
Vol.:(0123456789)1 3

CCF Transactions on Pervasive Computing and Interaction 
https://doi.org/10.1007/s42486-019-00005-2

REGULAR PAPER

Pervasive computing middleware: current trends and emerging 
challenges

Christian Becker1  · Christine Julien2 · Philippe Lalanda3 · Franco Zambonelli4

Received: 3 October 2018 / Accepted: 27 January 2019 
© China Computer Federation (CCF) 2019

Abstract
Driven by the increasing diffusion of embedded sensors and actuators, and more in general by “Internet of Things” (IoT) 
devices, pervasive computing is becoming a reality. Yet, most actual implementations of pervasive computing environments 
rely on rather centralized architectures and on middleware solutions that integrate only the minimal set of services to enable 
interoperabilty and data integration. In this article, after having overviewed the state of the art in the area of pervasive 
computing middleware, we discuss the many challenges that still have to be faced for pervasive computing middleware to 
be able to support elastic, easy to configure, easy to develop, safe, and ethically acceptable, pervasive computing services 
and applications.
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1 Introduction

Pervasive computing, as common in “Internet of Things” 
scenarios (Atzori et al. 2010), promotes the integration of 
connected electronic devices in our living spaces in order to 
assist us in our daily activities, be they professional or pri-
vate. These pervasive devices can be blended in the environ-
ment, integrated in smartphones or into everyday objects and 
appliances, or even woven into clothing. They are mobile or 
static, can take multiple forms, and pick up a wide variety 
of signals from the environment. Pervasive devices collect 
contextual information, run local computation, and, in some 
cases, directly act upon the environment. This allows the 

implementation of simple, reactive services like opening 
an emergency door when a triggering condition is detected. 
Pervasive devices are also enhanced with networking capa-
bilities so that they can communicate with each other or 
with more powerful computing elements, located in close 
proximity (i.e., in the “fog” Bonomi et al. 2012), or more 
distant (i.e., in the “cloud”). An elastic use of a mixture of 
device-to-device, fog, and cloud coordination is necessary 
to implement more complex services that integrate multiple 
data sources, must be responsive at human time scales, but 
may demand significant computing and memory capacities.

In the realm of pervasive computing and the Internet of 
Things, much progress has been made since initial research 
challenges were posited (Atzori et al. 2010), and challenges 
more specific to the convergence of the cyber and the physi-
cal of pervasive computing have been enumerated (Conti 
et al. 2012). However, given the many bold visions of per-
vasive computing applications, the services available today 
to end users are still quite limited in terms of performance, 
cost, security, adaptivity, and even basic functionality.

In this paper, we motivate a simple yet bold claim: while 
much research has made it possible to connect pervasive 
computing elements and let them interoperate to provide 
simple services, we still lack facilities to dynamically com-
bine elements and allow them to adaptively coordinate to 
provide more flexible (and more useful) services, while also 
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dynamically accounting for the needs of the human inhabit-
ants of pervasive computing environments.

Indeed, many protocols exist to address the com-
munication element of transmitting data from device to 
device (Asadi et al. 2014; Bello and Zeadally 2014; Cho 
and Julien 2016; Choi and Han 2015), from a device to the 
fog (Bonomi et al. 2012; Golrezaei et al. 2012; Satyanaray-
anan et al. 2009; Verbelen et al. 2012), or from a device 
to the cloud. Similarly, protocols exist for discovering the 
available resources surrounding a user in a pervasive com-
puting environment (Amadeo et al. 2014; Gu et al. 2005; 
Guo et al. 2013; Jenson et al. 2014; Lin et al. 2014; Liu et al. 
2014; Mayer et al. 2014; Quevedo et al. 2016; Wehner et al. 
2014), and for combining them according to some static 
service composition patterns (Escoffier et al. 2007; Wehner 
et al. 2014). However, creating larger more general-purpose 
solutions out of these connected elements still founders in 
the face of complexity, dynamism, and the need to adapt to 
physical and social contexts.

Yet it is exactly such combinations that will fulfill the 
broader vision of pervasive computing. What are now small 
devices capable of simply sending sensor streams to a cloud 
database or receiving simple actuation commands will soon 
become highly intelligent and integrated embedded systems 
capable of autonomous decisions and able to “speak” to one 
another at a high level. They will “argue” and “arbitrate” 
myriad situations while negotiating how to cooperatively 
(or competitively) achieve their goals (on behalf of their 
human users) (Lippi et al. 2018). In this context, users will 
not simply “invoke” services by pushing some button or 
by launching some app that will trigger a composition of 
devices’ functionalities according to some static design pat-
tern. Rather, users will be able to dialogue with devices and 
smart environments and will be able to dynamically direct 
the coordination of such devices in order to satisfy needs. 
Pervasive computing devices and applications, by their side, 
will be able to make a better use of the available computing 
facilities, by dynamically re-arranging their configuration 
(such as the way code is distributed over devices, edge com-
puters, and cloud servers, and the way in which cooperation 
among these architectural layers happens) in order to meet 
new challenging requirements related to changed patterns of 
usage or changed users’ requirements, privacy and security, 
etc.

In realizing such a vision, middleware is an integral 
part. Middleware will provide the abstractions necessary to 
achieve high-level goals while also providing the concrete 
realizations of the nuts and bolts required to make it all hap-
pen. This paper focuses on precisely this integral role of 
middleware in realizing the long vision of pervasive comput-
ing. We frame the discussion by starting with a set of “hot” 
applications, which, while seemingly achievable today, are 
as yet unrealized. We then explicitly connect this lack of 

available implementations to gaps in middleware solutions 
for pervasive computing. Section 3 takes a deep dive into the 
state of the art; much research exists that relates to our vision 
of advanced middleware for pervasive computing. Yet our 
analysis of the state of the art clearly shows that there remain 
several open challenges in filling the identified gaps. Accord-
ingly, Sect. 4 enumerates and details the key remaining open 
challenges that must be addressed to realize our vision.

2  Identifying the gap

In this section, we examine some particularly “hot” applica-
tion domains and use them to frame the “gaps” that remains 
to be filled by pervasive computing middleware.

2.1  Hot application domains and paradigm gaps

The proliferation of pervasive computing devices, coupled 
with the widespread availability of the Internet, makes 
pervasive computing more concrete every day. Whether at 
home, in commute, or at work, we already enjoy a variety 
of simple, unobtrusive services that enhance our quality of 
life or allow us to optimize resource management. These 
new technologies have, and will continue to have, profound 
effects on entire industries and society.

In the manufacturing domain the notion of Industry 4.0 
is gaining increasing attention (Lalanda et al. 2017). The 
purpose of the Industry 4.0 initiative is to bring together new 
technologies and production processes to enable the emer-
gence of smart, connected manufacturing. The term, coined 
in 2011 by a government-funded German project, refers to 
what could be the fourth industrial revolution. Industry 4.0 
envisions new production techniques, new materials, and 
the generalized adoption of digital technologies. Our focus 
in this paper is on the latter point, and in particular on the 
adoption of dense and pervasive networks of sensors and 
actuators in industrial environments (including robotic sys-
tems). This constitutes a tremendous challenge, in that it can 
promote the seamless integration of field devices controlling 
operations on a plant floor and supervision systems, usually 
located in IT facilities. Among many benefits, such integra-
tion should allow the systematic oversight and improvement 
of production activities and resource management and an 
overall increase in safety and sustainability of production 
systems.

However, given the dynamics of the modern economy, 
it is important that these new technologies also open the 
way for more flexibility in production processes and that the 
overall pervasive infrastructure can be easily (if not automat-
ically) and safely reconfigured to meet changing demands 
and enable novel products.
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Similar ideas and challenges also apply in the popular 
domains of smart homes, smart buildings, and more in gen-
eral smart cities. The smart home domain is an interesting 
and highly symbolic example that touches our daily lives 
(Helal et al. 2005). A smart home is filled with electronic 
devices providing multiple, unobtrusive services to its inhab-
itants. Although most existing homes were not designed to 
be smart, the availability of small wireless devices enables 
the seamless instrumentation of home environments with 
pervasive sensing and actuating capabilities and thus makes 
it possible to realize services to monitor and control ambient 
conditions and nearly every appliance in our homes.

Clearly, such home environments are not expected to 
be inhabited by skilled administrators, and therefore novel 
pervasive devices and services must be extremely simple 
to use and install. They should not require the intervention 
of expert programmers to configure, update, and retire. 
Therefore, on the one hand users should be given a way 
to be in control of the configurations and activities of their 
home environments, while on the other hand such environ-
ments should be made somewhat “autonomic” in nature, i.e., 
capable of self-configuration and self-adaptation (VanSyckel 
et al. 2013).

Further, quality expectations are very high in our homes. 
Services must be secure, robust, tailored to inhabitants, and 
highly relevant. Keeping humans in the loop is crucial for 
social adoption of new technologies in our most private 
environments. There is nothing more annoying than shutters 
moving down for no apparent reason—and a great reason to 
give up on technology! Life at home must remain easy, calm, 
and predictable (Keith Edwards et al. 2001).

At a scale, very similar consideration can be applied to 
smart buildings and smart cities. In these environments, 
we may reasonably assume the existence of organizations 
that provide skilled administrators. Instead, it is the inher-
ent spatial distribution of the system that calls for simple 
to install and configure devices and services, so as to make 
their management economically bearable. In any case, 
since acceptability and predictability of the technology is 
not only a usability issue but a general political and demo-
cratic one (Zambonelli et al. 2018), it is still important that 
inhabitants and citizens are somehow given a way to easily 
understand the overall functioning of such environment, and 
some way of tuning the environment’s behaviour according 
to the user’s specific needs.

Industry 4.0, smart homes, and smart cities are just three 
out of many “hot” application domains for pervasive and 
IoT systems. Additional interesting application areas include 
smart education systems, agriculture, logistics, smart trans-
port systems, food industries, and the food chain. Yet, the 
technical and social challenges discussed in this paper tran-
scend the particular application domains. However, the 
above discussion enables identifying important gaps in how 

today’s pervasive systems and services are conceived, and 
consequently in the functionalities provided by pervasive 
middleware. The dominant paradigm today is to conceive 
pervasive devices as loci of simple services, e.g., a service 
for uploading sensed data or one for executing a simple actu-
ation command. As a consequence, building and configur-
ing complex pervasive systems out of these devices requires 
defining low-level composition rules for basic services and 
middleware to support the execution of such composite ser-
vices. End users are mostly ruled out by this process and 
are left little control over defining or modifying the rules. 
This also naturally impacts the paradigm of usage: end users 
today tend to exploit pervasive devices by exploiting some 
“app” as a means to invoke specific services; users have little 
or no means of configuring devices or of programming new 
composite services.

This dominant perspective will have to change. First, as 
we have outlined in the discussion of the application areas, 
users have to be empowered with means to control and con-
figure pervasive computing environments and services, other 
than by simply being given access to services. What are 
now “apps to invoke services” will have to become “handles 
to configure services”. Second, in all the above application 
areas, what are now simple devices will soon become highly 
intelligent embedded devices with integrated autonomous 
decision logic. Simply consider the already emerging robotic 
assistants in smart homes or autonomous self-driving cars in 
smart cities. For these autonomous devices, providing com-
posite services will not be simply a matter of composition, 
but a matter of distributed decision making and distributed 
agreement.

Such new characteristics must be explicitly addressed and 
enabled within pervasive computing middleware. Emerg-
ing middleware will need to facilitate on-device reasoning 
about high-level situations and focus on goal achievement 
and autonomy rather than assuming devices will blindly 
carry out simple commands. To support this autonomy, 
middleware will need to allow devices to interact directly, 
to share their views about the ambient situation, and to coop-
eratively reason to control it. The middleware will have to 
arbitrate fairness, conflict-freedom, and legal and ethical 
rules, as individual devices are empowered to make indi-
vidual decisions. In short, the middleware will become a 
moderator of lively discussions among devices. Last but not 
least, humans’ voices must be integrated in these conversa-
tions and decision making processes, in that the final deci-
sions of the devices must respond to the humans’ require-
ments. Further, the decisions made and actions taken by the 
devices must be understandable (even subconsciously) by 
the humans in the space. In a sentence, we expect pervasive 
computing middleware to support a paradigm shift from 
“pushing a button in an app” to “participating in discussions 
and decision making”.
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2.2  Architectural gaps

From the architectural viewpoint, most of today’s industrial, 
home, and smart city services rely on cloud solutions. Data 
collected in the field is stored in centralized data centers 
and processed by powerful cloud servers deployed as neces-
sary. As illustrated by Fig. 1 with reference to a smart home 
scenario, dedicated gateways act as intermediaries between 
physical environments (e.g., the home) and the cloud. These 
existing gateways are very simple: their role is to collect 
data from field devices, possibly perform simple pruning and 
mediation operations, and send relevant data to the cloud. 
In some cases, they also run simple, prescribed scenarios to 
coordinate devices’ actions. Applications also rely on the 
gateways to reify actions to be taken in the physical space, 
as decided at the cloud level.

This architectural approach has many attractive aspects. 
The high-value data and analytics services identified and 
installed in the domains of smart buildings and homes are 
generally very greedy in terms of computing power and 
time. They are also based on large volumes of sensitive data 
that must be stored and accessed rapidly and easily. Cloud 
infrastructures provide the necessary facilities to run such 
complex services. They are known to offer great benefits in 
terms of computing power, elasticity, flexibility, pay-per-use 
facilities, and security.

A centralized cloud architecture also provides administra-
tion simplicity. Cloud providers are in charge of the manage-
ment and control of the cloud infrastructure. Business ser-
vice providers can focus on the administration of their own 
code, generally through virtualized gateways provided in the 
cloud. Most of the time, this is easy and fast. In contrast, 
managing business code running on field gateways is more 
complicated and time-demanding. In the telecommunica-
tions domain, the administration of gateways (e.g., Internet 
boxes, set-top-boxes, etc.) is generally delegated to teams of 

experts; these teams are often overwhelmed by maintenance 
and evolution requests. Such organization causes delays that 
are not in line with customers’ expectations. A third major 
architectural benefit relates to integration. It is clearly much 
easier to adopt cloud-to-cloud integration (as illustrated by 
Fig. 1) to connect heterogeneous devices rather than imple-
menting local integration. This is especially true when inte-
grating devices that use new field buses or lack open APIs 
for integration. Cloud-to-cloud integration requires sharing 
data format and semantics but requires no additional tricky 
code since smart devices are already connected to and man-
aged in a cloud.

As explained, cloud infrastructures and underlying 
organizations meet the requirements of complex analytics 
services. Today, however, emerging new services impose 
requirements that cannot be met by cloud-based architec-
tures (Chiang and Zhang 2016; Shi et al. 2016). For instance, 
some services implement time-critical control loops that 
sense and act upon the environment. These services can-
not be executed in the cloud due to unpredictable delays or 
insufficient bandwidth. Security also seriously challenges 
current architectures for several reasons. First, users are not 
comfortable with the idea of personal data being stored in 
clouds or data centers they do not trust. For instance, smart 
speakers connected to the cloud are not accepted by a grow-
ing crescendo of people concerned with eavesdropping. 
Further, the way cloud-based services are run raises issues. 
Cloud solutions for security rely on perimeter-based protec-
tion. If the perimeter is endangered, the common counter-
measure is to take the system offline (Chiang and Zhang 
2016). This causes service disruption in all the physical 
entities (e.g., homes, businesses) managed by the corrupted 
cloud. Finally, in economical and ecological terms, it does 
not appear opportune to transport and store huge amounts 
of data that could instead be processed and used in gateways 
located closer to data sources.

Executing services at the gateway level or even in situ is, 
however, very complex due to the dynamic, heterogeneous, 
and stochastic nature of the pervasive computing environ-
ments themselves. This is further complicated by the fact 
that gateways and in situ devices have limited resources that 
must be managed explicitly. Streamlining the production of 
fog-level services will require developers and system admin-
istrators to be equipped with new software engineering tools.

A common approach is to introduce an execution platform 
that provides a development model and a set of technical 
services. This can be done at the operating system level, like 
!-stack (Xu et al. 2017) for instance, or at a higher level. In 
the latter case, the term middleware is generally introduced.

Making a distinction between the execution platform 
and the hosted services lowers complexity in terms of code, 
debug, configuration, and administration operations. Dec-
ades of research in pervasive computing have led to many 

Fig. 1  Smart home services infrastructure
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solutions for individual components of such middleware. 
In the next section, we examine the state of the art in mid-
dleware for pervasive computing. A general takeaway is 
that, while we know how to build and connect individual 
solutions, it remains hard to flexibly and adaptively combine 
them. That is, we lack a fluid pervasive computing ecosys-
tem that integrates these individual advances in support of 
envisioned applications. This motivates a need for middle-
ware solutions that support elastic pervasive computing, 
embodying techniques that optimize across implementation 
options that include in-situ or on-device processing, fog inte-
gration, or off-loading entirely to the cloud. In integrating 
these options, middleware must still provide seamless inter-
active experiences, which may demand revisiting antique 
concepts like graceful degradation, lazy transaction process-
ing, prefetching and other challenges addressed in classi-
cal distributed systems. Registries listing available services 
must be made more expressive to expose the qualitative ram-
ifications of the myriad options without exposing developers 
(or users!) to the complexity of making an explicit decision.

3  State of the art

In this section we overview the state of the art and the cur-
rent trends in pervasive computing middleware. Although 
there are several approaches and proposals that go in the 
directions of filling the previously identified gaps, they still 
exhibit several limitations and leave open several challenges 
that we elaborated upon in Sect. 4.

3.1  Pervasive computing platforms

As introduced before, software engineering principles and 
tools are needed to support the production and adminis-
tration of pervasive computing applications. Today, most 
applications are built on top of specific platforms, or middle-
ware, that provide a number of technical services to facilitate 
interaction (communication), context-awareness, adaptation, 
and self-awareness. Modern platforms also provide domain-
specific languages, often embedded in existing popular lan-
guages like Java. Such an approach relieves programmers 
from tedious, hard-to-debug code and moves part of the 
complexity to the supporting platform.

Pervasive computing platforms can be complex and based 
on advanced architectures, as illustrated in Fig. 2.

Many platforms are now based on service-oriented 
computing, a compositional approach where applications 
are built through late composition of independent soft-
ware elements, called services (Chollet et al. 2016; Papa-
zoglou 2003). A service is characterized by the functions 
it provides. It is a software resource that is described and 
published by a provider in a service registry, sometimes 

called a service broker. The registry acts as an intermedi-
ary between service providers and consumers. More pre-
cisely, service providers publish service descriptions in 
the registry. Service consumers can send queries to the 
registry to retrieve the available services meeting their 
requirements. Once a service has been selected, the con-
sumer and provider can negotiate a contract specifying 
how the service is to be used. The next step, of course, is 
service invocation.

In the pervasive computing domain, service orientation 
promotes the development of modular, dynamic applications 
that can self-adapt to contextual evolution. Here, applica-
tions are built from loosely coupled services that can be 
distributed on different devices or computing nodes. Let us 
note also that the service-oriented approach offers excellent 
opportunities to achieve software application dynamism and 
is used more and more to build autonomic software sys-
tems (Lalanda et al. 2013).

Not surprisingly, an important number of service-oriented 
platforms related to pervasive computing applications have 
been developed over the years. Depending on their main 
field of application and the desired properties, various 
implementations of SOA principles have been proposed. 
In just the smart home domain, well known platforms like 
PCOM (Becker et al. 2004), iCasa (Escoffier et al. 2014), 
ubiSOAP (Caporuscio et al. 2012), SAI (Paganelli et al. 
2010) nSOM (Familiar et al. 2012), AutoHome (Bourcier 
et al. 2011), DigiHome (Romero et al. 2013 or Microsoft’s 
HomeOS (Dixon et al. 2012 propose different SOA imple-
mentations. While this level of activity is important for 
development, such diversity prevents services and appli-
cations developed on different middleware platforms from 
cooperating.

The service paradigm in itself is however not sufficient to 
easily build and manage pervasive computing applications. 
It has to be complemented, in a middleware or platform, by 
a number of technical services to deal with various forms 

Fig. 2  Pervasive computing platform architecture
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of communication, context modeling, data storage, deploy-
ment, or interoperability.

In the following, we structure our discussion along exist-
ing interaction models and service discovery mechanisms, 
followed by crucial technical services like mediation and 
context management. We then discuss deployment and 
configuration as well as adaptation support. We do not aim 
for a complete survey of the state of the art, rather we pre-
sent exemplary approaches to aid our discussion of open 
challenges.

3.2  Interaction models

While many early projects did not build on top of middle-
ware platforms but instead directly employed socket com-
munication or direct communication with the hardware, with 
increasingly complex applications, interaction models have 
shifted. To support the growing demands of applications, 
a number of projects have emerged that explore different 
interaction models and supporting protocols.

Many proposals support traditional remote procedure call 
(RPC) or object-based interaction protocols. Such a choice 
enables adopting these widely assessed and understood 
models in the context of pervasive computing. Gaia (Román 
et al. 2002) is based on CORBA’s Interoperability Protocol 
(IIOP) and thus provides an RPC based abstraction. IIOP 
is well documented and seamlessly enables the integration 
of existing backends and interoperability bridges for Gaia. 
Base (Becker et al. 2003) also provides application devel-
opers an RPC style programming abstraction. Its extensible 
microkernel provides means to map these abstractions to 
event-based or RPC based interoperability protocols. Finally, 
there are also approaches that use OSGi’s (2007) object 
model and extend this by remoting, e.g., iPOJO (Escoffier 
et al. 2007) and P2PComp (Ferscha et al. 2004). The under-
lying object model results in RPC-like interaction protocols.

Several proposals also exist that extend the tuple space 
interaction protocol (as from the original proposal of the 
Linda language Ahuja et al. 1986), for their adoption in the 
support of interactions in pervasive computing systems. 
The adoption of the tuple space interaction model promotes 
mediated interactions between application components and 
services (in the form of putting or getting information from 
a tuple space) that can interact and synchronize even without 
knowing each other in advance. For instance, extending from 
one.world (Grimm 2004) is a tuple space based middleware 
built using Java objects. Similar to one.world, iROS (Johan-
son et al. 2002) is based on a tuple space based architecture, 
the Event Heap. Events are stored in the tuple space and age 
over time, allowing requests to gracefully expire if there is 
no recipient.

Extension of the tuple space model have also been con-
ceived to more flexibly support interactions in the presence 

of mobility. LIME (Murphy et al. 2001), for instance, adopts 
a solution based on a multiplicity of mobile tuple spaces that 
can merge with each other depending on mobility patterns, 
thus enabling flexible dynamic event-based coordination 
across tuple spaces, in contrast to one.world and iROS where 
the tuple space is mostly for supporting persistent informa-
tion. The TOTA middleware (Mamei and Zambonelli 2004) 
proposes a distributed middleware architecture based on a 
multiplicity of tuple spaces that can interact with each other 
in order to build distributed field-like structures support-
ing spatially-aware interactions between mobile devices and 
mobile services.

Again, this is not an exhaustive survey, but the diversity 
demonstrates that many interaction models have emerged for 
pervasive computing-like environments.

3.3  Discovery

Discovery is also a crucial service for any pervasive com-
puting platform. Service discovery aims to find services for 
potential interaction. Different interaction models employ 
different service discovery patterns, though the patters also 
show some similarities. In particular, each interaction model 
uses advertisement messages and most systems use a lookup 
mechanism. However, the content of advertisement mes-
sages differs for different interaction models. For instance, 
event categories are advertised in a publish-subscribe model 
while service descriptions are advertised in the client-server 
and tuple space models. To counter this problem, event cat-
egories can be mapped to a service.

Industrial standards have also been established, e.g., 
Jini (Arnold et al. 1999) and UPNP (2016). While Jini pro-
vides a service oriented approach that is realized by a federa-
tion of lookup services, UPnP is a suite of protocols that can 
be combined in a flexible way to create discovery services. 
Obviously, pervasive computing environments must ensure 
that new services are found in a timely manner but should 
not spend too much energy on the discovery task; therefore 
related research has investigated aspects like energy man-
agement. Sandman (Schiele et al. 2004) is an example of a 
flexible discovery service that is mediator-based and allows 
to scheduled wake-up times of service providing nodes in 
order to save energy.

The state of the art and the state of the practice indicate 
that discovery is a well understood basic service of pervasive 
computing environments. An exception can be apparently 
represented by those middleware systems that provide tuple 
spaces as the only mean of interaction between components. 
In these cases, services and components can interact indi-
rectly, without a priori knowledge each other. However, if 
the middleware provides interactions though a multiplic-
ity of distributed tuple spaces, the discovery problem does 
not fully disappear, but simply translates in discovering the 
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existence—not of other components/services—but of the 
tuple spaces themselves.

3.4  Mediation

Originally, the mediation activity corresponded to the timely 
integration of disparate information sources (Wiederhold 
and Genesereth 1997) and was first used to integrate data 
stored in databases, knowledge bases, or even file systems. 
Those initial principles are now used to enable interoper-
ability across diverse pervasive computing systems and plat-
forms (Roth et al. 2018). In particular, a mediation solution 
can implement operations such as:

– Communication alignment to enable applications using 
different communication protocols to inter-operate.

– Syntactic alignment to homogenize data formats; this 
operation often relies on an intermediary format, com-
monly called a pivot.

– Semantic alignment to align data semantics, in the 
absence of recognized and used standards in a domain, 
applications develop different ontologies to represent 
(static and dynamic) knowledge.

– Non-functional property alignment to ensure certain 
quality properties for the integration, for instance secu-
rity or availability.

– Persistency to keep track of all exchanges between appli-
cations; the mediation layer can accomplish this through 
logging support for all requests, responses and data.

– Monitoring to collect data for to verify that the expected 
quality of service is achieved.

Improved integration of mediation is still an active area of 
research in order, for instance, to deal with systems of sys-
tems or to make pervasive computing platforms interoperate.

3.5  Context support

Research on context-aware computing dates back to the 
1990s. Schilit et al. (1994) introduced a still current defi-
nition of context and details of a comprehensive context 
management platform. Since then, a number of context 
management platforms with specific properties have been 
introduced.

Nexus (Lehmann et al. 2004) aimed at a global federa-
tion of world models that represent local context. Register 
structures and a query and modeling language are required 
for scalability. Aura’s context service (Judd et al. 2003) 
also federates context but on a smaller scale and integrates 
context management using a SQL-like approach. VanSy-
ckel (Becker et al. 2013) describes an extension of context 
management where prediction algorithms can be integrated 
to allow applications to adapt proactively.

Context can also be used implicitly, as e.g., in the already 
mentioned TOTA (Mamei and Zambonelli 2004), where 
the spatial distribution of data is implicitly used as context. 
More recently, contextual information has been represented 
as services (Aygalinc et al. 2016). Here, context appears as 
a dynamic set of services. Depending on the availability of 
context sources and the applications needs, different services 
can be published and withdrawn.

3.6  Configuration and deployment

A major challenge of pervasive computing environments is 
the mapping of application requirements to available ser-
vices. These environments differ widely and typically there 
is no expert present when applications are deployed or con-
figured. Some early approaches used scripting languages, 
which are obviously not suitable for end-user configuration. 
Gaia (Kon et al. 2000) started with a script-based configura-
tion and extended this by an automated approach that used 
an operator-based configuration specification (Ranganathan 
et al. 2005). O2S (Paluska et al. 2008) has evolved over the 
years. Starting with goal oriented computing and specifying 
applications by goals that are automatically mapped to tech-
niques, O2S then developed an abstraction layer of assem-
blies for composition. PCOM (Becker et al. 2004) relies on 
explicit contracts of components in order to resolve bindings 
and configure or adapt an application.

Some visual approaches to configuration programming 
have been investigated as well. JigSaw (Humble et al. 2003) 
and the approach in Weis et al. (2016) show promising 
results in usability. However, configuration and deployment 
of pervasive computing systems remains challenging and 
error prone, demanding additional future research.

3.7  Application adaptation

Adaptation—in contrast to configuration—describes the 
dynamic reconfiguration of an application during runtime. 
In most cases this is reactive and is based on changes in 
an application’s execution context, e.g., services becoming 
unavailable or a change in personal context. There are few 
approaches that use prediction to support proactive adapta-
tion. While reactive adaptation has to be performed when 
an application can no longer execute correctly (Becker and 
Schiele 2003), proactive adaptation also consider the quality 
of prediction, costs for adaptation, utility of configuration 
and penalty if a prediction fails (VanSyckel et al. 2013). 
Basically, applications can choose whether they adapt their 
structure to the change in the execution environment, or—if 
possible—they change the context (VanSyckel et al. 2014).

Since adaptation is key to pervasive computing, most 
middleware, applications, and systems offer support for 
adaptation. The discussion in Harter et al. (1999) provided 
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one of the first fundamental descriptions of such adapta-
tion. Often, the configuration process is used for adaptation 
as well (Becker et al. 2004; Kon et al. 2000; Ranganathan 
et al. 2005). A final interesting approach to adaptation is 
realized by iROS (Johanson et al. 2002), in which applica-
tion components are separated by the so-called event heap. 
Requests can time out if no matching service answers the 
request. Applications have to detect this by time-outs and 
react accordingly.

3.8  Edge-, cloud-support and scheduling

A recent trend in pervasive computing is the incorporation of 
cloud and edge resources. Edge devices can be other mobile 
devices in the vicinity but also services in the nearby access 
network. The latter allows mobile devices to rely on data and 
services that are provided with a minimum delay compared 
to cloud and grid services (Satyanarayanan 2017).

There are several research questions in this area that have 
been investigated in this area. A core mechanism in order 
to utilize functionality of other devices for mobile com-
puting is code-offloading. Maui (Cuervo et al. 2010) is a 
prominent approach here. In the domain of cloud and edge 
computing the notion of serverless computing (Baldini et al. 
2017) describes approaches in which computation is mod-
eled as closures that contain data and the code that operates 
on the data. Openwhisk1 and Amazon Lambda2 are exam-
ples that enable lightweight computation in cloud environ-
ments. There are also the beginnings of efforts that combine 
serverless computing and pervasive computing (Heck et al. 
2018). Tasklets started as an abstraction for cloud comput-
ing (Schafer et al. 2016) and addressed scheduling tasks in 
pervasive computing in later work (Edinger et al. 2017). 
A similar approach is presented in Cicconetti et al. (2019). 
Overall, integrating edge capabilities into pervasive com-
puting appears promising but requires substantial research 
with respect to suitable programming abstractions, design 
methodology and runtime support by middleware platforms. 
Further, the tradeoffs between the cloud, edge, and mobile 
devices should be elastic this notion of elastic deployments 
as pervasive computing middleware services is also yet to 
be explored.

4  Open challenges

The gaps identified previously highlight a neglected issue 
in pervasive computing middleware, namely, an integrated 
view of the effective design, development, and deployment 

of pervasive computing environments (Zambonelli 2017). 
Given this broader view, it becomes reasonable to ask what 
are the most suitable software engineering abstractions and 
system capabilities that are particular to pervasive comput-
ing middleware.

4.1  Understanding the players

From the methodological viewpoint, traditional approaches 
to engineering information systems attack the analysis of 
system requirements by assuming the existence of well-
defined “end-users”, who will interact with the resulting 
system, and “system administrators”, who are responsible 
for configuring the system. Together, these two sets of actors 
are the parties responsible for eliciting the system’s require-
ments. Traditional approaches also typically adapt a purely 
functional (typically service-oriented) perspective. However, 
as we have seen, the situation in pervasive computing envi-
ronments is much more complex.

Indeed, in such environments, the actors involved may 
belong to many different categories and may take on much 
more complex and overlapping roles. For instance, perva-
sive computing deployments often have global administra-
tors, typically the owners of an overall pervasive system 
and infrastructure, or at least the people empowered to exert 
control over the configuration, structure, and overall func-
tioning of its applications and services. This is also some-
times referred to as the enterprise. There are often also local 
administrators, who typically own (whether permanently 
or on a temporary basis) a limited portion of the pervasive 
computing system and are empowered to enforce local con-
trol for some portion of the infrastructure for some period of 
time. Then there are users, who typically have some limited 
access to the overall configuration of the applications and 
services, i.e., users may not be able to impose new policies 
on the broad system, but they may nevertheless be entitled to 
exploit the provided services and in some way configure how 
such services are provided. That is, user-level programming 
becomes much more mainstream in pervasive computing 
environments. What is an IFTTT rule3 if not a user-written 
program?

The three classes of actors identified above are of a very 
general nature. For example, considering a scenario of a 
smart hotel, the above categories can correspond, respec-
tively, to: the hotel managers imposing global policies on, 
e.g., heating level and surveillance strategies; the organizers 
of a conference who may be entitled to impose the required 
behaviours and policies on the meeting rooms they have 
rented; and regular clients, who need to access pervasive 
services in their room, and to some extent configure them. 

1 http://openw hisk.org.
2 http://aws.amazo n.com/lambd a. 3 https ://ifttt .com/.

http://openwhisk.org
http://aws.amazon.com/lambda
https://ifttt.com/
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Similarly, in the area of urban mobility, the actor categories 
could correspond to, respectively: mobility managers, park-
ing facility owners or car sharing companies, and private 
drivers. Accordingly, if a pervasive computing environment 
and its middleware are not properly developed and config-
ured to account for the different needs of the above classes of 
actors, and if the above a classes are not properly accounted 
for the analysis phase, the final system may be unacceptable 
or unusable.

4.2  Pervasive computing ecosystems

Current pervasive computing architectures are centralized 
and standalone. That is, they comprise a number of devices, 
sometimes with direct interactions, linked to a centralized 
gateway. The purpose of such a gateway is to provide value-
added services based on information collected by devices (as 
said earlier, this is not even so common since most gateways 
are only used to send information up to the cloud). So, there 
is no pervasive ecosystem per se available today.

This inhibits the development of advanced pervasive 
computing applications, where a number of devices and 
gateways have to communicate and then interoperate in 
order to meet their requirements. Several approaches are 
currently investigated to enable this broader vision of per-
vasive infrastructure.

The IoT European Platforms Initiative (IoT-EPI),4 for 
instance, is an interesting initiative for IoT platform devel-
opment. Its aim is to build a sustainable IoT ecosystem 
in Europe, and it comprises seven projects of which four 
revolve around interoperability at the communication, pro-
tocol, or service level. These projects aim to provide inter-
operability between IoT platforms through a uniform access 
to services (often provided by some sort of dedicated hub). 
Those approaches state that interoperability with legacy 
devices is ensured and mainly focus on the semantic data 
heterogeneity. Here, mediation plays a major role that is 
explored, for instance, through the use of Enterprise Service 
Bus (ESB) style approaches.

These different and complementary initiatives are notice-
able in the sense that they show that a service-based view of 
the infrastructure allows the construction of pervasive com-
puting ecosystems. However, they still have considerable 
limitations regarding data management. They see pervasive 
computing elements essentially as service providers. The 
fact is that most of them are also data providers. In some 
domains, like smart manufacturing, they are even intense 
data providers. Work is needed to allow interactions of 
almost continuous data flows between pervasive elements 
in service-based environments. We believe that, in the near 

future, several interaction paradigms will have to coexist in 
pervasive computing ecosystems.

4.3  The architecture of a system

From a system abstraction perspective, the functional 
(service-oriented) view that is typically adopted in “Web 
of Things” approaches, does not fit well in pervasive com-
puting environments for multiple reasons. In addition to 
“things” that have basic sensing and actuating functionali-
ties, one should consider the presence of smarter things that 
can be activated to autonomously perform some long-term 
activities associated with their capabilities and with their 
role in the socio-physical environment in which they are 
situated. These smarter devices can range from cleaning 
robots to more sophisticated autonomous personal assistants. 
Second, pervasive computing applications and systems are 
not simply concerned with providing a suite of coordinated 
functionalities, but they must often also globally regulate the 
activities of the system on a continuous basis, according to 
policies established by its stakeholders and their objectives.

As a consequence, developing pervasive computing ser-
vices and applications, other than defining and implementing 
service functionalities, most often implies defining policies 
and goals that are then associated to services and applica-
tions. In general terms, policies and goals represent desirable 
“states of affairs” to strive for. In the context of a pervasive 
computing system, policies and goals represent specific con-
figurations of the system (or of a portion of the system) that 
applications and services are in charge of eventually produc-
ing and/or maintaining. Policies and goals may be defined to 
apply to the whole system (as realized by global managers), 
or to apply to specific sub-portions of the systems (realized 
by local managers).

In this context, the traditional service-oriented perspec-
tive of software engineering methodologies and the strong 
emphasis on services and service composition fall short. 
On the one hand, software engineering methodologies must 
properly analyze and design not only services, but also 
goals and policies, and must provide guidelines for enabling 
designers to enact these goals and polices dynamically in 
the system, aided by middleware. One the other hand, mid-
dleware for supporting future pervasive computing systems 
must support the existence of autonomous goal-oriented 
entities, coordinating with each other towards the achieve-
ment of goals and policies, either at the local or at the global 
level, supported by increased autonomy and intelligence in 
the devices.

Apart from mapping high level objectives to basic func-
tionality via policies and and goals, the application structure 
itself may change due to integrating fog and edge resources. 
Identifying, specifying, and scheduling offloadable parts 
of an application needs end-to end support from design to 4 https ://iot-epi.eu.

https://iot-epi.eu
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runtime. Especially at runtime user expectations and require-
ments have to be met and mapped to the dynamic execu-
tion environment, e.g., if access to a private cloud or edge 
resource is not possible, offloading of sensitive data/compu-
tation should not be done. Units of computation need to con-
tain data and code. This resembles a closure for computing a 
task. Integrating this into software engineering methodology 
and supporting by middleware architectures is a challenge 
for future pervasive computing systems.

4.4  Supporting autonomy and intelligence

As discussed above, most current middleware systems for 
pervasive computing and the IoT assume a service-oriented 
perspective (Razzaque et al. 2016). That is, their primary 
goal is to coordinate and combine the execution of services 
and contextual events. Thus, the question of what additional 
(and possibly different) features a middleware should inte-
grate to properly support autonomous components arises. 
We believe that much can be taken from the lessons and 
experiences of research in multiagent systems (Wooldridge 
2009).

As is the case in pervasive computing, deploying and 
executing a distributed multiagent system (i.e., a system of 
interacting autonomous software agents), calls for a suitable 
middleware infrastructure. However, unlike traditional per-
vasive computing middleware, most research in the area of 
agent-based middleware has explicitly focused on the neces-
sary support for autonomy and distributed decision making. 
Supporting autonomy implies giving agents the “freedom 
of action” to eventually pursue their goals, but at the same 
time implies defining means to monitor autonomous actions, 
guarantee such actions are “safe” from an overall system 
viewpoint, and possibly reclaim some degree of autonomy 
from components whenever necessary in order to preserve 
some global goal (Mostafa et al. 2017). Supporting distrib-
uted decision making implies more than simply composing 
a set of services according to specific orchestration rules and 
constraints. It implies supporting a variety of negotiation 
protocols (Beer et al. 1999) that enable autonomous com-
ponents to dynamically reach consensus on their courses of 
action, preserving their autonomy in strategy, yet ensuring 
that such protocols adhere to “social norms” (Aldewereld 
et al. 2016).

Looking further into the future, another area in which 
multiagent systems research could suggest important guide-
lines for future pervasive computing middleware concerns 
knowledge-based reasoning. As of today, in the pervasive 
computing and IoT arenas, sensors are treated almost exclu-
sively as producers of raw data streams and events. Advance-
ments in machine learning techniques, and in the increase of 
computational power that can be embedded in everyday sen-
sors and objects, will soon make it possible for such devices 

to locally analyze and classify streams of sensed data to 
extract relevant semantic knowledge (Lippi et al. 2018). 
We can also expect that such capabilities will evolve to rec-
ognize more complex situations, making them capable of 
causally connecting individual patterns into composite situ-
ations, that is, making assertions about what is happening 
around them. For instance, a set of wearables may construct 
the assertion that “Heart rate increased due to a training 
session” by integrating the results of sensing two distinct 
patterns. Or a camera may perform scene understanding, by 
relating the individual objects it recognizes, e.g., “patient 
Marco has left the stretcher in corridor X”. Similarly, we can 
soon expect actuators to become not only capable of execut-
ing simple tasks, but they will also be able to understand 
and interpret goals at the semantic knowledge-based level, 
and possibly argue about their capabilities to achieve such 
goals. In an environment populated by such smart, autono-
mous and semantic sensors and actuators, coordination will 
have to naturally evolve from negotiation towards distrib-
uted multi-party conversations, or dialogues (Amgoud et al. 
2000), where the devices discuss and argue with each other 
to reach a common understanding of situations around, talk 
to each other to agree on common courses of actions, and 
possibly dynamically re-negotiate their goals and beliefs. 
Clearly, as for negotiation protocols, the capability of sup-
porting complex dialogues between such smart components 
will call for specifically conceived functionalities to be inte-
grated in future pervasive computing middleware systems.

4.5  Humans in the loop

The vision of a future pervasive environment populated by 
smart goal-oriented components acting autonomously in our 
everyday environments cannot overlook humans as a vital 
component of the scenario. Humans, in their role of ultimate 
“users” (in a broad sense) of a pervasive computing system, 
are the ones that must ultimately be entitled to impose on 
components to act (and possibly how to act) towards the 
achievement of specific goals or states in the environment in 
which they live. To this end, humans must be given the abil-
ity to inspect, at any time, the current behaviour of the per-
vasive computing system. When the environment includes 
autonomous goal-oriented components, this also implies 
enabling the human to understand how the system perceives 
the current state of the affairs, what goals it is currently pur-
suing and with what planned actions, and why those goals 
are the “right” ones, given the perceived state.

The above issue can be seen as a specific instance of 
the more general issue—now a very hot one, due to the 
increased difficulty of understanding the behaviour of mod-
ern deep learning systems—of promoting “explainable” 
systems (Gunning 2017). In this regard, the perspective of 
future pervasive computing systems that—yes—devices 
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can integrate deep learning components to understand situ-
ations and plan actions, they can converse to justify their 
choices, and they can carry out these choices in real time, 
takes pervasive computing in the correct direction. Indeed, 
argumentation-based conversations are crucial to help users 
understand what is happening and are also a mean to enable 
users to effectively participate in the pervasive computing 
space.

The ability for humans to participate in the conversational 
process, other than for understanding, envisions humans as 
actual critical component of the system: they can partici-
pate by providing sensing capabilities (thus acting as smart 
semantic sensors), and they are inherently intelligent actua-
tors. This convergence between human and software entities 
is witnessed by many modern socio-technical systems (Zam-
bonelli 2012), and it demands researchers and practitioners 
to conceive, design, and develop systems seamlessly inter-
acting with other software systems and with human agents 
as well.

Finally, conversation may be a useful and effective user-
level way to program a system and configure its behaviour. 
The need to enable easy and flexible ways to support user-
level programming is increasingly recognized as essential. 
Yet current approaches to user-level programming are very 
simple, enabling the simple configuration of some device 
parameters and the definition of cause-effect relations (Kubi-
tza and Schmidt 2017). The approach of current chatbot-
based home devices such as Google Home and Amazon 
Alexa is promising but must evolve to become an enabler for 
real conversations among humans and devices in ways that 
allow collaboratively understanding and achieving goals.

5  Conclusions

After three decades of research in pervasive and ubiquitous 
computing, there is a lot of common understanding and 
many fundamental research questions have been addressed. 
Core services, such as context-management and service dis-
covery, are well explored. Interaction models from service 
oriented models to loosely coupled event based communica-
tion have been successfully deployed. However, there remain 
inherent open challenges that inhibit the realization of the 
long vision of pervasive computing.

Interoperability is one of these challenges. It will be a 
major requirement in the near future since many greenfield 
developments will be made of distributed and often het-
erogeneous platforms and devices that will need to com-
municate and cooperate. Interoperability is additionally 
challenged by the need to incorporate legacy systems (both 
hardware and software). In addition to all the services and 
devices present at a time, potentially all devices from ear-
lier installations must also be dealt with and seamlessly 

integrated. This exceeds syntactic and semantic mappings. 
New services, sensors, and actuators may affect systems 
differently, leading to new compositions that provide a bet-
ter utility than existing ones—or ones that lead to conflicts.

End-users with little or no knowledge and interest of 
configuration, computer technology, etc., will often be the 
only humans who are present at deployment, runtime, and 
maintenance. This is especially true in private places like 
homes, offices, and ... smart-phones! Means will be needed 
to keep human in the loop without being overwhelmed by 
technology.

Complexity and dynamism are inherent in these envi-
ronments. When more and more everyday items commu-
nicate, provide sensor information, and allow outside enti-
ties to set their state, systems will have to be tailored to 
a specific environment. This, in most cases, will have to 
be done by the user. Application composition and schedul-
ing remain cornerstone open challenges. Many early and 
existing approaches to pervasive computing are based on 
closed scenarios, e.g., smart homes, and on service-oriented 
interaction. Incorporating edge and fog devices leads to new 
challenges in the application architecture as well as in sched-
uling a distributed, Pervasive Computing application.

As of today, there is no silver bullet. But a number of 
different research areas converge and will help to conquer 
the challenges. Autonomic techniques, artificial Intelli-
gence mechanisms, and efficient algorithms will provide 
means for configuration in dynamic environments. Human 
computer interaction has explored a number of applica-
tions and interaction models. This in combination with 
efficient algorithms, interaction models of multi agent 
systems and systems research can provide the necessary 
balance between the users expectations and skills in order 
to configure and manage the environment.

Even after such a long period of research middleware 
for pervasive computing remains an exciting research field.
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