
Vol.:(0123456789)1 3

CCF Transactions on Pervasive Computing and Interaction
https://doi.org/10.1007/s42486-019-00005-2

REGULAR PAPER

Pervasive computing middleware: current trends and emerging
challenges

Christian Becker1 · Christine Julien2 · Philippe Lalanda3 · Franco Zambonelli4

Received: 3 October 2018 / Accepted: 27 January 2019
© China Computer Federation (CCF) 2019

Abstract
Driven by the increasing diffusion of embedded sensors and actuators, and more in general by “Internet of Things” (IoT)
devices, pervasive computing is becoming a reality. Yet, most actual implementations of pervasive computing environments
rely on rather centralized architectures and on middleware solutions that integrate only the minimal set of services to enable
interoperabilty and data integration. In this article, after having overviewed the state of the art in the area of pervasive
computing middleware, we discuss the many challenges that still have to be faced for pervasive computing middleware to
be able to support elastic, easy to configure, easy to develop, safe, and ethically acceptable, pervasive computing services
and applications.

Keywords Pervasive computing · System software · Middleware

1 Introduction

Pervasive computing, as common in “Internet of Things”
scenarios (Atzori et al. 2010), promotes the integration of
connected electronic devices in our living spaces in order to
assist us in our daily activities, be they professional or pri-
vate. These pervasive devices can be blended in the environ-
ment, integrated in smartphones or into everyday objects and
appliances, or even woven into clothing. They are mobile or
static, can take multiple forms, and pick up a wide variety
of signals from the environment. Pervasive devices collect
contextual information, run local computation, and, in some
cases, directly act upon the environment. This allows the

implementation of simple, reactive services like opening
an emergency door when a triggering condition is detected.
Pervasive devices are also enhanced with networking capa-
bilities so that they can communicate with each other or
with more powerful computing elements, located in close
proximity (i.e., in the “fog” Bonomi et al. 2012), or more
distant (i.e., in the “cloud”). An elastic use of a mixture of
device-to-device, fog, and cloud coordination is necessary
to implement more complex services that integrate multiple
data sources, must be responsive at human time scales, but
may demand significant computing and memory capacities.

In the realm of pervasive computing and the Internet of
Things, much progress has been made since initial research
challenges were posited (Atzori et al. 2010), and challenges
more specific to the convergence of the cyber and the physi-
cal of pervasive computing have been enumerated (Conti
et al. 2012). However, given the many bold visions of per-
vasive computing applications, the services available today
to end users are still quite limited in terms of performance,
cost, security, adaptivity, and even basic functionality.

In this paper, we motivate a simple yet bold claim: while
much research has made it possible to connect pervasive
computing elements and let them interoperate to provide
simple services, we still lack facilities to dynamically com-
bine elements and allow them to adaptively coordinate to
provide more flexible (and more useful) services, while also

 * Christian Becker
 christian.becker@uni-mannheim.de
 Christine Julien
 c.julien@utexas.edu
 Philippe Lalanda
 philippe.lalanda@univ-grenoble-alpes.fr
 Franco Zambonelli
 franco.zambonelli@unimore.it
1 Universität Mannheim, Mannheim, Germany
2 University of Texas at Austin, Austin, USA
3 Univ. Grenoble, Grenoble, France
4 Universita di Modena e Reggio Emilia, Modena, Italy

http://orcid.org/0000-0002-9036-1410
http://crossmark.crossref.org/dialog/?doi=10.1007/s42486-019-00005-2&domain=pdf

 C. Becker et al.

1 3

dynamically accounting for the needs of the human inhabit-
ants of pervasive computing environments.

Indeed, many protocols exist to address the com-
munication element of transmitting data from device to
device (Asadi et al. 2014; Bello and Zeadally 2014; Cho
and Julien 2016; Choi and Han 2015), from a device to the
fog (Bonomi et al. 2012; Golrezaei et al. 2012; Satyanaray-
anan et al. 2009; Verbelen et al. 2012), or from a device
to the cloud. Similarly, protocols exist for discovering the
available resources surrounding a user in a pervasive com-
puting environment (Amadeo et al. 2014; Gu et al. 2005;
Guo et al. 2013; Jenson et al. 2014; Lin et al. 2014; Liu et al.
2014; Mayer et al. 2014; Quevedo et al. 2016; Wehner et al.
2014), and for combining them according to some static
service composition patterns (Escoffier et al. 2007; Wehner
et al. 2014). However, creating larger more general-purpose
solutions out of these connected elements still founders in
the face of complexity, dynamism, and the need to adapt to
physical and social contexts.

Yet it is exactly such combinations that will fulfill the
broader vision of pervasive computing. What are now small
devices capable of simply sending sensor streams to a cloud
database or receiving simple actuation commands will soon
become highly intelligent and integrated embedded systems
capable of autonomous decisions and able to “speak” to one
another at a high level. They will “argue” and “arbitrate”
myriad situations while negotiating how to cooperatively
(or competitively) achieve their goals (on behalf of their
human users) (Lippi et al. 2018). In this context, users will
not simply “invoke” services by pushing some button or
by launching some app that will trigger a composition of
devices’ functionalities according to some static design pat-
tern. Rather, users will be able to dialogue with devices and
smart environments and will be able to dynamically direct
the coordination of such devices in order to satisfy needs.
Pervasive computing devices and applications, by their side,
will be able to make a better use of the available computing
facilities, by dynamically re-arranging their configuration
(such as the way code is distributed over devices, edge com-
puters, and cloud servers, and the way in which cooperation
among these architectural layers happens) in order to meet
new challenging requirements related to changed patterns of
usage or changed users’ requirements, privacy and security,
etc.

In realizing such a vision, middleware is an integral
part. Middleware will provide the abstractions necessary to
achieve high-level goals while also providing the concrete
realizations of the nuts and bolts required to make it all hap-
pen. This paper focuses on precisely this integral role of
middleware in realizing the long vision of pervasive comput-
ing. We frame the discussion by starting with a set of “hot”
applications, which, while seemingly achievable today, are
as yet unrealized. We then explicitly connect this lack of

available implementations to gaps in middleware solutions
for pervasive computing. Section 3 takes a deep dive into the
state of the art; much research exists that relates to our vision
of advanced middleware for pervasive computing. Yet our
analysis of the state of the art clearly shows that there remain
several open challenges in filling the identified gaps. Accord-
ingly, Sect. 4 enumerates and details the key remaining open
challenges that must be addressed to realize our vision.

2 Identifying the gap

In this section, we examine some particularly “hot” applica-
tion domains and use them to frame the “gaps” that remains
to be filled by pervasive computing middleware.

2.1 Hot application domains and paradigm gaps

The proliferation of pervasive computing devices, coupled
with the widespread availability of the Internet, makes
pervasive computing more concrete every day. Whether at
home, in commute, or at work, we already enjoy a variety
of simple, unobtrusive services that enhance our quality of
life or allow us to optimize resource management. These
new technologies have, and will continue to have, profound
effects on entire industries and society.

In the manufacturing domain the notion of Industry 4.0
is gaining increasing attention (Lalanda et al. 2017). The
purpose of the Industry 4.0 initiative is to bring together new
technologies and production processes to enable the emer-
gence of smart, connected manufacturing. The term, coined
in 2011 by a government-funded German project, refers to
what could be the fourth industrial revolution. Industry 4.0
envisions new production techniques, new materials, and
the generalized adoption of digital technologies. Our focus
in this paper is on the latter point, and in particular on the
adoption of dense and pervasive networks of sensors and
actuators in industrial environments (including robotic sys-
tems). This constitutes a tremendous challenge, in that it can
promote the seamless integration of field devices controlling
operations on a plant floor and supervision systems, usually
located in IT facilities. Among many benefits, such integra-
tion should allow the systematic oversight and improvement
of production activities and resource management and an
overall increase in safety and sustainability of production
systems.

However, given the dynamics of the modern economy,
it is important that these new technologies also open the
way for more flexibility in production processes and that the
overall pervasive infrastructure can be easily (if not automat-
ically) and safely reconfigured to meet changing demands
and enable novel products.

Pervasive computing middleware: current trends and emerging challenges

1 3

Similar ideas and challenges also apply in the popular
domains of smart homes, smart buildings, and more in gen-
eral smart cities. The smart home domain is an interesting
and highly symbolic example that touches our daily lives
(Helal et al. 2005). A smart home is filled with electronic
devices providing multiple, unobtrusive services to its inhab-
itants. Although most existing homes were not designed to
be smart, the availability of small wireless devices enables
the seamless instrumentation of home environments with
pervasive sensing and actuating capabilities and thus makes
it possible to realize services to monitor and control ambient
conditions and nearly every appliance in our homes.

Clearly, such home environments are not expected to
be inhabited by skilled administrators, and therefore novel
pervasive devices and services must be extremely simple
to use and install. They should not require the intervention
of expert programmers to configure, update, and retire.
Therefore, on the one hand users should be given a way
to be in control of the configurations and activities of their
home environments, while on the other hand such environ-
ments should be made somewhat “autonomic” in nature, i.e.,
capable of self-configuration and self-adaptation (VanSyckel
et al. 2013).

Further, quality expectations are very high in our homes.
Services must be secure, robust, tailored to inhabitants, and
highly relevant. Keeping humans in the loop is crucial for
social adoption of new technologies in our most private
environments. There is nothing more annoying than shutters
moving down for no apparent reason—and a great reason to
give up on technology! Life at home must remain easy, calm,
and predictable (Keith Edwards et al. 2001).

At a scale, very similar consideration can be applied to
smart buildings and smart cities. In these environments,
we may reasonably assume the existence of organizations
that provide skilled administrators. Instead, it is the inher-
ent spatial distribution of the system that calls for simple
to install and configure devices and services, so as to make
their management economically bearable. In any case,
since acceptability and predictability of the technology is
not only a usability issue but a general political and demo-
cratic one (Zambonelli et al. 2018), it is still important that
inhabitants and citizens are somehow given a way to easily
understand the overall functioning of such environment, and
some way of tuning the environment’s behaviour according
to the user’s specific needs.

Industry 4.0, smart homes, and smart cities are just three
out of many “hot” application domains for pervasive and
IoT systems. Additional interesting application areas include
smart education systems, agriculture, logistics, smart trans-
port systems, food industries, and the food chain. Yet, the
technical and social challenges discussed in this paper tran-
scend the particular application domains. However, the
above discussion enables identifying important gaps in how

today’s pervasive systems and services are conceived, and
consequently in the functionalities provided by pervasive
middleware. The dominant paradigm today is to conceive
pervasive devices as loci of simple services, e.g., a service
for uploading sensed data or one for executing a simple actu-
ation command. As a consequence, building and configur-
ing complex pervasive systems out of these devices requires
defining low-level composition rules for basic services and
middleware to support the execution of such composite ser-
vices. End users are mostly ruled out by this process and
are left little control over defining or modifying the rules.
This also naturally impacts the paradigm of usage: end users
today tend to exploit pervasive devices by exploiting some
“app” as a means to invoke specific services; users have little
or no means of configuring devices or of programming new
composite services.

This dominant perspective will have to change. First, as
we have outlined in the discussion of the application areas,
users have to be empowered with means to control and con-
figure pervasive computing environments and services, other
than by simply being given access to services. What are
now “apps to invoke services” will have to become “handles
to configure services”. Second, in all the above application
areas, what are now simple devices will soon become highly
intelligent embedded devices with integrated autonomous
decision logic. Simply consider the already emerging robotic
assistants in smart homes or autonomous self-driving cars in
smart cities. For these autonomous devices, providing com-
posite services will not be simply a matter of composition,
but a matter of distributed decision making and distributed
agreement.

Such new characteristics must be explicitly addressed and
enabled within pervasive computing middleware. Emerg-
ing middleware will need to facilitate on-device reasoning
about high-level situations and focus on goal achievement
and autonomy rather than assuming devices will blindly
carry out simple commands. To support this autonomy,
middleware will need to allow devices to interact directly,
to share their views about the ambient situation, and to coop-
eratively reason to control it. The middleware will have to
arbitrate fairness, conflict-freedom, and legal and ethical
rules, as individual devices are empowered to make indi-
vidual decisions. In short, the middleware will become a
moderator of lively discussions among devices. Last but not
least, humans’ voices must be integrated in these conversa-
tions and decision making processes, in that the final deci-
sions of the devices must respond to the humans’ require-
ments. Further, the decisions made and actions taken by the
devices must be understandable (even subconsciously) by
the humans in the space. In a sentence, we expect pervasive
computing middleware to support a paradigm shift from
“pushing a button in an app” to “participating in discussions
and decision making”.

 C. Becker et al.

1 3

2.2 Architectural gaps

From the architectural viewpoint, most of today’s industrial,
home, and smart city services rely on cloud solutions. Data
collected in the field is stored in centralized data centers
and processed by powerful cloud servers deployed as neces-
sary. As illustrated by Fig. 1 with reference to a smart home
scenario, dedicated gateways act as intermediaries between
physical environments (e.g., the home) and the cloud. These
existing gateways are very simple: their role is to collect
data from field devices, possibly perform simple pruning and
mediation operations, and send relevant data to the cloud.
In some cases, they also run simple, prescribed scenarios to
coordinate devices’ actions. Applications also rely on the
gateways to reify actions to be taken in the physical space,
as decided at the cloud level.

This architectural approach has many attractive aspects.
The high-value data and analytics services identified and
installed in the domains of smart buildings and homes are
generally very greedy in terms of computing power and
time. They are also based on large volumes of sensitive data
that must be stored and accessed rapidly and easily. Cloud
infrastructures provide the necessary facilities to run such
complex services. They are known to offer great benefits in
terms of computing power, elasticity, flexibility, pay-per-use
facilities, and security.

A centralized cloud architecture also provides administra-
tion simplicity. Cloud providers are in charge of the manage-
ment and control of the cloud infrastructure. Business ser-
vice providers can focus on the administration of their own
code, generally through virtualized gateways provided in the
cloud. Most of the time, this is easy and fast. In contrast,
managing business code running on field gateways is more
complicated and time-demanding. In the telecommunica-
tions domain, the administration of gateways (e.g., Internet
boxes, set-top-boxes, etc.) is generally delegated to teams of

experts; these teams are often overwhelmed by maintenance
and evolution requests. Such organization causes delays that
are not in line with customers’ expectations. A third major
architectural benefit relates to integration. It is clearly much
easier to adopt cloud-to-cloud integration (as illustrated by
Fig. 1) to connect heterogeneous devices rather than imple-
menting local integration. This is especially true when inte-
grating devices that use new field buses or lack open APIs
for integration. Cloud-to-cloud integration requires sharing
data format and semantics but requires no additional tricky
code since smart devices are already connected to and man-
aged in a cloud.

As explained, cloud infrastructures and underlying
organizations meet the requirements of complex analytics
services. Today, however, emerging new services impose
requirements that cannot be met by cloud-based architec-
tures (Chiang and Zhang 2016; Shi et al. 2016). For instance,
some services implement time-critical control loops that
sense and act upon the environment. These services can-
not be executed in the cloud due to unpredictable delays or
insufficient bandwidth. Security also seriously challenges
current architectures for several reasons. First, users are not
comfortable with the idea of personal data being stored in
clouds or data centers they do not trust. For instance, smart
speakers connected to the cloud are not accepted by a grow-
ing crescendo of people concerned with eavesdropping.
Further, the way cloud-based services are run raises issues.
Cloud solutions for security rely on perimeter-based protec-
tion. If the perimeter is endangered, the common counter-
measure is to take the system offline (Chiang and Zhang
2016). This causes service disruption in all the physical
entities (e.g., homes, businesses) managed by the corrupted
cloud. Finally, in economical and ecological terms, it does
not appear opportune to transport and store huge amounts
of data that could instead be processed and used in gateways
located closer to data sources.

Executing services at the gateway level or even in situ is,
however, very complex due to the dynamic, heterogeneous,
and stochastic nature of the pervasive computing environ-
ments themselves. This is further complicated by the fact
that gateways and in situ devices have limited resources that
must be managed explicitly. Streamlining the production of
fog-level services will require developers and system admin-
istrators to be equipped with new software engineering tools.

A common approach is to introduce an execution platform
that provides a development model and a set of technical
services. This can be done at the operating system level, like
!-stack (Xu et al. 2017) for instance, or at a higher level. In
the latter case, the term middleware is generally introduced.

Making a distinction between the execution platform
and the hosted services lowers complexity in terms of code,
debug, configuration, and administration operations. Dec-
ades of research in pervasive computing have led to many

Fig. 1 Smart home services infrastructure

Pervasive computing middleware: current trends and emerging challenges

1 3

solutions for individual components of such middleware.
In the next section, we examine the state of the art in mid-
dleware for pervasive computing. A general takeaway is
that, while we know how to build and connect individual
solutions, it remains hard to flexibly and adaptively combine
them. That is, we lack a fluid pervasive computing ecosys-
tem that integrates these individual advances in support of
envisioned applications. This motivates a need for middle-
ware solutions that support elastic pervasive computing,
embodying techniques that optimize across implementation
options that include in-situ or on-device processing, fog inte-
gration, or off-loading entirely to the cloud. In integrating
these options, middleware must still provide seamless inter-
active experiences, which may demand revisiting antique
concepts like graceful degradation, lazy transaction process-
ing, prefetching and other challenges addressed in classi-
cal distributed systems. Registries listing available services
must be made more expressive to expose the qualitative ram-
ifications of the myriad options without exposing developers
(or users!) to the complexity of making an explicit decision.

3 State of the art

In this section we overview the state of the art and the cur-
rent trends in pervasive computing middleware. Although
there are several approaches and proposals that go in the
directions of filling the previously identified gaps, they still
exhibit several limitations and leave open several challenges
that we elaborated upon in Sect. 4.

3.1 Pervasive computing platforms

As introduced before, software engineering principles and
tools are needed to support the production and adminis-
tration of pervasive computing applications. Today, most
applications are built on top of specific platforms, or middle-
ware, that provide a number of technical services to facilitate
interaction (communication), context-awareness, adaptation,
and self-awareness. Modern platforms also provide domain-
specific languages, often embedded in existing popular lan-
guages like Java. Such an approach relieves programmers
from tedious, hard-to-debug code and moves part of the
complexity to the supporting platform.

Pervasive computing platforms can be complex and based
on advanced architectures, as illustrated in Fig. 2.

Many platforms are now based on service-oriented
computing, a compositional approach where applications
are built through late composition of independent soft-
ware elements, called services (Chollet et al. 2016; Papa-
zoglou 2003). A service is characterized by the functions
it provides. It is a software resource that is described and
published by a provider in a service registry, sometimes

called a service broker. The registry acts as an intermedi-
ary between service providers and consumers. More pre-
cisely, service providers publish service descriptions in
the registry. Service consumers can send queries to the
registry to retrieve the available services meeting their
requirements. Once a service has been selected, the con-
sumer and provider can negotiate a contract specifying
how the service is to be used. The next step, of course, is
service invocation.

In the pervasive computing domain, service orientation
promotes the development of modular, dynamic applications
that can self-adapt to contextual evolution. Here, applica-
tions are built from loosely coupled services that can be
distributed on different devices or computing nodes. Let us
note also that the service-oriented approach offers excellent
opportunities to achieve software application dynamism and
is used more and more to build autonomic software sys-
tems (Lalanda et al. 2013).

Not surprisingly, an important number of service-oriented
platforms related to pervasive computing applications have
been developed over the years. Depending on their main
field of application and the desired properties, various
implementations of SOA principles have been proposed.
In just the smart home domain, well known platforms like
PCOM (Becker et al. 2004), iCasa (Escoffier et al. 2014),
ubiSOAP (Caporuscio et al. 2012), SAI (Paganelli et al.
2010) nSOM (Familiar et al. 2012), AutoHome (Bourcier
et al. 2011), DigiHome (Romero et al. 2013 or Microsoft’s
HomeOS (Dixon et al. 2012 propose different SOA imple-
mentations. While this level of activity is important for
development, such diversity prevents services and appli-
cations developed on different middleware platforms from
cooperating.

The service paradigm in itself is however not sufficient to
easily build and manage pervasive computing applications.
It has to be complemented, in a middleware or platform, by
a number of technical services to deal with various forms

Fig. 2 Pervasive computing platform architecture

 C. Becker et al.

1 3

of communication, context modeling, data storage, deploy-
ment, or interoperability.

In the following, we structure our discussion along exist-
ing interaction models and service discovery mechanisms,
followed by crucial technical services like mediation and
context management. We then discuss deployment and
configuration as well as adaptation support. We do not aim
for a complete survey of the state of the art, rather we pre-
sent exemplary approaches to aid our discussion of open
challenges.

3.2 Interaction models

While many early projects did not build on top of middle-
ware platforms but instead directly employed socket com-
munication or direct communication with the hardware, with
increasingly complex applications, interaction models have
shifted. To support the growing demands of applications,
a number of projects have emerged that explore different
interaction models and supporting protocols.

Many proposals support traditional remote procedure call
(RPC) or object-based interaction protocols. Such a choice
enables adopting these widely assessed and understood
models in the context of pervasive computing. Gaia (Román
et al. 2002) is based on CORBA’s Interoperability Protocol
(IIOP) and thus provides an RPC based abstraction. IIOP
is well documented and seamlessly enables the integration
of existing backends and interoperability bridges for Gaia.
Base (Becker et al. 2003) also provides application devel-
opers an RPC style programming abstraction. Its extensible
microkernel provides means to map these abstractions to
event-based or RPC based interoperability protocols. Finally,
there are also approaches that use OSGi’s (2007) object
model and extend this by remoting, e.g., iPOJO (Escoffier
et al. 2007) and P2PComp (Ferscha et al. 2004). The under-
lying object model results in RPC-like interaction protocols.

Several proposals also exist that extend the tuple space
interaction protocol (as from the original proposal of the
Linda language Ahuja et al. 1986), for their adoption in the
support of interactions in pervasive computing systems.
The adoption of the tuple space interaction model promotes
mediated interactions between application components and
services (in the form of putting or getting information from
a tuple space) that can interact and synchronize even without
knowing each other in advance. For instance, extending from
one.world (Grimm 2004) is a tuple space based middleware
built using Java objects. Similar to one.world, iROS (Johan-
son et al. 2002) is based on a tuple space based architecture,
the Event Heap. Events are stored in the tuple space and age
over time, allowing requests to gracefully expire if there is
no recipient.

Extension of the tuple space model have also been con-
ceived to more flexibly support interactions in the presence

of mobility. LIME (Murphy et al. 2001), for instance, adopts
a solution based on a multiplicity of mobile tuple spaces that
can merge with each other depending on mobility patterns,
thus enabling flexible dynamic event-based coordination
across tuple spaces, in contrast to one.world and iROS where
the tuple space is mostly for supporting persistent informa-
tion. The TOTA middleware (Mamei and Zambonelli 2004)
proposes a distributed middleware architecture based on a
multiplicity of tuple spaces that can interact with each other
in order to build distributed field-like structures support-
ing spatially-aware interactions between mobile devices and
mobile services.

Again, this is not an exhaustive survey, but the diversity
demonstrates that many interaction models have emerged for
pervasive computing-like environments.

3.3 Discovery

Discovery is also a crucial service for any pervasive com-
puting platform. Service discovery aims to find services for
potential interaction. Different interaction models employ
different service discovery patterns, though the patters also
show some similarities. In particular, each interaction model
uses advertisement messages and most systems use a lookup
mechanism. However, the content of advertisement mes-
sages differs for different interaction models. For instance,
event categories are advertised in a publish-subscribe model
while service descriptions are advertised in the client-server
and tuple space models. To counter this problem, event cat-
egories can be mapped to a service.

Industrial standards have also been established, e.g.,
Jini (Arnold et al. 1999) and UPNP (2016). While Jini pro-
vides a service oriented approach that is realized by a federa-
tion of lookup services, UPnP is a suite of protocols that can
be combined in a flexible way to create discovery services.
Obviously, pervasive computing environments must ensure
that new services are found in a timely manner but should
not spend too much energy on the discovery task; therefore
related research has investigated aspects like energy man-
agement. Sandman (Schiele et al. 2004) is an example of a
flexible discovery service that is mediator-based and allows
to scheduled wake-up times of service providing nodes in
order to save energy.

The state of the art and the state of the practice indicate
that discovery is a well understood basic service of pervasive
computing environments. An exception can be apparently
represented by those middleware systems that provide tuple
spaces as the only mean of interaction between components.
In these cases, services and components can interact indi-
rectly, without a priori knowledge each other. However, if
the middleware provides interactions though a multiplic-
ity of distributed tuple spaces, the discovery problem does
not fully disappear, but simply translates in discovering the

Pervasive computing middleware: current trends and emerging challenges

1 3

existence—not of other components/services—but of the
tuple spaces themselves.

3.4 Mediation

Originally, the mediation activity corresponded to the timely
integration of disparate information sources (Wiederhold
and Genesereth 1997) and was first used to integrate data
stored in databases, knowledge bases, or even file systems.
Those initial principles are now used to enable interoper-
ability across diverse pervasive computing systems and plat-
forms (Roth et al. 2018). In particular, a mediation solution
can implement operations such as:

– Communication alignment to enable applications using
different communication protocols to inter-operate.

– Syntactic alignment to homogenize data formats; this
operation often relies on an intermediary format, com-
monly called a pivot.

– Semantic alignment to align data semantics, in the
absence of recognized and used standards in a domain,
applications develop different ontologies to represent
(static and dynamic) knowledge.

– Non-functional property alignment to ensure certain
quality properties for the integration, for instance secu-
rity or availability.

– Persistency to keep track of all exchanges between appli-
cations; the mediation layer can accomplish this through
logging support for all requests, responses and data.

– Monitoring to collect data for to verify that the expected
quality of service is achieved.

Improved integration of mediation is still an active area of
research in order, for instance, to deal with systems of sys-
tems or to make pervasive computing platforms interoperate.

3.5 Context support

Research on context-aware computing dates back to the
1990s. Schilit et al. (1994) introduced a still current defi-
nition of context and details of a comprehensive context
management platform. Since then, a number of context
management platforms with specific properties have been
introduced.

Nexus (Lehmann et al. 2004) aimed at a global federa-
tion of world models that represent local context. Register
structures and a query and modeling language are required
for scalability. Aura’s context service (Judd et al. 2003)
also federates context but on a smaller scale and integrates
context management using a SQL-like approach. VanSy-
ckel (Becker et al. 2013) describes an extension of context
management where prediction algorithms can be integrated
to allow applications to adapt proactively.

Context can also be used implicitly, as e.g., in the already
mentioned TOTA (Mamei and Zambonelli 2004), where
the spatial distribution of data is implicitly used as context.
More recently, contextual information has been represented
as services (Aygalinc et al. 2016). Here, context appears as
a dynamic set of services. Depending on the availability of
context sources and the applications needs, different services
can be published and withdrawn.

3.6 Configuration and deployment

A major challenge of pervasive computing environments is
the mapping of application requirements to available ser-
vices. These environments differ widely and typically there
is no expert present when applications are deployed or con-
figured. Some early approaches used scripting languages,
which are obviously not suitable for end-user configuration.
Gaia (Kon et al. 2000) started with a script-based configura-
tion and extended this by an automated approach that used
an operator-based configuration specification (Ranganathan
et al. 2005). O2S (Paluska et al. 2008) has evolved over the
years. Starting with goal oriented computing and specifying
applications by goals that are automatically mapped to tech-
niques, O2S then developed an abstraction layer of assem-
blies for composition. PCOM (Becker et al. 2004) relies on
explicit contracts of components in order to resolve bindings
and configure or adapt an application.

Some visual approaches to configuration programming
have been investigated as well. JigSaw (Humble et al. 2003)
and the approach in Weis et al. (2016) show promising
results in usability. However, configuration and deployment
of pervasive computing systems remains challenging and
error prone, demanding additional future research.

3.7 Application adaptation

Adaptation—in contrast to configuration—describes the
dynamic reconfiguration of an application during runtime.
In most cases this is reactive and is based on changes in
an application’s execution context, e.g., services becoming
unavailable or a change in personal context. There are few
approaches that use prediction to support proactive adapta-
tion. While reactive adaptation has to be performed when
an application can no longer execute correctly (Becker and
Schiele 2003), proactive adaptation also consider the quality
of prediction, costs for adaptation, utility of configuration
and penalty if a prediction fails (VanSyckel et al. 2013).
Basically, applications can choose whether they adapt their
structure to the change in the execution environment, or—if
possible—they change the context (VanSyckel et al. 2014).

Since adaptation is key to pervasive computing, most
middleware, applications, and systems offer support for
adaptation. The discussion in Harter et al. (1999) provided

 C. Becker et al.

1 3

one of the first fundamental descriptions of such adapta-
tion. Often, the configuration process is used for adaptation
as well (Becker et al. 2004; Kon et al. 2000; Ranganathan
et al. 2005). A final interesting approach to adaptation is
realized by iROS (Johanson et al. 2002), in which applica-
tion components are separated by the so-called event heap.
Requests can time out if no matching service answers the
request. Applications have to detect this by time-outs and
react accordingly.

3.8 Edge-, cloud-support and scheduling

A recent trend in pervasive computing is the incorporation of
cloud and edge resources. Edge devices can be other mobile
devices in the vicinity but also services in the nearby access
network. The latter allows mobile devices to rely on data and
services that are provided with a minimum delay compared
to cloud and grid services (Satyanarayanan 2017).

There are several research questions in this area that have
been investigated in this area. A core mechanism in order
to utilize functionality of other devices for mobile com-
puting is code-offloading. Maui (Cuervo et al. 2010) is a
prominent approach here. In the domain of cloud and edge
computing the notion of serverless computing (Baldini et al.
2017) describes approaches in which computation is mod-
eled as closures that contain data and the code that operates
on the data. Openwhisk1 and Amazon Lambda2 are exam-
ples that enable lightweight computation in cloud environ-
ments. There are also the beginnings of efforts that combine
serverless computing and pervasive computing (Heck et al.
2018). Tasklets started as an abstraction for cloud comput-
ing (Schafer et al. 2016) and addressed scheduling tasks in
pervasive computing in later work (Edinger et al. 2017).
A similar approach is presented in Cicconetti et al. (2019).
Overall, integrating edge capabilities into pervasive com-
puting appears promising but requires substantial research
with respect to suitable programming abstractions, design
methodology and runtime support by middleware platforms.
Further, the tradeoffs between the cloud, edge, and mobile
devices should be elastic this notion of elastic deployments
as pervasive computing middleware services is also yet to
be explored.

4 Open challenges

The gaps identified previously highlight a neglected issue
in pervasive computing middleware, namely, an integrated
view of the effective design, development, and deployment

of pervasive computing environments (Zambonelli 2017).
Given this broader view, it becomes reasonable to ask what
are the most suitable software engineering abstractions and
system capabilities that are particular to pervasive comput-
ing middleware.

4.1 Understanding the players

From the methodological viewpoint, traditional approaches
to engineering information systems attack the analysis of
system requirements by assuming the existence of well-
defined “end-users”, who will interact with the resulting
system, and “system administrators”, who are responsible
for configuring the system. Together, these two sets of actors
are the parties responsible for eliciting the system’s require-
ments. Traditional approaches also typically adapt a purely
functional (typically service-oriented) perspective. However,
as we have seen, the situation in pervasive computing envi-
ronments is much more complex.

Indeed, in such environments, the actors involved may
belong to many different categories and may take on much
more complex and overlapping roles. For instance, perva-
sive computing deployments often have global administra-
tors, typically the owners of an overall pervasive system
and infrastructure, or at least the people empowered to exert
control over the configuration, structure, and overall func-
tioning of its applications and services. This is also some-
times referred to as the enterprise. There are often also local
administrators, who typically own (whether permanently
or on a temporary basis) a limited portion of the pervasive
computing system and are empowered to enforce local con-
trol for some portion of the infrastructure for some period of
time. Then there are users, who typically have some limited
access to the overall configuration of the applications and
services, i.e., users may not be able to impose new policies
on the broad system, but they may nevertheless be entitled to
exploit the provided services and in some way configure how
such services are provided. That is, user-level programming
becomes much more mainstream in pervasive computing
environments. What is an IFTTT rule3 if not a user-written
program?

The three classes of actors identified above are of a very
general nature. For example, considering a scenario of a
smart hotel, the above categories can correspond, respec-
tively, to: the hotel managers imposing global policies on,
e.g., heating level and surveillance strategies; the organizers
of a conference who may be entitled to impose the required
behaviours and policies on the meeting rooms they have
rented; and regular clients, who need to access pervasive
services in their room, and to some extent configure them.

1 http://openw hisk.org.
2 http://aws.amazo n.com/lambd a. 3 https ://ifttt .com/.

http://openwhisk.org
http://aws.amazon.com/lambda
https://ifttt.com/

Pervasive computing middleware: current trends and emerging challenges

1 3

Similarly, in the area of urban mobility, the actor categories
could correspond to, respectively: mobility managers, park-
ing facility owners or car sharing companies, and private
drivers. Accordingly, if a pervasive computing environment
and its middleware are not properly developed and config-
ured to account for the different needs of the above classes of
actors, and if the above a classes are not properly accounted
for the analysis phase, the final system may be unacceptable
or unusable.

4.2 Pervasive computing ecosystems

Current pervasive computing architectures are centralized
and standalone. That is, they comprise a number of devices,
sometimes with direct interactions, linked to a centralized
gateway. The purpose of such a gateway is to provide value-
added services based on information collected by devices (as
said earlier, this is not even so common since most gateways
are only used to send information up to the cloud). So, there
is no pervasive ecosystem per se available today.

This inhibits the development of advanced pervasive
computing applications, where a number of devices and
gateways have to communicate and then interoperate in
order to meet their requirements. Several approaches are
currently investigated to enable this broader vision of per-
vasive infrastructure.

The IoT European Platforms Initiative (IoT-EPI),4 for
instance, is an interesting initiative for IoT platform devel-
opment. Its aim is to build a sustainable IoT ecosystem
in Europe, and it comprises seven projects of which four
revolve around interoperability at the communication, pro-
tocol, or service level. These projects aim to provide inter-
operability between IoT platforms through a uniform access
to services (often provided by some sort of dedicated hub).
Those approaches state that interoperability with legacy
devices is ensured and mainly focus on the semantic data
heterogeneity. Here, mediation plays a major role that is
explored, for instance, through the use of Enterprise Service
Bus (ESB) style approaches.

These different and complementary initiatives are notice-
able in the sense that they show that a service-based view of
the infrastructure allows the construction of pervasive com-
puting ecosystems. However, they still have considerable
limitations regarding data management. They see pervasive
computing elements essentially as service providers. The
fact is that most of them are also data providers. In some
domains, like smart manufacturing, they are even intense
data providers. Work is needed to allow interactions of
almost continuous data flows between pervasive elements
in service-based environments. We believe that, in the near

future, several interaction paradigms will have to coexist in
pervasive computing ecosystems.

4.3 The architecture of a system

From a system abstraction perspective, the functional
(service-oriented) view that is typically adopted in “Web
of Things” approaches, does not fit well in pervasive com-
puting environments for multiple reasons. In addition to
“things” that have basic sensing and actuating functionali-
ties, one should consider the presence of smarter things that
can be activated to autonomously perform some long-term
activities associated with their capabilities and with their
role in the socio-physical environment in which they are
situated. These smarter devices can range from cleaning
robots to more sophisticated autonomous personal assistants.
Second, pervasive computing applications and systems are
not simply concerned with providing a suite of coordinated
functionalities, but they must often also globally regulate the
activities of the system on a continuous basis, according to
policies established by its stakeholders and their objectives.

As a consequence, developing pervasive computing ser-
vices and applications, other than defining and implementing
service functionalities, most often implies defining policies
and goals that are then associated to services and applica-
tions. In general terms, policies and goals represent desirable
“states of affairs” to strive for. In the context of a pervasive
computing system, policies and goals represent specific con-
figurations of the system (or of a portion of the system) that
applications and services are in charge of eventually produc-
ing and/or maintaining. Policies and goals may be defined to
apply to the whole system (as realized by global managers),
or to apply to specific sub-portions of the systems (realized
by local managers).

In this context, the traditional service-oriented perspec-
tive of software engineering methodologies and the strong
emphasis on services and service composition fall short.
On the one hand, software engineering methodologies must
properly analyze and design not only services, but also
goals and policies, and must provide guidelines for enabling
designers to enact these goals and polices dynamically in
the system, aided by middleware. One the other hand, mid-
dleware for supporting future pervasive computing systems
must support the existence of autonomous goal-oriented
entities, coordinating with each other towards the achieve-
ment of goals and policies, either at the local or at the global
level, supported by increased autonomy and intelligence in
the devices.

Apart from mapping high level objectives to basic func-
tionality via policies and and goals, the application structure
itself may change due to integrating fog and edge resources.
Identifying, specifying, and scheduling offloadable parts
of an application needs end-to end support from design to 4 https ://iot-epi.eu.

https://iot-epi.eu

 C. Becker et al.

1 3

runtime. Especially at runtime user expectations and require-
ments have to be met and mapped to the dynamic execu-
tion environment, e.g., if access to a private cloud or edge
resource is not possible, offloading of sensitive data/compu-
tation should not be done. Units of computation need to con-
tain data and code. This resembles a closure for computing a
task. Integrating this into software engineering methodology
and supporting by middleware architectures is a challenge
for future pervasive computing systems.

4.4 Supporting autonomy and intelligence

As discussed above, most current middleware systems for
pervasive computing and the IoT assume a service-oriented
perspective (Razzaque et al. 2016). That is, their primary
goal is to coordinate and combine the execution of services
and contextual events. Thus, the question of what additional
(and possibly different) features a middleware should inte-
grate to properly support autonomous components arises.
We believe that much can be taken from the lessons and
experiences of research in multiagent systems (Wooldridge
2009).

As is the case in pervasive computing, deploying and
executing a distributed multiagent system (i.e., a system of
interacting autonomous software agents), calls for a suitable
middleware infrastructure. However, unlike traditional per-
vasive computing middleware, most research in the area of
agent-based middleware has explicitly focused on the neces-
sary support for autonomy and distributed decision making.
Supporting autonomy implies giving agents the “freedom
of action” to eventually pursue their goals, but at the same
time implies defining means to monitor autonomous actions,
guarantee such actions are “safe” from an overall system
viewpoint, and possibly reclaim some degree of autonomy
from components whenever necessary in order to preserve
some global goal (Mostafa et al. 2017). Supporting distrib-
uted decision making implies more than simply composing
a set of services according to specific orchestration rules and
constraints. It implies supporting a variety of negotiation
protocols (Beer et al. 1999) that enable autonomous com-
ponents to dynamically reach consensus on their courses of
action, preserving their autonomy in strategy, yet ensuring
that such protocols adhere to “social norms” (Aldewereld
et al. 2016).

Looking further into the future, another area in which
multiagent systems research could suggest important guide-
lines for future pervasive computing middleware concerns
knowledge-based reasoning. As of today, in the pervasive
computing and IoT arenas, sensors are treated almost exclu-
sively as producers of raw data streams and events. Advance-
ments in machine learning techniques, and in the increase of
computational power that can be embedded in everyday sen-
sors and objects, will soon make it possible for such devices

to locally analyze and classify streams of sensed data to
extract relevant semantic knowledge (Lippi et al. 2018).
We can also expect that such capabilities will evolve to rec-
ognize more complex situations, making them capable of
causally connecting individual patterns into composite situ-
ations, that is, making assertions about what is happening
around them. For instance, a set of wearables may construct
the assertion that “Heart rate increased due to a training
session” by integrating the results of sensing two distinct
patterns. Or a camera may perform scene understanding, by
relating the individual objects it recognizes, e.g., “patient
Marco has left the stretcher in corridor X”. Similarly, we can
soon expect actuators to become not only capable of execut-
ing simple tasks, but they will also be able to understand
and interpret goals at the semantic knowledge-based level,
and possibly argue about their capabilities to achieve such
goals. In an environment populated by such smart, autono-
mous and semantic sensors and actuators, coordination will
have to naturally evolve from negotiation towards distrib-
uted multi-party conversations, or dialogues (Amgoud et al.
2000), where the devices discuss and argue with each other
to reach a common understanding of situations around, talk
to each other to agree on common courses of actions, and
possibly dynamically re-negotiate their goals and beliefs.
Clearly, as for negotiation protocols, the capability of sup-
porting complex dialogues between such smart components
will call for specifically conceived functionalities to be inte-
grated in future pervasive computing middleware systems.

4.5 Humans in the loop

The vision of a future pervasive environment populated by
smart goal-oriented components acting autonomously in our
everyday environments cannot overlook humans as a vital
component of the scenario. Humans, in their role of ultimate
“users” (in a broad sense) of a pervasive computing system,
are the ones that must ultimately be entitled to impose on
components to act (and possibly how to act) towards the
achievement of specific goals or states in the environment in
which they live. To this end, humans must be given the abil-
ity to inspect, at any time, the current behaviour of the per-
vasive computing system. When the environment includes
autonomous goal-oriented components, this also implies
enabling the human to understand how the system perceives
the current state of the affairs, what goals it is currently pur-
suing and with what planned actions, and why those goals
are the “right” ones, given the perceived state.

The above issue can be seen as a specific instance of
the more general issue—now a very hot one, due to the
increased difficulty of understanding the behaviour of mod-
ern deep learning systems—of promoting “explainable”
systems (Gunning 2017). In this regard, the perspective of
future pervasive computing systems that—yes—devices

Pervasive computing middleware: current trends and emerging challenges

1 3

can integrate deep learning components to understand situ-
ations and plan actions, they can converse to justify their
choices, and they can carry out these choices in real time,
takes pervasive computing in the correct direction. Indeed,
argumentation-based conversations are crucial to help users
understand what is happening and are also a mean to enable
users to effectively participate in the pervasive computing
space.

The ability for humans to participate in the conversational
process, other than for understanding, envisions humans as
actual critical component of the system: they can partici-
pate by providing sensing capabilities (thus acting as smart
semantic sensors), and they are inherently intelligent actua-
tors. This convergence between human and software entities
is witnessed by many modern socio-technical systems (Zam-
bonelli 2012), and it demands researchers and practitioners
to conceive, design, and develop systems seamlessly inter-
acting with other software systems and with human agents
as well.

Finally, conversation may be a useful and effective user-
level way to program a system and configure its behaviour.
The need to enable easy and flexible ways to support user-
level programming is increasingly recognized as essential.
Yet current approaches to user-level programming are very
simple, enabling the simple configuration of some device
parameters and the definition of cause-effect relations (Kubi-
tza and Schmidt 2017). The approach of current chatbot-
based home devices such as Google Home and Amazon
Alexa is promising but must evolve to become an enabler for
real conversations among humans and devices in ways that
allow collaboratively understanding and achieving goals.

5 Conclusions

After three decades of research in pervasive and ubiquitous
computing, there is a lot of common understanding and
many fundamental research questions have been addressed.
Core services, such as context-management and service dis-
covery, are well explored. Interaction models from service
oriented models to loosely coupled event based communica-
tion have been successfully deployed. However, there remain
inherent open challenges that inhibit the realization of the
long vision of pervasive computing.

Interoperability is one of these challenges. It will be a
major requirement in the near future since many greenfield
developments will be made of distributed and often het-
erogeneous platforms and devices that will need to com-
municate and cooperate. Interoperability is additionally
challenged by the need to incorporate legacy systems (both
hardware and software). In addition to all the services and
devices present at a time, potentially all devices from ear-
lier installations must also be dealt with and seamlessly

integrated. This exceeds syntactic and semantic mappings.
New services, sensors, and actuators may affect systems
differently, leading to new compositions that provide a bet-
ter utility than existing ones—or ones that lead to conflicts.

End-users with little or no knowledge and interest of
configuration, computer technology, etc., will often be the
only humans who are present at deployment, runtime, and
maintenance. This is especially true in private places like
homes, offices, and ... smart-phones! Means will be needed
to keep human in the loop without being overwhelmed by
technology.

Complexity and dynamism are inherent in these envi-
ronments. When more and more everyday items commu-
nicate, provide sensor information, and allow outside enti-
ties to set their state, systems will have to be tailored to
a specific environment. This, in most cases, will have to
be done by the user. Application composition and schedul-
ing remain cornerstone open challenges. Many early and
existing approaches to pervasive computing are based on
closed scenarios, e.g., smart homes, and on service-oriented
interaction. Incorporating edge and fog devices leads to new
challenges in the application architecture as well as in sched-
uling a distributed, Pervasive Computing application.

As of today, there is no silver bullet. But a number of
different research areas converge and will help to conquer
the challenges. Autonomic techniques, artificial Intelli-
gence mechanisms, and efficient algorithms will provide
means for configuration in dynamic environments. Human
computer interaction has explored a number of applica-
tions and interaction models. This in combination with
efficient algorithms, interaction models of multi agent
systems and systems research can provide the necessary
balance between the users expectations and skills in order
to configure and manage the environment.

Even after such a long period of research middleware
for pervasive computing remains an exciting research field.

References

Ahuja, S., Carriero, N., Gelernter, D.: Linda and friends. IEEE Com-
put. 19(8), 26–34 (1986)

Aldewereld, H., Dignum, V., Vasconcelos, W.W.: Group norms for
multi-agent organisations. TAAS 11(2), 15:1–15:31 (2016)

Amadeo, M., Campolo, C., Iera, A., Molinaro, A.: Named data net-
working for IoT: an architectural perspective. In: Proceedings of
the 2014 European Conference on Networks and Communica-
tion, pp. 1–5, (2014)

Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using
argumentation. In: Proceedings Fourth International Conference
on MultiAgent Systems, pp. 31–38 (2000)

Arnold, K., Scheifler, R., Waldo, J., O’Sullivan, B., Wollrath, A.:
Jini Specification. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1999)

 C. Becker et al.

1 3

Asadi, A., Qant, Q., Mancuso, V.: A survey on device-to-device com-
munication in cellular networks. IEEE Commun. Surv. Tutor.
16(4), 1801–1819 (2014)

Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey.
Comput. Netw. 54(15), 2787–2805 (2010)

Baldini, I., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V.,
Mitchell, N., Muthusamy, V., Rabbah, R., Slominski, A., Suter,
P.: Serverless Computing: Current Trends and Open Problems,
pp. 1–20. Springer, Singapore (2017)

Becker, C., Schiele, G.: Middleware and application adaptation
requirements and their support in pervasive computing. In: 23rd
International Conference on Distributed Computing Systems
Workshops, 2003. Proceedings.(ICDCSW), vol. 00, p. 98, 05
(2003)

Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: BASE—a micro-
broker-based middleware for pervasive computing. In: Proceed-
ings of PerCom, pp. 443–451 (2003)

Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM–a compo-
nent system for pervasive computing. In: Proceedings of PerCom,
pp. 67–76 (2004)

Becker, C., VanSyckel, S., Schiele, G.: Ubiquitous information tech-
nologies and applications. Lecture Notes in Electrical Engineering
214(1) (2013)

Beer, M., d’Inverno, M., Luck, M., Jennings, N., Preist, C., Schroeder,
M.: Negotiation in multi-agent systems. Knowl. Eng. Rev. 14(3),
285–289 (1999)

Bello, O., Zeadally, S.: Intelligent device-to-device communication
in the internet of things. IEEE Syst. J. 10(3), 1172–1182 (2014)

Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its
role in the internet of things. In: Proceedings of the 1st Edition
of the MCC Workshop on Mobile Cloud Computing, pp. 13–16
(2012)

Bourcier, J., Diaconescu, A., Lalanda, P., McCann, J.A.: Autohome: an
autonomic management framework for pervasive home applica-
tions. TAAS 6(1), 8:1–8:10 (2011)

Caporuscio, M., Raverdy, P.-G., Issarny, V.: ubiSOAP: a service-ori-
ented middleware for ubiquitous networking. IEEE Trans. Serv.
Comput. 5(1), 86–98 (2012)

Chiang, M., Zhang, T.: Fog and iot: an overview of research opportuni-
ties. IEEE Internet Things J. 3(6), 854–864 (2016)

Cho, S., Julien, C.: ChitChat: Navigating tradeoffs in device-to-device
context sharing. In: Proceedings of the International Conference
on Pervasive Computing and Communications (2016)

Choi, K.W., Han, Z.: Device-to-device discovery for proximity-based
service in LTE-advanced systems. IEEE J. Sel. Areas Commun.
33(1), 55–66 (2015)

Chollet, S., Lalanda, P., Escoffier, C.: Extension of service-oriented
component models for dynamic environment. In: 2015 IEEE
International Conference on Services Computing, SCC 2015,
New York, NY, USA, June 27–July 2, 2015, pp. 648–655. IEEE
Computer Society (2015)

Cicconetti, C., Conti, M., Passarella, A.: Low-latency distributed com-
putation offloading for pervasive environments. In: Pervasive
Computing and Communications (PerCom), 2019 IEEE Interna-
tional Conference on. IEEE (2019)

Colin, A., Gerbert-Gaillard, E., Vega, G., Lalanda, P.: Service-oriented
autonomic pervasive context. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S., (eds.) Service-Oriented Computing - 14th Interna-
tional Conference, ICSOC 2016, Banff, AB, Canada, October
10-13, 2016, Proceedings, Volume 9936 of Lecture Notes in
Computer Science, pp. 795–809. Springer (2016)

Conti, M., Das, S., Bisdikian, C., Kumar, M., Ni, L., Passarella, A.,
Roussos, G., Troster, G., Tsudik, G., Zambonelli, F.: Looking
ahead in pervasive computing: challenges and opportunities in
the era of cyber-physical convergence. Pervasive Mobile Comput.
8(1), 2–21 (2012)

Cuervo, E., Balasubramanian, A., Cho, D., Wolman, A., Saroiu, S.,
Chandra, R., Bahl, P.: Maui: making smartphones last longer with
code offload. In: Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, pp. 49–62. ACM
(2010)

Dixon, C., Mahajan, R., Agarwal, S., Bernheim B.A.J., Lee, B., Saroiu,
S., Bahl, P.: An operating system for the home. In: Gribble, S.D.,
Katabi, D. (eds) Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2012,
San Jose, CA, USA, April 25-27, 2012, pp. 337–352. USENIX
Association (2012)

Edinger, Janick, Schäfer, Dominik, Krupitzer, Christian, Raychoud-
hury, Vaskar, Becker, Christian: Fault-avoidance strategies for
context-aware schedulers in pervasive computing systems. In:
2017 IEEE International Conference on Pervasive Computing
and Communications (PerCom), pp. 79–88. IEEE (2017)

Edwards, W.K., Grinter R.E.: At home with ubiquitous computing:
seven challenges. In: Abowd, G.D., Brumitt, B., Shafer, S.A. (eds)
Ubicomp 2001: Ubiquitous Computing, Third International Con-
ference Atlanta, Georgia, USA, September 30 - October 2, 2001,
Proceedings, volume 2201 of Lecture Notes in Computer Science,
pp. 256–272. Springer (2001)

Escoffier, C, Chollet, S., Lalanda, P.: Lessons learned in building per-
vasive platforms. In: 11th IEEE Consumer Communications and
Networking Conference, CCNC 2014, Las Vegas, NV, USA, Janu-
ary 10–13, 2014, pp. 7–12. IEEE (2014)

Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an extensible service-
oriented component framework. In: Proceedings of International
Conference on Services Computing (SCC), pp. 474–481. IEEE
(2007)

Familiar, M.S., Martínez, J.-F., López-Santidrián, L.: Pervasive smart
spaces and environments: a service-oriented middleware architec-
ture for wireless ad hoc and sensor networks. IJDSN 8, 725190
(2012)

Ferscha, A., Hechinger, M., Mayrhofer, R., Oberhauser, R.: A light-
weight component model for peer-to-peer applications. In: Pro-
ceedings of the International Conference on Distributed Comput-
ing Workshops, pp. 520– 527, 04 (2004)

Golrezaei, N., Molisch, A.F., Dimakis, A.G.: Base-station assisted
device-to-device communications for high-throughput wireless
video netowrks. In: Proceedings of ICC, June (2012)

Grimm, R.: One.world: experiences with a pervasive computing archi-
tecture. IEEE Pervasive Comput. 3, 22–30 (2004). 07

Gu, T., Pung, H.K., Zhang, D.Q.: A service-oriented middleware for
building context-aware services. J. Netw. Comput. Appl. 28(1),
1–18 (2005)

Gunning, D.: Explainable artificial intelligence (xai). Defense
Advanced Research Projects Agency (DARPA) (2017)

Guo, B., Zhang, D., Wang, Z., Yu, Z., Zhou, X.: Opportunistic IoT:
exploring the harmonious interaction between human and the
internet of things. J. Netw. Comput. Appl. 36(6), 1531–1539
(2013)

Harter, A., Hopper, A., Steggles, P., Ward, A., Webster, P.: The anat-
omy of a context-aware application. In: MOBICOM ’99, The Fifth
Annual ACM/IEEE International Conference on Mobile Comput-
ing and Networking, Seattle, Washington, USA, August 15–19,
1999., pp. 59–68, (1999)

Heck, M., Edinger, J., Schäfer, D., Becker, C.: Iot applications in fog
and edge computing: where are we and where are we going? In:
2018 27th International Conference on Computer Communication
and Networks (ICCCN), pp. 1–6. IEEE (2018)

Helal, S., Mann, W.C., El-Zabadani, H., King, J., Kaddoura, Y., Jansen,
E.: The gator tech smart house: a programmable pervasive space.
IEEE Comput. 38(3), 50–60 (2005)

Humble, J., Crabtree, A., Hemmings, T., Åkesson, K-P., Koleva, B.,
Rodden, T., Hansson, P.: “playing with the bits” user-configuration

Pervasive computing middleware: current trends and emerging challenges

1 3

of ubiquitous domestic environments. In: UbiComp 2003: Ubiqui-
tous Computing, 5th International Conference, Seattle, WA, USA,
October 12-15, 2003, Proceedings, pp. 256–263 (2003)

Jenson, S.: The physical web. In: Proceedings of CHI’14: Extended
Abstracts on Human Factors in Computing Systems, pp. 15–16
(2014)

Johanson, B., Fox, A., Winograd, T.: The interactive workspaces pro-
ject: experiences with ubiquitous computing rooms. IEEE Perva-
sive Comput. 1(2), 67–74 (2002)

Judd, G., Steenkiste, P.: Providing contextual information to pervasive
computing applications. In: Proceedings of the First IEEE Interna-
tional Conference on Pervasive Computing and Communications
(PerCom’03), March 23–26, 2003, Fort Worth, Texas, USA, pp.
133–142 (2003)

Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhã, C., Camp-
bell, R.H.: Monitoring, security, and dynamic configuration with
the dynamictao reflective ORB. In: IFIP/ACM International Con-
ference on Distributed Systems Platforms, Middleware ’00, pp.
121–143. Springer, Berlin, Heidelberg (2000)

Kubitza, T., Schmidt, A.: meSchup: a platform for programming inter-
connected smart things. IEEE Comput. 50(11), 38–49 (2017)

Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic computing—
principles, design and implementation. Undergraduate Topics in
Computer Science. Springer (2013)

Lalanda, P., Morand, D., Chollet, S.: Autonomic mediation middle-
ware for smart manufacturing. IEEE Intern. Comput. 21(1), 32–39
(2017)

Lehmann, O., Bauer, M., Becker, C., Nicklas, D.: From home to world-
supporting context-aware applications through world models. In:
Proceedings of the Second IEEE International Conference on Per-
vasive Computing and Communications (PerCom 2004), 14–17
March 2004, Orlando, FL, USA, pp. 297–308 (2004)

Lin, X., Andrews, J., Ghosh, A., Ratasuk, R.: An overview of 3GPP
device-to-device proximity services. IEEE Commun. Mag. 52(4),
40–48 (2014)

Lippi, M., Mamei, M., Mariani, S., Zambonelli, F.: An argumentation-
based perspective over the social iot. IEEE Internet Things J. 5(4),
2537–2547 (2018)

Liu, C.H., Yang, B., Liu, T.: Efficient naming, addressing and pro-
file services in internet-of-things sensory environments. Ad Hoc
Netw. 18, 85–101 (2014)

Mamei, M., Zambonelli, F.: Programming pervasive and mobile com-
puting applications with the tota middleware. In: Second IEEE
Annual Conference on Pervasive Computing and Communica-
tions, 2004. Proceedings of the, pp. 263–273 (2004)

Mayer, S., Inhelder, N., Verborgh, R., Van de Walle, R., Mattern, F.:
Configuration of smart environments made simple: combining
visual modeling with semantic metadata and reasoning. In: Pro-
ceedings of the 2014 International Conference on the Internet of
Things, pp. 61–66 (2014)

Mostafa, S.A., Ahmad, M.S., Mustapha, A.: Adjustable autonomy: a
systematic literature review. Artif. Intell. Rev. (2017)

Murphy, A.L., Picco, G.P., Roman, G.: Lime: a middleware for physical
and logical mobility. In: Proceedings 21st International Confer-
ence on Distributed Computing Systems, pp. 524–533 (2001)

OpenConnectivityFoundation. UPnP Specifications, September (2016)
OSGi Alliance: OSGi Service Platform Core Specification Release

4, (2007)
Paganelli, F., Parlanti, D., Giuli, D.: Message-based service broker-

ing and dynamic composition in the SAI middleware. In: 2010
IEEE International Conference on Services Computing, SCC
2010, Miami, Florida, USA, July 5–10, 2010, pp. 474–481. IEEE
Computer Society (2010)

Paluska, J.M., Pham, H., Saif, U., Chau, G., Terman, C., Ward, S.:
Structured decomposition of adaptive applications. Pervasive
Mobile Comput. 4(6), 791–806 (2008). PerCom 2008

Papazoglou, M.P.: Service-oriented computing: concepts, character-
istics and directions. In: 4th International Conference on Web
Information Systems Engineering, WISE 2003, Rome, Italy,
December 10-12, 2003, pp. 3–12. IEEE Computer Society,
(2003)

Quevedo, J., Antunes, M., Corujo, D., Gomes, D., Aguiar, R.L.: On
the application of contextual iot service discovery in information
centric networks. Comput. Commun. 89, 117–127 (2016)

Ranganathan, A., Chetan, S., Al-Muhtadi, J., Campbell, R.H., Micku-
nas, M.D.: Olympus: a high-level programming model for per-
vasive computing environments. In: Third IEEE International
Conference on Pervasive Computing and Communications, pp.
7–16 (2005)

Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Mid-
dleware for internet of things: a survey. IEEE Inter. Things J.
3(1), 70–95 (2016)

Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H.,
Nahrstedt, K.: Gaia: a middleware platform for active spaces. SIG-
MOBILE Mob. Comput. Commun. Rev. 6(4), 65–67 (2002)

Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa, R., Rouvoy,
R., Eliassen, F.: The digihome service-oriented platform. Softw.
Pract. Exp. 43(10), 1205–1218 (2013)

Roth, F.M., Becker, C., Vega, G., Lalanda, P.: XWARE—a customiz-
able interoperability framework for pervasive computing systems.
Pervasive and Mobile Comput. 47, 13–30 (2018)

Satyanarayanan, M.: The emergence of edge computing. Computer
50(1), 30–39 (2017)

Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for
VM-based cloudlets in mobile computing. IEEE Pervasive Com-
put. 8(4), 14–23 (2009)

Schafer, D., Edinger, J., Paluska, J.M., VanSyckel, S., Becker, C.:
Tasklets: “better than best-effort” computing. In: Computer Com-
munication and Networks (ICCCN), 2016 25th International Con-
ference on, pp. 1–11. IEEE (2016)

Schiele, G., Becker, C., Rothermel, K.: Energy-efficient cluster-based
service discovery for ubiquitous computing. In: Proceedings of
the 11th Workshop on ACM SIGOPS European Workshop, EW
11, ACM, New York, NY (2004)

Schilit, B., Adams, N., Want, R.: Context-aware computing applica-
tions. In: Mobile Computing Systems and Applications, 1994.
WMCSA 1994. First Workshop on, pp. 85–90. IEEE (1994)

Shi, W., Cao, J., Zhang, Q., Li, Y., Lanyu, X.: Edge computing: vision
and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

VanSyckel, S., Schäfer, D., Majuntke, V., Krupitzer, C., Schiele, G.,
Becker, C.: COMITY: a framework for adaptation coordination
in multi-platform pervasive systems. Pervasive Mobile Comput.
10, 51–65 (2014)

VanSyckel, S., Schäfer, D., Schiele, G., Becker, C.: Configuration man-
agement for proactive adaptation in pervasive environments. In:
Proceedings of IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), pp. 131–140 (2013)

Verbelen, T., Simoens, P., De Turck, F., Dhoedt, B.: Cloudlets: bring-
ing the cloud to the mobile user. In: Proceedings of the 3rd ACM
Workshop on Mobile Cloud Computing, pp. 29–36 (2012)

Wehner, P., Piberger, C., Göhringer, D.: Using JSON to manage com-
munication between service in the Internet of Things. In: Proceed-
ings of the 9th International Symposium on Reconfigurable and
Communication-Centric Systems-on-Chip, pp. 1–4 (2014)

Weis, T., Handte, M., Knoll, M., Becker, C.: Customizable pervasive
applications. In: 4th IEEE International Conference on Pervasive
Computing and Communications (PerCom 2006), 13–17 March
2006, Pisa, pp. 239–244 (2006)

Wiederhold, G., Genesereth, M.R.: The conceptual basis for mediation
services. IEEE Expert 12(5), 38–47 (1997)

Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn.
Wiley, Hoboken (2009)

 C. Becker et al.

1 3

Xu, Z., Peng, X., Zhang, L., Li, D., Sun, N.: The Φ-stack for smart web
of things. In: Proceedings of the Workshop on Smart Internet of
Things, SmartIoT@SEC 2017, San Jose/Silicon Valley, CA, USA,
October 14, 2017, pp. 10:1–10:6. ACM (2017)

Zambonelli, F.: Toward sociotechnical urban superorganisms. IEEE
Comput. 45(8), 76–78 (2012)

Zambonelli, F.: Key abstractions for iot-oriented software engineering.
IEEE Softw. 34(1), 38–45 (2017)

Zambonelli, F., Salim, F., Loke, S.W., De Meuter, W., Kanhere, S.:
Algorithmic governance in smart cities: The conundrum and the
potential of pervasive computing solutions. IEEE Technol. Soc.
Mag. 37(2), 80–87 (2018)

Christian Becker studied com-
puter science in Karlsruhe and
Kaiserslautern, Germany. He
received his Ph.D. from the Uni-
versity of Frankfurt. He worked
as a postdoc at the University of
Stuttgart, Germany, and was
involved in the collaborative
research center (SFB 627)
NEXUS which investigated large
scale context management and
application support. Since 2006
he is full professor at the Univer-
sity of Mannheim, Germany,
where he also acts as chairperson
of subject area Information Sys-

tems. His research interests are distributed and adaptive systems. Dr.
Becker is active in a variety of international events, such as the IEEE
PerCom series (Stearing Committee member, TPC Chair 2016, General
Chair 2010), IEEE Mobile Data Management (TPC Chair 2007, Gen-
eral Chair 2015). He has (co-)authored more than 170 publications in
the areas of Distributed Systems, Pervasive Computing, and Computer
Networks.

Christine Julien is a professor in
the Center for Advanced
Research in Software Engineer-
ing (ARiSE) in the Department
of Electrical and Computer
Engineering at the University of
Texas at Austin, which she
joined in 2004. She is the direc-
tor of the Mobile and Pervasive
Computing Group, where her
research focuses on the intersec-
tion of software engineering and
dynamic, unpredictable net-
worked environments. Her spe-
cific focus is on the development
of models, abstractions, tools,

and middleware whose goals are to ease the software engineering bur-
den associated with building applications for pervasive and mobile
computing environments. Dr. Julien’s research has been supported by

the National Science Foundation (NSF), the National Institutes of
Health (NIH) the Air Force Office of Scientific Research (AFOSR), the
Department of Defense, Google, and Freescale Semiconductors. The
work has been recognized by an NSF CAREER award and an AFOSR
Young Investigator Award, and the results have appeared in many peer
reviewed journal and conference papers. Dr. Julien received a D.Sc. in
Computer Science in 2004 from Washington University in Saint Louis.

Philippe Lalanda is a Professor
at Grenoble-Alpes University
(UGA) where he teaches Soft-
ware Engineering and leads the
Adele research team. He com-
pleted his PhD on real-time
blackboard systems in Nancy
University and applied this work
to the control of smart robots at
Stanford University in the
Knowledge System Laboratory.
He then worked for ten years in
the industry (Dassault Aviation,
Thales, Schneider Electric)
where he held the positions of
software architect and R&D pro-

ject leader. Philippe Lalanda now conducts research in the fields of
autonomic computing and software engineering, mostly applied to
pervasive computing. He has authored some 100 papers in international
journals and conferences and supervised 20 PhD. He has also co-
authored a reference book on Autonomic Computing (Springer Verlag).
He has served in a number of conferences as reviewer, program chair
and general chair. He finally serves as an expert at the European Com-
mission and in diverse French research institutions. Philippe Lalanda
received an IBM Faculty Award in 2015.

Franco Zambonelli is full profes-
sor of Computer Science at the
University of Modena and Reg-
gio Emilia. He got his PhD in
Computer Science and Engineer-
ing from the University of Bolo-
gna in 1997. His research inter-
e s t s i n c l u d e : p e r va s i ve
computing, multi-agent systems,
self-adaptive and self-organizing
systems. He has published over
100 papers in peer-reviews jour-
nals, and has been invited
speaker at many conferences and
workshops. He is in the editorial
board of the ACM Transactions

on Autonomous and Adaptive Systems, Elsevier Journal of Pervasive
and Mobile Computing, IEEE Society & Technology Magazine, the
BCS Computer Journal, and he is in the Steering Committee of the
IEEE SASO Conference. He has been scientific manager of the EU FP6
Project CASCADAS and coordinator of the EU FP7 Project SAPERE.
He is ACM Distinguished Scientist, member of the Academia Euro-
paea, and IEEE Fellow.

	Pervasive computing middleware: current trends and emerging challenges
	Abstract
	1 Introduction
	2 Identifying the gap
	2.1 Hot application domains and paradigm gaps
	2.2 Architectural gaps

	3 State of the art
	3.1 Pervasive computing platforms
	3.2 Interaction models
	3.3 Discovery
	3.4 Mediation
	3.5 Context support
	3.6 Configuration and deployment
	3.7 Application adaptation
	3.8 Edge-, cloud-support and scheduling

	4 Open challenges
	4.1 Understanding the players
	4.2 Pervasive computing ecosystems
	4.3 The architecture of a system
	4.4 Supporting autonomy and intelligence
	4.5 Humans in the loop

	5 Conclusions
	References

