing ad hoc networks not connected to a wired infrastructure. These networks can
include a handful of devices or thousands of heterogeneous components, making
coordinating and mediating their competing needs a massive task. In such en-
vironments, distributed applications exchange information or coordinate tasks.
These applications are commonly structured as logical networks of mobile agents.
Mobile agents (or application agents) carry all or part of a particular applica-
tion’s behavior and are empowered with the ability to move through the network
of physically mobile devices. Much research focuses on developing middleware
to facilitate interactions among these highly dynamic application agents.

This paper focuses on systems that use tuple spaces for coordination, The
original Linda model [1] provides a centralized tuple space where application



agents exchange information using content-based matching of patterns against
data. Variations on this theme adapt it to the mobile environment where a cen-
tral repository is not feasible. The benefits of a tuple space model are twofold.
First, the tuple space affords a decoupled manner of communication, eliminat-
ing the need for a priori knowledge of the identities of communication partners.
This facilitates flexible coordination in open environments in which mobile agents
come and go without notice. Second, the model masks the complex communica-
tion details associated with handling frequent, unannounced disconnections that
characterize mobile networks. This allows novice programmers to create complex
applications in environments for which it is generally difficult to program.

Tuple space implementations have enjoyed much popularity not only within
the research community, but also in the commercial sector, where applications
have reached real-world deployed status. OptimalGrid [2] uses IBM’s TSpaces [3]
to coordinate parallel processes in large-scale computations. TSpaces also sup-
ports communication among devices in an automobile, among components of a
smart house, and in vending machine maintenance. JavaSpaces [4] supports the
Jini service infrastructure and has been deployed in many situations including
the integration of proprietary law enforcement databases to enhance information
availability and the creation of tourism networks linking potential travelers, air-
lines, and hotels. More recently, a number of mobile agent middleware systems
designed for ad hoc networks have begun to utilize tuple space based coordina-
tion including Lime [5], EgoSpaces [6], and MARS [7]. These systems address
tuple space coordination in highly dynamic environments.

In open and dynamic mobile systems, security concerns of three types arise:
protecting hosts from malicious agents, protecting agents from tampering hosts,
and securing data. Commonly referenced approaches [8] address the first two con-
cerns in mobile agent systems. Executing agents using “safe interpreters” [9–11]
provides a sandboxing effect that protects hosts from errant code. Proof-carrying
code [12] can verify an agent before it runs on a new host. D’Agents [10] uses
public-key cryptography to authenticate incoming agents. The more difficult
problem of protecting agents from tampering hosts comes in two forms: detect-
ing a malicious event and preventing the leakage of sensitive information. The
former can be accomplished by examining execution traces while encryption
schemes [13] have helped to preserve an agent’s secrecy. Finally, undetachable
threshold signatures [14] prevent hosts from tampering with an agent’s data.

Protecting data includes ensuring secrecy and controlling data access. Much
research in ad hoc networks has specifically addressed securing ad hoc routing
protocols. In addition, approaches like the Secure Message Transmission pro-
tocol [15] focus on protecting individual data transmissions. Even within the
coordination arena, researchers have devised encryption schemes for communi-
cation with coordination spaces. For example, SAMCat [16] and Yalta [17] use
encryption and authentication to securely transmit tuples into and out of a data
space. Our work focuses on the final issue: controlling access to data. A solution
to this problem is complicated by the fact that, in the mobile environment, dis-
connection from a wired infrastructure renders a centralized solution impossible.



In traditional access control solutions, a single administrator determines what
kind of access can be provided to particular subjects for certain objects. A com-
mon mechanism in wired networks uses access matrices to describe rights. The
rows of the matrix correspond to users and the columns to objects; a cell in the
matrix contains the access rights a user has on an object. This approach general-
izes several approaches, including access control lists and capability definitions.
In the mobile environment, the number of possible agents and the amount of data
available over the lifetime of the system make direct application of these solutions
impractical. The access control function introduced in this paper overcomes the
limitations imposed by mobile systems by operating over general descriptions of
interacting parties and dynamically adjusting to the changing context.

Section 2 introduces a general coordination model for mobile computing.
Section 3 describes our access control mechanism. Details of a particular imple-
mentation of this mechanism appear in Section 4 and applications showing its
use in Section 5. In Section 6, we discuss the construct’s expressive power and
overhead. Section 7 overviews related work, and conclusions appear in Section 8.

2 A Generalized Coordination Model

In this section, we capture the essential features of tuple space coordination
mechanisms in mobile agent systems. This generalization of coordination allows
us to focus our efforts on creating access control that is not tailored for use in a
specific system. The result is a generalization that spans the gamut from tuple
definition to sophisticated tuple space operations.

2.1 Linda Tuple Space Model

Linda enables coordination through the use of a centralized data repository.
Processes insert data by generating tuples in the repository and retrieve data
through content-based operations on the tuple space. In such an operation, the
requesting process specifies a pattern that the retrieved tuple must match. These
operations are synchronous in that they “block” the issuing process until a tuple
satisfies the operation. Adaptations of this model of coordination have proven
useful in mediating interactions among components that require decoupling in
both space and time, a characteristic of highly dynamic or mobile systems.

2.2 Computational Model

We assume a computing model in which devices (or hosts) can move in physical
space and applications are structured as a community of mobile agents that can
migrate among hosts. In our computing model, the agent is the unit of modular-
ity, execution, and mobility, while a host is a container for agents characterized
by, among other things, a location in physical space. We use the term agent to
refer to any stand-alone piece of software code capable of moving between con-
nected hosts. Communication among agents and agent migration can take place
whenever the hosts involved can physically communicate with each other.



2.3 The Tuple Space

Some mobile systems (e.g., MARS [7]) focus on logically mobile agents in a
network of physically stationary hosts, while other systems (e.g., Lime [5] and
EgoSpaces [6]) integrate physical and logical mobility. Each of these systems fa-
cilitates interactions among large numbers of application agents by using a tuple
space that other hosts or agents can access. Tuple spaces can be permanently
bound to hosts, to agents, or distributed among a combination of the two. The
distribution of the tuples is irrelevant with respect to access control; the key
aspect of the representation is how application agents access data. In this paper,
we assume a tuple space bound to each mobile agent. This choice is motivated
simply from a modeling perspective to simplify the discussion of and reasoning
about our access control policies. Using this model, we can simulate other ap-
proaches. For example, to simulate tuple spaces bound to a host, we permanently
associate an agent to each host and use its tuple space as the host’s tuple space.
On the other hand, to simulate access control policies bound to an individual
data item, we can create a new agent for the individual data item. The data
item’s access control is then controlled by the dedicated agent.

The control of each unit (agent, host, or event data item) over its own data
caters to the needs of mobile applications that must often operate autonomously
in order to handle the uncertainty of the environment. Agents or devices may
interact for a period of time, only to be disconnected and never meet again. Such
challenges render any centralized approach to data management infeasible.

2.4 Tuples and Patterns

We generalize a tuple to one in which each field is identified by a name. A
tuple is an unordered set of triples: 〈(name, type, value), . . .〉. For each field,
type is the data type of value. In a tuple, each field name must be unique. Users
access tuple spaces by matching patterns against tuples. A pattern has the form:
〈(name, type, constraint), . . .〉. A constraint provides requirements a field’s value
must match for the tuple’s field to match the pattern’s field. Specifically, the
matching function M is defined over a tuple θ and pattern p as:

M(θ, p) ≡ 〈∀c : c ∈ p :: 〈∃f : f ∈ θ ∧ f .name = c.name
∧ f .type instanceof c.type

:: c.constraint(f .value)〉〉. 3

M requires that, for every constraint in the pattern, there is a field in the tuple
with the same name, the same type (or a derived type), and a value that satisfies
the constraint. While the function requires that each constraint is satisfied, it
does not require that every field in the tuple is constrained, i.e., a tuple must
contain all the fields in the pattern but can contain additional fields.
3 In the notation 〈op quantified vars :range ::exp〉, the variables from quantified vars

take on all values permitted by range. Each instantiation of the variables is sub-
stituted in exp, producing a multiset of values to which op is applied, yielding the
value of the three-part expression. If no instantiation of the variables satisfies range,
the value of the expression is the identity element for op, e.g., true when op is ∀.



2.5 Basic Operations

Next, we classify the available operations, regardless of the tuple space structure.
These operations fall into two categories: tuple generation and tuple retrieval.
The former create new data items that agents can share for coordination pur-
poses, while the latter allow agents to access available data items.

Tuple Generation. Agents create tuples using out operations: out(T , t),
where T is a tuple space with a particular name located at a particular agent,
and t is a tuple placed in T . In EgoSpaces, an out places the tuple in a local
tuple space controlled by the generating agent. In Lime an out can place a tuple
in any tuple space owned by any agent on a connected host. In MARS the tuple
is created in the local host’s tuple space. For the purposes of access control,
understanding tuple generation is important if agents can create tuples in other
agents’ tuple spaces. In these cases, the agent responsible for the target tuple
space often desires the ability to express restrictions on the types of data that
can be inserted or on which other agents can generate that data.

Tuple Retrieval. To read and remove tuples, agents use rd and in oper-
ations respectively, which assume three forms: blocking, atomic probing, and
scattered probing. The blocking form, rd(T , p), returns a tuple matching the
pattern p from the tuple space T . The tuple space can be either local to the
agent or controlled by another agent. Atomic probing operations, rdp and inp,
guarantee, if a matching tuple exists, it is returned, but they can return ε if no
match exists. Like the blocking operations, they are atomic with respect to the
tuple space on which they are issued; in some cases in the mobile environment,
guaranteeing this atomicity can be expensive. Scattered probing operations, rdsp
and insp offer weaker guarantees. While these access operations entail only sin-
gle tuples, many extensions allow simultaneous access to groups of tuples. These
operations come in all three forms described above and are referred to as group
operations, e.g., rdg refers to a blocking operation that returns all matching tu-
ples from the tuple space. Access control for tuple retrieval operations is more
obvious and natural than for the former tuple generation operations. The agent
in control of the data items may desire some data to be read only, visible only
to certain parties, or mutable only under certain conditions.

Different models present tuple space operations to the user in different ways.
In Lime, agents operate over a federation of connected tuple spaces, while in
EgoSpaces, agents operate over projections, called views, of all available data.
These complex interactions can be reduced to the operations described above.
We next investigate providing access control mechanisms for systems whose in-
teractions can be expressed using this generalized tuple space model.

3 Access Control Function

Given the coordination model described previously, an agent assumes respon-
sibility for mediating access to its data. The ability to control access in this
manner is fundamental because it allows the access policies to reflect an agent’s



instantaneous needs. This is especially important in the highly dynamic mobile
environment where mobile agents want to constantly adjust their behavior to
adapt to a changing context that can include communicating with unpredictable
parties. To achieve flexible access control in this environment, each agent speci-
fies an individualized access control function.

We allow an agent to restrict which other agents access its data and the man-
ner in which the access occurs. To accomplish the former, a requesting agent must
provide credentials identifying itself. To accomplish the latter, the access con-
trol function accounts for the operation being performed. In the end, each agent
defines a single access control function that takes as parameters a tuple, a set of
credentials identifying the requesting agent, the operation being performed, the
pattern used in the operation, and the owning agent’s profile (defined next). This
function returns a boolean indicating whether the requested access is allowed.

3.1 Profiles

We introduce a profile to maintain properties of each agent, which we represent
as a tuple. Particular applications or coordination systems may require specific
attributes in this profile. In general, we assume a profile contains at least a
unique host id identifying the agent’s host and a unique agent id.

3.2 Parameters

An access control function takes five parameters: the credentials, operation, tu-
ple, pattern, and the owner’s profile. We limit ourselves to these parameters
because they capture the aspects of the coordination model we outlined previ-
ously. One could envision the inclusion of additional parameters that measure
behaviors over the lifetime of the system, e.g., an access decision could be made
based on the history of operations on a particular data item. We choose not to
include those at this time because we feel the required bookkeeping overhead is
not met by a demand from potential applications.

Credentials. Credentials allow an agent to convey information about itself.
In simple cases, they can be a standard set of attributes, e.g., the agent’s id or
a third-party authentication. When an agent has a priori knowledge of the ac-
cess requirements, credentials can be more complicated, e.g., a password. When
constructing credentials, an agent may desire not to give away too much infor-
mation, e.g., if the agent has multiple passwords, it should send only the correct
one. However, this is not required in our access control mechanism because an
agent’s credentials are not directly exposed to other agents. These expressive
credentials are especially beneficial in open and dynamic mobile environments,
where it is often not possible to know a priori which agents can access restricted
information. Instead, agents must prove they have required privileges. Agents
select their credentials from the union of the host profile and the agent pro-
file. The credentials are then presented as a tuple of attributes, which allows
an access control function to use pattern matching to evaluate credentials. The
credentials and their transmission with the operation are assumed to be private.



This security is outside the scope of this paper but could be accomplished using
cryptography schemes already under development.

Operation. The access control function can also account for the operation
requested. Often, some data should be restricted to read-only access, yet current
systems do not inherently allow this restriction. Considering the operation when
determining access allows a dynamic application to permit one set of operations
for some agents, but different operations for others.

Requested Tuple. The access control function can operate over the tuple
to be returned from an operation. Pattern-matching allows this portion of the
access control function to be easily defined while remaining flexible.

Pattern. A powerful component of the access control function is its ability
to account for the pattern used in the content-based operation. The pattern
provides information about an application’s prior knowledge of the data. The
owning agent may allow access only to agents that know the “correct” way to
access the data (e.g., providing a wild card pattern that matches any tuple may
not be acceptable). Some knowledge of the structure of the requested tuple might
indicate that the requesting agent shares common application goals.

Owner’s Profile. The access control function also considers the owner’s
current state. Because the access policy is determined dynamically, access can
be granted based on context information. In some cases, data may never be sent
wirelessly between devices unless they are within a secure physical environment
where eavesdropping is known to be impossible.

3.3 The Access Control Function Defined

Formally, the access control function can be represented as: ACF : T × C ×
O × P × Π → {0, 1}, where T is the universe of tuples, C is the universe of
credentials, O is the finite set of operations, P is the universe of patterns, and
Π is the universe of profiles. The access control function (ACF) maps the values
of the parameters to a boolean indicating the access decision. The function can
also be represented as: access = ACF(credentialsr, op, tuple, pattern, profileo); r
is the requesting agent and o is the tuple’s owner.

We discuss the expressive power of this construct later. For now we consider
what it cannot easily represent. Access decisions cannot be based on properties
of the requesting agent not included in its credentials. Therefore the requesting
agent must carefully construct the credentials it sends with each request. The
access decision cannot rely on arbitrary environmental properties, e.g., an agent
cannot base a decision on the number of copies of a tuple. The access control
function lends itself well to mobile environments because it allows adaptive poli-
cies. Access decisions are transparent to requesting agents; if access is denied, a
requester does not even know that the matching tuple existed.

4 A Sample Implementation

The access control model is intentionally not presented in the context of any par-
ticular system. Instead, we have argued that it can be integrated with many tuple



space based coordination systems matching the form described in Section 2. As
a demonstration of the feasibility and mechanics of such an integration, we have
added this access control mechanism to a particular coordination middleware,
EgoSpaces. We expect that, while some of the challenges we encountered are
unique, other lessons learned will apply across coordination models.

In this section, we first highlight the novel features of EgoSpaces that make
it amenable to coordination in ad hoc networks. This discussion also provides
the information necessary to understand the integration of our access control
mechanism. We complete this section with a technical description of the imple-
mentation of the access control mechanism within EgoSpaces. The description
of the EgoSpaces model and middleware is intentionally brief. The interested
reader can find a more careful evaluation of the model and its associated re-
search concerns in the literature [6].

4.1 EgoSpaces Overview

EgoSpaces addresses the needs of agents in large-scale heterogeneous environ-
ments. An agent operates over a context that can include, in principle, all data
in an entire ad hoc network. EgoSpaces’ unique model of coordination, however,
structures data in terms of views, or projections of the maximal set of data. Each
agent defines its own views; these individual views abstract the dynamic envi-
ronment by constraining properties of the network, hosts, agents, and data. To
further reduce programming costs, EgoSpaces transparently maintains views;
as hosts and agents move, a view’s content automatically reflects the context
changes without the agent’s explicit intervention.

Practically, an agent defines its view as a set of constraints over the net-
work, hosts, agents, and data. Within EgoSpaces each view is managed by an
EgoManager. Each host is associated with a single EgoManager, and all the agents
residing on a host register with the EgoManager before coordinating with other
agents. When registering, an agent’s local tuple space contents become the re-
sponsibility of the EgoManager, who mediates communication between connected
agents. The application agents implicitly use the EgoManager to define and in-
teract with their views, which can require the EgoManager to interact with other
EgoManagers (and, by association, other agents) on remote hosts. An agent issues
content-based retrieval operations on its views. These operations are actually ser-
viced by the EgoManager with which the agent is registered. The EgoManager
uses the pattern provided to select tuples that match the operation request and
evaluates each tuple individually to determine whether or not the tuple satisfies
the view and is a viable candidate for return to the requesting agent.

4.2 Integrating Access Controls with EgoSpaces

EgoSpaces employs the agent-specified access control function on a per-view
basis. When an agent defines a view, it attaches a set of credentials and a list
of operations it intends to perform on the view. The EgoSpaces middleware can
then use each contributing agent’s access control function to determine which



tuples belong in the view. In the end, the view contains only the tuples that
qualify via their owning agent’s access control function.

In providing access controls in EgoSpaces, we use credentials and access con-
trol functions along with the content-based retrieval and pattern matching mech-
anism already present in the system. Upon integrating the access control func-
tion, a set of credentials is now included as part of the view definition. These
credentials are simply properties that convey information about the agent. The
agent can alter its credentials at any time. To restrict other agents’ perspectives
according to their respective credentials, each agent also provides a dynamically
modifiable access control function. A requesting agent’s credentials are compared
to the access control function of agents who contribute data to the view to re-
strict the tuples available in the view. With the access control functions in place,
to evaluate a tuple for return to a requested operation an EgoManager extracts
information about the agent (properties of the host the agent resides on, prop-
erties of the agent, and the agent’s access control function) providing the tuple
and compares this information with the constraints defined in the requesting
agent’s view, including the credentials. The latter is the key to the access control
function’s integration into the EgoSpaces middleware. If the tuple satisfies the
view’s constraints and the requesting agent’s credentials satisfy the tuple owner’s
access control function, then the requested operation can be performed.

An important aspect of the integration of the access control mechanism de-
scribed in Section 3 into EgoSpaces revolved around the fact that it relies on the
mechanisms inherent to tuple space based systems. Tuples are used to describe
credentials, and access control functions can be described by a set of access poli-
cies defined as patterns, or templates, over tuples. Implementing credentials and
access control functions in this way provides a number of benefits. First, the
pattern matching mechanisms already provided by the tuple space system can
be used to check the credentials against an access control function. Second, we
allow the programmer to construct credentials and access control functions in a
way that he is already familiar with. Third, using tuples and templates allows
for flexibility and adaptation, since adding and removing fields from tuples and
patterns is relatively simple. Finally, the use of tuples and patterns allows for
expressive access control functions and credentials since access control may be
expressed according to any property of the interacting agents.

The EgoSpaces system requires certain assumptions about its operating en-
vironment to provide atomic consistency guarantees regarding the performance
of its operations on views. More details on these assumptions and dealing with
environments where they do not hold can be found in [6]. Because the added
access control provisions involve only local decisions at each contributing host,
they have no negative impact on view consistency.

5 Programming with Access Control Mechanisms

In this section we demonstrate the use of access controls within the framework of
the EgoSpaces coordination system. We first describe the programming interface



for using the access control function within EgoSpaces. We then describe two
specific applications that use the described interfaces. We selected examples
that apply in differing application domains to give a sense of the access control
mechanism’s flexibility. We do not give extensive details of the coordination
mechanics specific to the EgoSpaces middleware but instead focus on the access
control aspects of the two applications.

5.1 The Access Control API

Figure 1 shows the public API for defining and using credentials. As discussed
in the previous section, an agent defines credentials that it sends with its view
definition in EgoSpaces (or simple operations in other coordination systems) to
identify itself to the other party. The first method in the Credentials interface,
selectProperty, allows the agent to select a property from either the agent’s
own profile or its host profile to include in the credentials. The second method,
dropProperty, allows an agent to remove a property from its credentials.

selectProperty(String profileType, String propertyName)
– select a property (identified by the propertyName) from either the host or

agent profile (identified by profileType) to include in the credentials
dropProperty(String propertyName)

– drop the property identified by propertyName from the credentials

Fig. 1. The Credentials API Within the EgoSpaces Middleware

An agent who provides data defines an access control function to protect
itself and its data. Each access control function is composed of one or more
access control policies. The API for this component appears in Figure 2. The
API contains three mechanisms to add a constraint to the access control policy.
The first allows an agent to add a constraint that requires the credentials to
contain a field with a certain name but no specific value. The second mechanism
allows the agent to add a constraint that uses a built-in function (e.g., “=”) to
constrain the value of a named property in the credentials. The third and final
mechanism allows the application agent to define a tailored constraint function
that restricts the value of the named property in the credentials. This API also
shows the method an agent uses to restrict the operations that can be performed
on the coordination space. The final method evaluates the provided credentials
to determine whether they match the constraints of this policy.

We provide the access control function as a disjunction of access control
policies to allow more expressive functions. We require the combination of the
credentials and the specific operation to satisfy at least one of the policies within
the access control function. Figure 3 shows how agents assemble access control
policies into a single access control function through an add method and a re-
move method. The matches method determines whether the credentials and
the operation satisfy at least one of the access control policies.



addConstraint(String property)
– add a constraint that requires the existence of field with the given name

addConstraint(String property, String function, Serializable value)
– add a constraint that requires the named field to satisfy the given function

and value
addConstraint(String property, ConstraintFunction cf)

– add a constraint that requires the named field to satisfy the given
application-defined constraint function

addPermittedOperation(String operation)
– add the specified operation or operations to the list of those allowed

matches(Credentials)
– determines whether the provided credentials match this policy

Fig. 2. The AccessControlPolicy API Within the EgoSpaces Middleware

addPolicy(AccessControlPolicy acp)
– add the specified policy to the agent’s access control function

removePolicy(AccessControlPolicy acp)
– remove the specified policy from the agent’s access control function

matches(Credentials cred)
– determines whether or not the provided credentials match the policies

contained within this access control function

Fig. 3. The AccessControlFunction API Within the EgoSpaces Middleware

5.2 A Music Sharing Application

A music sharing application for mobile users implemented on top of EgoSpaces
serves as one vehicle for testing the access control implementation. The appli-
cation provides users with access to a music service with sharing, search, and
down-load capabilities. To determine what music a user sees, the user provides
properties that define the music sharing application’s view. This includes a net-
work constraint that includes only data residing on hosts within a certain num-
ber of network hops, a host constraint that requires the data to reside on hosts
which are traveling in the same direction as the user, and a data constraint that
restricts the returned items according to a file size limit. A screen shot of the
resulting application is shown in Figure 4.

The data is also restricted according to the credentials provided by the agent,
which includes a unique agent id and a known phrase encrypted with a shared
password provided in the user’s official registration from the music service. This
password encrypted phrase authenticates the user as a subscriber. This phrase
is provided as a product key when the user retrieves (purchases) the applica-
tion from a reputable source (vendor). Since users share music only with others
subscribed to the service, the agent also provides an access control policy which
specifies that a requesting agent must have an agent id and must have the correct
phrase encrypted with the subscription password. Successful decryption of the



Fig. 4. The subscription music service

phrase by the receiving agent implies that the requesting agent holds the correct
password. The code to define the credentials within the application is:

Credentials c = new Credentials();

c.selectProperty(AGENTPROFILE, ‘‘Passphrase’’);

First, the agent creates a credentials object. It then selects the passphrase prop-
erty from the agent’s profile that was handed out when the code was installed.

To build the access control policy, the agent defines the policy and adds it
to the access control function:

AccessControlPolicy policy = new AccessControlPolicy();

policy.addConstraint(‘‘Passphrase’’, ‘‘=’’, encryptedPhrase);

policy.addPermittedOperation(Operations.ALLRDS);

acf.addPolicy(policy);

In this code, the agent first creates a new policy. It then adds the single constraint
that requires the passphrase to be equivalent to this agent’s known encrypted
phrase. It then adds to the permitted operations all read operations, preventing
any admitted agents from removing any of the agent’s own music files. Finally,
the agent adds the defined policy to the access control function.

This music sharing application requires an initialization which can be ar-
guably termed centralized. As indicated above, it can be equated with receiving



the software with a subscription, from a reputable source which provides the
appropriate product key. After installing the music sharing software, users share
music in a completely decentralized fashion, making autonomous decisions with
no reliance on the availability of a centralized authority.

5.3 Administrative Domains

Many applications restrict agent operations to administrative domains. Assume
nested domains defined as a university, a department, and a research group.
To provide security guarantees, applications limit access to certain data to only
computers on the university’s network. Still other data ought to be restricted to
departmental computers or to research group computers. A user in the research
group, working on a mobile computer, wants to use a software license of which
the research group has n copies. The licenses are stored as tuples in a tuple
space. Each computer in the group carries a tuple space; the available licenses
are initially distributed in some random fashion. A user can take a license if it is
not in use and the user holding the license is within communication range. The
agents controlling the licenses restrict access to only group members who have
departmental authentication (retrieved a priori), and are running on computers
in the university domain. To retrieve a license, a user provides these three prop-
erties as credentials and attempts to perform an in operation for a license from
a connected tuple space. If successful, the number of available licenses decreases
by one. When the user finishes using the software, the agent replaces the license
in its local tuple space.

To define the credentials in this application, an agent requesting a license
uses the following code:

Credentials c = new Credentials();

c.selectProperty(HOSTPROFILE, ‘‘University’’);

c.selectProperty(HOSTPROFILE, ‘‘Department’’);

c.selectProperty(HOSTPROFILE, ‘‘Group’’);

The agent creates an empty credentials object and then selects three properties
from the host’s profile to add to the credentials: the university, the department,
and the group. These three characteristics will be used to determine whether the
agent has the right to access the license it requests.

Agents responsible for the licenses protect them by using access control func-
tions that restrict access based on the administrative domains outlined above.
This access control function is defined using the following code:

AccessControlPolicy policy = new AccessControlPolicy();

policy.addConstraint(‘‘University’’, ‘‘=’’, ‘‘WUSTL’’)

.addConstraint(‘‘Department’’, ‘‘=’’, ‘‘CSE’’)

.addConstraint(‘‘Group’’, ‘‘=’’, ‘‘mobi’’);

policy.addPermittedOperation(Operation.SINGLES);

acf.addPolicy(policy);

After creating a new policy, the agent adds three constraints to it that restrict
the university, department, and group to the correct set of users. The agent



permits all single operations (that interact with only a single license at a time).
Finally, the policy is added to the access control function.

As these two examples demonstrate, the developer burden for adding access
control to the application is minimized and builds on the notion of tuples and
tuple spaces to ease the learning curve for the application programmer.

6 Discussion

The access control function provides a flexible mechanism for specification of
dynamic and adaptive privileges in mobile systems. Next, we take a deeper look
at two aspects of the access control function: expressiveness and overhead.

6.1 Expressiveness

While its expressiveness makes the access control function flexible and useful in
coordination among constantly changing mobile agents, this flexibility comes at
some cost. On one hand, because credentials can encode arbitrary information
about an agent, particular applications can adapt credentials to their needs. In
addition, because the access control function takes a number of parameters, an
agent can dynamically adjust its policies. However, while complex policies are
possible, constructing the function (from the developer’s perspective) can be-
come difficult as policies become more complex. Fortunately, because the design
employs the use of pattern matching, much of this complexity can be hidden by
the infrastructure.

6.2 Overhead

The addition of the access control mechanism introduces some amount of pro-
gramming overhead, but this overhead is difficult to quantify without a case
study involving users implementing actual access control policies. While this is
a useful future task, it is outside the scope of this paper. Instead we focus on
the overhead due to the additional communication and computation needed to
provide the access control function described previously.

Additional Communication. The key aspect of the communication over-
head is the amount of data (in bits) that must be sent. Before adding the access
control mechanism, the number of bits required to send an operation request is:
b = |op| + |pattern| + |agent idr|, where |op| is the number of bits required to
identify the operation; |pattern| is the number of bits required to represent the
pattern, which depends on the number of fields in the pattern; |agent id | is the
number of bits required to identify the requesting agent so the response can be
returned. It is likely that the pattern, which encodes the content-based nature of
the request, dominates this expression, as the op and agent idr are simple data
types with small, constant lengths.

We can write a similar term to express the number of bits needed to be sent
when using the access control function. This includes only the addition of the



number of bits necessary to encode the credentials: bacf = |op| + |pattern| +
|agent idr|+ |credentialsr|.

Credentials are a tuple. Because tuples are similar to patterns, the number of
bits required to represent the credentials is likely near the number of bits needed
to represent a pattern. If so, the overhead of using access control is approximately
2. An application can directly control the amount of overhead it incurs because
it determines what credentials to send with each request. In this respect, the use
of application intuition to reduce the credentials transmitted to exactly those
required reduces the communication overhead.

Additional Computation. Because the function can contain arbitrary
code, its computational overhead lies in the hands of the application program-
mer. From the programmer’s perspective, the operating conditions of the applica-
tion must be a primary concern. If so desired, a system can include a mechanism
to prevent undesirable access control functions by bounding the time they are
allowed to run or by imposing restrictions on their capabilities. In most cases,
however, the additional computation required is minimal since the access func-
tion may be limited to a pattern matching function.

7 Related Work

As discussed previously, the use of an access matrix does not directly lend itself to
mobile systems. In one example of attempting to apply such a method, TuCSoN
agents [18] are assigned capabilities defining tuple space operations for particular
patterns in a certain tuple space. An access control list for the tuple space stores
these capabilities. This approach requires that all coordinating parties are known
in advance and that a centralized party can determine access policies statically.

Other systems use encryption for access control. In SecOS [19],, tuples are
unordered sequences of individually encrypted fields, and, to match an encrypted
field, a pattern must contain a correct key. Other work [20] associates keys with
tuple spaces, and an agent must provide the key to access the tuple space. While
both of these models provide access control mechanisms, they require secure key
distribution and management, which affects the scalability of the system.

Law Governed Interaction (LGI) [21] provides an expressive approach to ac-
cess control in which agents must adhere to a law that imposes context-sensitive
constraints on the execution of tuple space operations. A law dictates actions an
agent performs in response to tuple space operations. Programming applications
in LGI requires programming specific actions in the access control policy and
adding a controller to mediate tuple space requests. In contrast, in our model,
programming takes place in the coordination model, and the agent’s requested
operation is checked with the access control function. One aspect of LGI that
separates it from the access control mechanism described in this paper is that it
allows access rules to be imposed from outside the individual agents. We do not
consider such cases in our work because it departs from our view that agents
should be as autonomous as possible.



The Smart Messages system [22] structures a mobile computing system in
much the same way as discussed in this paper. Using Smart Messages, however,
the coordination in the system occurs through the logical migration of Smart
Messages. In this system, access control takes the form of admission control
in determining when to allow migrating Smart Messages to execute on a new
host. The admission managers responsible for this task use information about
the resource needs of an arriving Smart Message as they relate to the available
resources on the node. The access control mechanism described in this paper can
account for more varied information than resource availability by using creden-
tials describing the application agent and using the data items themselves when
making access decisions.

Work targeted directly to ad hoc networks [23] begins to address the need
for credential verification among interacting parties using X.509 certificates. This
work focuses on adapting the chain of verification for certificates to function in
an ad hoc network by using assertions generated by peers in the ad hoc network.
The disadvantage of applying this type of solution in the environments we have
described is that it requires some a priori knowledge shared among the peers
in the ad hoc network in order to be able to verify the credentials of other
participants. Key pre-distribution schemes targeted to sensor networks [24] have
worked without a centralized server to establish pairwise secure communications.
These approaches generally focus on maximizing the total security of the system
to successfully handle more “compromised” nodes. These schemes focus simply
on providing the ability to encrypt data and do not address the need to restrict
access to certain data items based on contextual properties.

Additional work on authentication protocols in ad hoc networks [25, 26] fo-
cuses on securing communications among parties in ad hoc networks. These
protocols tend to attempt to validate the identity of a communicating party.
Our work instead focuses on the data sharing aspects and assumes that agents
do not necessarily care about the exact identity of a coordinating partner, but
about properties of the partner. This style of access control is more in line with
our target environment since we assume that an application does not have a
priori knowledge of the other agents or data it will interact with. The flexible
nature of the access control mechanism described in this paper allows agents to
base access decisions on abstract properties and the content of data, enabling
more expressive access rules.

8 Conclusion

In today’s emerging mobile systems, applications find themselves structured as
networks of mobile agents that must interact to achieve the users’ goals. As mo-
bile devices become increasingly prevalent and more users join mobile networks,
the complexity of mediating interactions among agents multiplies. A significant
roadblock to the widespread deployment of many mobile applications lies in
the inability to secure interactions in this open environment where encounters
with others are necessarily opportunistic and unpredictable. The work presented



in this paper examined one aspect of this need by introducing a mechanism
for agents to control access to data. This mechanism, in the form of an agent-
tunable function, allows autonomously operating agents to share data with other
connected agents, given some restrictions. Each agent makes individual access
decisions for the data item it “owns” based on numerous properties including
properties of the environment, of the agent’s state, of the requesting agent, and
even properties of the data item itself. By placing control in the hands of indi-
vidual agents, we have eliminated the need for a centralized authority to make
access decisions and thus created an access mechanism that functions in ad hoc
networks where the coordinating parties are not known in advance. Because each
access control decision is independent and made in a decentralized manner, the
access control function naturally scales to networks of high numbers of mobile
agents. Because we started with a foundational model of coordination, the re-
sulting mechanism addresses the access control needs within mobile coordination
models. In particular, the construct provides increased scalability and decoupling
when compared with previous constructs without sacrificing flexibility and ex-
pressiveness.
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