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Abstract. Today’s mobile and pervasive computing devices are embed-
ded with increasingly powerful sensing capabilities that enable them to
provide exceptional spatio-temporal context acquisition that is not pos-
sible with traditional static sensor networks alone. As a result, enabling
these devices to share context information with one another has a great
potential for enabling mobile users to exploit the nearby cyber and physi-
cal environments in participatory or human-centric computing. However,
because these mobile devices are owned by and sense information about
individuals, sharing the acquired context raises significant privacy con-
cerns. In this paper, we define Magpie, which implements an alternative
to existing all-or-nothing sharing solutions. Magpie integrates a decen-
tralized context-dependent and adaptive trust scheme with a privacy pre-
serving sharing mechanism to evaluate the risk of disclosing potentially
private data. The proposed method uses this assessment to dynamically
determine the sharing strategy and the quality of the context shared.
Conceptually, Magpie allows devices to actively obfuscate context infor-
mation so that sharing is still useful but does not breach user privacy.
To our knowledge this is the first work to take both trust relationships
and users’ individual privacy sensitivities into account to balance sharing
and privacy preservation. We describe Magpie and then evaluate it in a
series of application-oriented experiments running on the Opportunistic
Network Environment (ONE) simulator.
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1 Introduction

With the rapid development of the Internet of Things (IoT), everyday consumer
devices have become more connected to one another [1]. This offers a chance
for these devices to collaborate, which brings opportunities for new applications
that can exploit the surrounding environment, especially when these devices are
carried by people. By sharing local contextual information, mobile devices can
help us to avoid traffic on the road (e.g., Waze1), improve recreational sports

1 https://www.waze.com/
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experiences (e.g., BikeNet [2]), and even monitor air pollution (e.g., P-Sense [3]
and Citisense [4]). With this shift in the usage comes a shift in how pervasive
computing applications view context beyond simple egocentric views [5], col-
lected by a single device or user for consumption by a that device or user. The
collective or cumulative feature of a set of shared contexts is increasingly valued
because of applications in participatory or human-centric sensing [6]. However,
sharing the context information sensed by a user’s personal mobile device poses
a significant threat to the user’s privacy if it is not under proper control.

Given the privacy concerns raised when collecting and sharing information
using personal devices, there has been substantial research on two related top-
ics: dynamic trust management and schemes to obfuscate and protect potentially
personal data. The goal of dynamic trust management in pervasive computing
is to select generally reliable candidates with which to interact (i.e., share infor-
mation) based on previous experience or general recommendations [7, 8, 9]. On
the privacy preservation side, the focus is identifying and perturbing sensitive
information to protect an individual from being identified [10, 11, 12]. In isola-
tion, neither of these is effective enough for a context-sharing scenario like Social
Cycling [2], where the mobile devices carried by a group of cyclists should be able
to efficiently provide context data to other participants in the group in order to
share up-to-date and reliable information about the availability (and potential
availability) of shared bicycles. Such an application requires sharing individual’s
location traces with other users; most people are not eager to share detailed raw
information about their spatiotemporal trajectories with just anyone.

We introduce Magpie, a trust-adaptive and privacy-preserving approach for
pervasive context sharing applications in which mobile and heterogeneous sensor-
equipped devices opportunistically work together to increase awareness of the
environment. Magpie facilitates device-to-device context sharing (i.e., without
assistance from an infrastructure), as opposed to an approach that relies on
dedicated sensors deployed in the environment that are often designed to inten-
tionally provide context information for users without raising privacy concerns.
In Magpie, the interaction experience that comes from sharing context informa-
tion also serves as evidence for later trust establishment. Magpie provides an
alternative to traditional all-or-nothing sharing approaches by potentially dis-
closing some obfuscated but still useful context information. A key challenge is
to address the privacy concerns of the participants about whom the context is
collected while ensuring that the quality of context shared is sufficient. Therefore
our approach leverages trust relationships established among pervasive comput-
ing participants and privacy sensitivities of the individuals together to design the
obfuscating process into our context sharing mechanism. Magpie also utilizes
context similarity factors and situational trust to fit the context sharing behavior
to the situations of the pervasive computing devices and their users.

To our knowledge this is the first work to use both trust relationships and
an individual’s privacy sensitivities to estimate the risk of context sharing; we
use this risk to dynamically select sharing strategies and to affect the quality
of shared context. To evaluate Magpie, we perform application-oriented exper-
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iments on the Opportunistic Network Environment (ONE) simulator [13]. We
evaluate the effectiveness of our trust establishment scheme and privacy protec-
tion by analyzing the changes in participation in sharing activities as well as the
empirical error percentage in the information shared. In Section 2 we outline
the related works addressing privacy and trust issues in pervasive computing.
The overview, design, and implementation details of Magpie are presented in
Section 3, followed by the evaluation of our work in Section 4.

2 Related Work

By sharing context information acquired by a set of devices, a group of oppor-
tunistically interconnected devices with disparate sensing capabilities is able to
be more adaptive to its nearby physical and cyber environments [14, 15]. Magpie
is motivated by this new type of application, and we aim to provide a balance
between preserving privacy and facilitating context sharing participation. Be-
fore describing our approach in detail, we overview related projects establishing
trust among distributed pervasive computing participants, addressing privacy in
pervasive computing, and supporting context sharing in these environments.

Establishing trust among pervasive computing participants. Users
distinguish their expectations of their systems into familiarity, confidence, and
trust [16], where the latter uniquely depends not on actual or inherent danger
but on the user’s perceived risk. These perceptions emerge as a part of decision
and action. With respect to expectations for sharing context in pervasive com-
puting, trust is fundamental for establishing the sharing relationship between
the participants and for selecting the means of the sharing behavior.

Our setting demands a decentralized approach to trust management that can
operate without persistent connectivity to the Internet infrastructure. Three
branches of decentralized trust management systems exist in the literature:
(1) approaches that rely on encounters with trusted third parties and focus
largely on cryptographic issues in the authorization process [17]; (2) reputation
mechanisms that use social control to store and disseminate reputation informa-
tion [18, 19, 20]; and (3) purely decentralized trust management systems that
establish trust relationships between the devices in pervasive environments based
only on inter-device interactions [7, 9]. Because we do not wish to limit the ap-
plicability of our approach, we target situations like the latter. However, these
existing trust schemes are not tied to determining when and how to share context
information, so they require some updating to address the needs of Magpie.

Privacy preservation in pervasive computing. On the other hand, pro-
tecting privacy of users’ personal information is also a well-studied area. One of
the widely accepted works is to use k-anonymity [21] for statistical disclosure
control; k-anonymity aims to render a particular piece of data indistinguishable
among the aggregation of k − 1 other pieces. These approaches are commonly
used to protect individuals from being identified given a large amount of aggre-
gated information like medical record data. Approaches that are perhaps more
appropriate to pervasive computing environments are based on the idea of adding
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noise to personal data on the client-side to ensure individual privacy. These sys-
tems then use community-wide reconstruction techniques to restore knowledge
about a shared group context [11, 22]. Even these latter approaches assume one
or more dedicated and honest aggregators within the network, which is limiting
for general-purpose pervasive computing environments.

Distributed differential privacy methods [10], derived from classical differen-
tial privacy [12], can be applied to allow applications to learn only some impor-
tant statistics but no additional information and thus satisfy privacy guarantees.
These approaches generally require a very large number of data items to be able
to provide reasonable privacy while maintaining correct information. Therefore
differential privacy based approaches do not suit our needs for sharing context
among sparsely connected devices.

More recently, efforts related to data preprocessing in smart grids has demon-
strated the ability to obfuscate individual users’ behaviors [23]. Magpie is in-
spired by the latter and by distributed differential privacy, but we introduce new
noise models to eliminate the characteristics of individual data without losing
its inherent meaning. We do assume the availability of a context specific privacy
sensitivity manager [24, 25] on each user’s device. This privacy manager is able
to offer a quantified sensitivity value ε ∈ (0, 1) for each type of context, which
provides an individualized perception of how private the particular context type
is. For instance, a particular user may deem his location context information to
be highly private while his ambient sound level context may be less private.

Sharing context. Magpie provides capabilities that allow mobile devices
to share their sensed context with one another. The potential applications of
this work include systems like BikeNet [2] or P-Sense [3], or generally mobile and
pervasive computing applications that take advantage of directly sharing context
information (e.g., workout companion applications like “Run with a buddy”).
Our approach can also be used to extend participatory sensing systems (e.g.,
a crowd-sourced transit information system [26] or CarTel [27]), especially the
ones collaborating in a device-to-device fashion [28, 29, 30]. Magpie is primarily
motivated by our own previous work on the Grapevine context framework [5],
which was developed for succinctly summarizing and efficiently sharing context
information in pervasive computing environments.

3 Magpie: Adaptive Trust- & Privacy-Based
Context Sharing

We consider a network of users with smart devices that are connected to one
another by an opportunistic mobile network of device-to-device links2. Users’
applications collect and act on context information that describes the user’s
state and situation; this information comes both from the user’s own device
and through opportunistic sharing with connected devices of other users. For

2 We use “device” and “user” interchangeably because we assume that every partici-
pant is associated with a single device through which he collaborates.
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example cyclists can increase energy efficiency or data accuracy if their devices
are wisely and effectively sharing information about the riders’ trips [2] (e.g.,
sharing compass information with users in a traveling group whose devices lack
that particular sensing capability or taking turns collecting motion statistics to
distribute sensing costs). We assume devices operate under a shared context
ontology, i.e., we assume that there is a well known set of context types and that
the names of these types are shared among all of the participants a priori.

We introduce Magpie, which facilitates context sharing activities to make
it possible for users to adjust their behavior based on the sensed context while
maintaining the privacy of the users about whom the context information is col-
lected. Consider a classic context-awareness scenario [31] in which smart devices
are able to adjust themselves and thereby the ambient environment by collecting
and actuating on high-level situational knowledge (e.g., the start of a meeting or
a social event like a coffee break) inferred from the shared context acquired from
multiple devices. Magpie has two key components: adaptive trust evaluation
and privacy preserving context sharing.

A key principle of Magpie is that users share multiple types of context in-
formation with several other users. For this reason, both the trust evaluation
scheme and the privacy sensitivity are context-dependent. This reflects the fact
that, simply because a coordinating partner is a good source for one type of con-
text information (e.g., local weather) does not necessarily imply he is trustworthy
with some particularly personal data (e.g., raw location). Magpie assumes that
each user is associated with an individualized specification of their privacy sensi-
tivities for each type of context information shared and maintained by a privacy
sensitivity manager (see Section 2). These sensitivity values range over (0, 1],
where larger values indicate higher privacy requirements.

Fig. 1: System Overview

Fig. 1 shows an overview of Magpie, specifically in the process of responding
to a neighboring device’s request for a piece of context. Upon receiving a request
from user ui for a specific type of context information, m (top center of the
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figure), the request passes to the adaptive trust management module to evaluate
how trustworthy ui is regarding the type m. Intuitively, the device determines
whether ui is trustworthy enough to share the raw context information with. If
not, the device needs to determine whether it is possible to share any knowledge
about this context type with ui, e.g., in an obfuscated form. The quantified result
τi,m of trust evaluation is considered, together with the user’s privacy sensitivity
for the context type m (εm) and the local context possession Cm, to assess the
potential risk of sharing the requested context information with ui. The context
sharing module uses this risk to select a sharing strategy that maximizes the
possibility of participation while keeping any potential privacy breach under
control. Fig. 1 shows three possibilities: (1) there is no risk, so the request can be
fully satisfied with the raw data; (2) there is some mitigable risk, and Magpie
shares some obfuscated context data; and (3) the risk is intolerable, and the
request is discarded. The rest of this section provides the details of Magpie’s
two essential components.

3.1 Adaptive Trust Management

In Magpie, the sharing decision is made based on several factors as described
earlier, but the foundation is an established level of trust between the recipient
of the request and the peer initiating the request. Magpie makes it possible to
potentially disclose some obfuscated but still useful context information, even if
the requesting peer is not fully trustworthy. Therefore the trust a potential sharer
of context information has in the requesting peer not only partially determines
which option to take, but also relates to how useful the information will be. As
such, having an expressive and effective mechanism to dynamically evaluate the
trust that a participant has in some requesting peer is essential to Magpie. We
define trust (as perceived by a particular user ui) as follows:

Definition 1. Trust. For a given user ui, the value of Trust, τ ij,m ∈ (0, 1) in-
dicates to which extent a context requester uj can be trusted with respect to a
particular context type, m.

We build on the wealth of mathematical models of trust and incorporate de-
centralization, personalization, and specificity to the type of context information
being shared. To start, we use the Pervasive Trust Management model [7] based
on Luhmman’s idea [16] as a foundation. This definition of trust relies on a log
of user i’s satisfaction (or dissatisfaction) in his historical interaction experience
aij,k with a particular peer uj . To account for these dynamics, we extend the
above definition of trust with a notion of timestep. In this extended model, user
i’s trust in user j for context type m after interaction k is defined as:

τ ij,m,k =

{
τ ij,m,k−1 + ω · Vaij,k(1− τj,m,k−1) Vak > 0

τ ii,m,k−1(1− ω + ω · Vaij,k) else
(1)

where Vaij,k is the product of the satisfaction (a+) and dissatisfaction (a−) of

the past behaviors. Satisfaction and dissatisfaction can be measured in a variety
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of ways. In Magpie, we count satisfaction (a+) as the percentage of times in
which a request from i to j for context type m resulted in a response and
dissatisfaction as the percentage of times in which such an interaction did not
result in any response. This is a simple scheme that could easily be extended,
but this is not the primary focus of this work. The updated trust value is also
weighted according to a user- or system-defined weight (ω).

In Magpie, the actions through which users can learn about others’ trustwor-
thiness involve context requesting and sharing, thus it is natural to make Vaij,k
also be context dependent. Specifically, with regard to context type m, a Vaij,m,k
can be calculated independently for each type of context that may be requested
(and context-specific satisfaction measures) using the equation below3:

Vaij,m,k = Θm ·
(a+ − a−)((a+ − a−) · δ)2s

(a+ + a−)((a+ − a−) · δ)2s + 1
(2)

where δ and s are inversely proportional values that determine the individual-
ized trust increment or decrement based on satisfaction and dissatisfaction with
interactions. Based on the general frequency of the sparse interactions in an op-
portunistic network [7] and the empirical evidence from our experiments, this δ
should be in the range of (0, 0.05], and it is mapped to the individualized pri-
vacy sensitivity of the context type m, εm, (δ ∈ (0, 0.05] 7→ εm). The value Θm
weights the value for context m as shared by j based on the cost of retrieving the
particular context value. Intuitively, this gives more “credit” to users or devices
that share context that is more expensive to acquire in the first place.

As the topology of a pervasive computing network can be sparse and fre-
quently changing, there is a considerable chance that no previous interaction
will have occurred between two users regarding the context type m. It is also
possible that the resulting trust level is a value that will likely lead to an unde-
sired sharing option later in equation 4. To bootstrap sharing in such circum-
stances, Magpie considers a context-similarity parameter <(m,n). This metric
provides a measure of similarity between m and n, a second type of context;
such a metric could be based on the comparison of the distinct keywords used to
describe them [19]. As an example, school information and field-of-study could
be considered similar because they both relate to one’s educational background.
Thus, Equation 2 can be refined as:

V ′aij,m,k
= <(m,n) ·Θn ·

(a+ − a−)((a+ − a−) · δ)2s

(a+ + a−)((a+ − a−) · δ)2s + 1
(3)

where a+ and a− are the interaction satisfactions with user uj regarding to
context type n. Of course, a given context type m may be “similar” to more than
one other context type; we capture this in Magpie through multiple applications
of Equation 3 for different values of n.

At last, we provide support for situational trust as a short term trust
boost [32, 33]. This short-term situational trust is applied to increase the trust-
worthiness between a group of users by some adaptive percentage βk when they

3 In the equation, a+
j,m and a−

j,m haven been replaced with a+ and a− for simplicity.
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are perceived to be in some special shared situation. For example two users with
a mutual friend may both attend a party hosted by this friend where their joint
attendance at the party can bootstrap sharing some context types when the
interacting parties are in the same situation.

Considering this last piece of trust determination, Algorithm 14 shows the
complete procedure of calculating the trust value of a context requester.

Algorithm 1: Instantaneous Trust Calculating Procedure

input : j, peer making request; m, context type; k, current time step
output: τ∗j,m, instantaneous trust value for peer j

1 initialization: τ∗j,m, τmax ← 0;

2 Vaj,m,k = Θm ·
(a+j,m−a

−
j,m)((a+j,m−a

−
j,m)·δ)2s

(a+j,m+a−j,m)((a+j,m−a
−
j,m)·δ)2s+1

;

3 if Vaj,m,k > 0 then
4 τj,m,k−1 + ω · Vaj,m,k(1− τj,m,k−1) ;
5 else
6 τj,m,k−1(1− ω + ω · Vaj,m,k);
7 end
8 τmax ← τj,m,k ;
9 if sharing option oi,m < 2 then

10 foreach cn where <(m,n) > thld do

11 Vaj,n,k = <(m,n) ·Θn ·
(a+j,n−a

−
j,n)((a

+
j,n−a

−
j,n)·δ)

2s

(a+j,n+a
−
j,n)((a

+
j,n−a

−
j,n)·δ)2s+1

;

12 τ ′ ← τj,n,k−1(1− ω + ω · Vaj,n,k) ;
13 if τ ′ > τmax then
14 τmax ← τ ′

15 end

16 end

17 end
18 if Situation k perceived then
19 τ∗j,m ← (1 + βk)τmax
20 else
21 τ∗j,m ← τmax
22 end
23 return τ∗j,m

Line 2 of Algorithm 1 applies Equation 2 to compute the aggregate prior
satisfaction and dissatisfaction of user i sharing context type m with peer j.
Based on whether this prior is positive, i computes a preliminary trust value for
j (specific to context typem) based on Equation 1 (lines 3-8). If this value is likely
lead to an undesired sharing option later in Equation 4 (line 9), the algorithm
successively applies Equation 3 for each context type n that is “similar” to m
(with a similarity value above some specified threshold, thld). If this results
in a larger trust value than the calculation based on the experiences just with

4 We omit the i as super script for variables; each step in Algorithm 1 shows the
perspective of the user i who is responding to a request from peer user j.
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context type m, Algorithm 1 updates the working trust value for peer j. Finally,
Algorithm 1 checks whether i and j are in any special shared situation that
would boost the trust level that i has computed for j (lines 18-22).

The instantaneous trust value τ∗j,m returned from the last step (line 16 to
20) is different from the stored trust value that user i maintains for peer j. This
returned trust value may indirectly impact the stored trust value in the long
term, since it will be used to support interactions, and the user’s satisfaction (or
dissatisfaction) may cause an update to τ ij,m,k for some later value of k.

3.2 Privacy Preserving Sharing of Context

Above, we described how Magpie expressively determines a trust value for a
collaborating peer requesting access to a potentially sensitive piece of context in-
formation. In this section, we describe how Magpie uses this value to determine
what strategy to use when sharing the particular type of context information
with the given requester. Magpie’s options range from the best possible sharing,
which shares the complete raw context information, to sharing no information
at all, with Magpie’s novel privacy-preserving sharing mechanisms providing
a middle ground. The latter can share an obfuscated version of context that
considers both the device’s context-dependent privacy sensitivity and the trust
level that the device has in the particular requesting peer.

Intuitively, the only way to completely avoid any risk of privacy breach is to
reject every request for context sharing. But this negates any possible advan-
tage that may come from sharing context information, including learning more
broadly about one’s surroundings or distributing the costs associated with con-
text sensing. To balance the potential for leaking private information with the
benefit to be garnered by sharing context information requires a rational calcu-
lation to keep the risk within acceptable limits. Magpie achieves this balance
by exposing options that disclose blurred versions of context information when
the recipient is not trusted enough to receive the raw data.

Consider a simple example in which a lunchtime line forms at a food truck
outside a large office building. Someone still inside the building wonders how
long the line currently is in an effort to determine whether it is a good time
to get lunch. The device of someone in line could respond to this request in a
variety of ways. A näıve user might choose benevolence and be perfectly willing
to share information about the line. However, even sharing just this simple piece
of information might leak very sensitive private information. For instance, if the
user is in line, he is obviously not in his office. This could be sensitive if his
coworkers or supervisers expect that he is in a meeting right now. On the other
hand, someone else who also knows where his office is might know that now is
a good time to steal some of his candy stash. A more cautious user may then
want to carefully consider whether the risk of sharing the context information
is worth the benefit. There are a few things to consider before participating
in the potentially risky behavior. First is the question of who is making the
request. In real life, if the requester is a buddy of the person in line, they may
be completely trustworthy. In the digital world of Magpie, we assume that if
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the requester is another user who has proven to be a reliable information source
for similar types of information in the past, then a user is may be more willing
to reciprocate and provide the requested context information. This is a basic
overview of how Magpie’s adaptive trust management component informs the
context sharing actions that users’ devices take. As described previously, this
process also depends on the particular type of context being requested and how
sensitive the owner of that data is to sharing it. Magpie introduces a privacy
sensitivity factor to capture this notion.

These first two aspects (i.e., the identity of the requester and the type of
context information requested) relate only to the request for the context infor-
mation. Determining what and how to share also depends on how well Magpie
can obfuscate the context information that is shared. In Magpie, we achieve ob-
fuscation by adding noise to context information, which can be better achieved
when a device has similar context values from other users into which it can blur
the individual data. In Magpie, all such noise additions are computed entirely
on the user’s personal device using only context information the device has col-
lected or received through other device-to-device interactions. Such an approach
is inspired by differential privacy and enables Magpie to share a blurred version
of data with the requester only if the system has enough data to blend the raw
data in and make its individual presence appear irrelevant. A similar approach
has been used to solve the problem of indirect inference [34], where a composi-
tion of pieces of context information that have individually low sensitivity but,
when associated with one another could jeopardize a user’s privacy. By demand-
ing strict trust in context recipients and offering somewhat inaccurate values,
Magpie makes it harder to infer such knowledge.

Magpie’s process for determining what context information to share and
how to share it starts with the reception of a request from a peer. Consider the
situation when the local Magpie system has received a request rj,m from user uj
asking about context typem. Using the algorithm in the previous section, assume
that the trust management component determined an instantaneous trust value
for this request to be τ∗j,m.

Given a privacy sensitivity for the context type m of εm, Magpie compares
the inner product of τ∗j,m to εm to determine the sharing option:

oi,m =


2 if 〈τi,m, 1− εm〉 ≥ θ,
1 if 〈τi,m, 1− εm〉 ≥ η,
0 if 〈τi,m, 1− εm〉 < η.

(4)

where θ is is the threshold for being considered as trustworthy as possible for
the context type m and η is the threshold for accepting the request; θ, η ∈ (0, 1),
and θ ≥ η. In Equation 4, option codes 1 and 2 indicate that the system will
try to accept the sharing request, while code 0 indicates that the request will be
discarded. In option 2, the requester exceeds θ, and Magpie will simply share
the raw context data with the requester. For option 1, meeting or exceeding the
threshold η indicates that the requester can be trusted with an obfuscated form
of the data, where the level of obfuscation will be further based on the magnitude
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of the trust in user j for context type m. For the purposes of this paper, Magpie
uses a straightforward approach for both options 1 and 2. For option 2, Magpie
simply shares the values generated by the context sensors directly. For option
1, Magpie shares some locally generated statistics, which include aggregating
information from other nearby users and adding randomly generated noise.

Magpie’s approach builds a trust development ladder, which is important
in preventing the overall performance of the Magpie (distributed) system from
degrading because devices do not learn to trust one another. Without support
from third party relationship sources like social networks [35, 36] (which we
aim to avoid), this trust development ladder is essential. That is, an essential
component of Magpie is the fact that users can learn to trust each other in
semi-trust situations as long as the risk can be kept within acceptable limits.

Next we show the basic algorithm that Magpie uses to generate obfuscated
context based on aggregating the user’s local information with others’ informa-
tion for the same context type and adding random noise. In the end, as we will
show, the amount of obfuscation is dependent on the trust value generated for
the particular requester and particular context type. Given the sensing neigh-
borhood at the time, let N be the number of recently connected participants for
which a reasonably up to date value of context type m is known by the local
device; we assume that these peers have identifiers 1 . . . n. Let cm be the device’s
value for context type m and C

′m = (cm1 , c
m
2 , . . . , c

m
n ) be the vector of values

of context type m for the N peers. Let Cm = C
′m ∪ c represent an aggregate

of the local context value with the values of the neighboring nodes. In [11] the
authors emphasized that knowledge of the exact community distribution (which
they refer to as fek(x)) is unrealistic because it requires an infinite population.
We use a similar notation fmk (x) to represent the approximate neighborhood
distribution of the local knowledge of context m with limited population at the
time instance k. That is, fmk (x) is a statistic that is representative of Cm. To
ensure obfuscation commensurate with the required instantaneous trust level for
peer j, we further obfuscate fmk (x) as shown in Algorithm 2. Our goal here is
to perturb the aggregation to achieve context-dependent privacy protection and
then randomly select a context value to share given a range whose size is deter-
mined by the trust value τ∗j,m, while ensuring the noise being added is controlled
by the privacy sensitivity εm, which is particular to the context type m.

Algorithm 2 computes the distribution of local context aggregation fmk (x|µ, σ)
in its initialization stage, where µ and σ are the mean and standard deviation,
as usual. For example, a continuous context temperature (shown in Fig. 2, where
cm is the self-perceived context) results in the fmk (x) shown in Fig. 3. At line 2
Algorithm 2 first determines how many pieces of noisy context (np), based on the
product of a perturbing factor λ ∈ (0, 2] and the cardinality of local aggregation
|Cm|, should be mixed into the perturbed distribution. In the next step (lines
3-8), np pieces of white Gaussian noised contexts will be independently gener-
ated and added into the perturbed set. In line 9 the algorithm calculates the
new statistic of the blurry distribution fmk (y) before selecting a random variable
from the perturbed distribution within the range of 2(1− τi,m) in line 10.
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Algorithm 2: Obfuscating Procedure

input : Cm, set of context values for type m;
τ∗j,m, instantaneous trust value for peer j and context type m;
εm, privacy sensitivity for context type m

output: cmo , obfuscated context value of type m
1 initialization: fmk (x|µ, σ) ∼ Cm;
2 np = λ|Cm|;
3 while np 6= 0 do
4 ρ← E

np
W (0, 1) ;

5 cg = µ+ (1 + εm)σ
√

2erf −1pn (2ρ− 1) Cm ← Cm ∪ cg ;

6 np = np − 1 ;

7 end
8 fmk (y|µ′, σ′) ∼ Cm ; // perturbed pdf

9 co = µ′ + σ′
√

2erf −1y (2EW (0, 1− τi,m)− 1) ;

10 return co

Fig. 2: Local Contexts Fig. 3: Empirical Distribution

The loop in lines 3-8 adds np pieces of noisy data into the aggregation. Within
this perturbed aggregation, the scale of the noise is calibrated to the device’s
privacy sensitivity for context type m. The error function used in line 5 is from
the standard Gaussian statistical noise model except the standard deviation is
stretched to (1 + εm) :

PN (n) =
1

σ′
√

2π
e−

(n−µ)2

2σ′2 , where σ′ = (1 + εm)σ (5)

Note that in the process of generating noise, we use the Weibull distributed
random numbers [37] (EWeibull ∈ (0, 1); however using other transformation
methods should work as well. We also tried the Laplacian noise with b = ∆f/ε
to determine which perturbation suits our purpose better (Fig. 4). The result
complies with the findings in [38] in the sense that the level of noise generated by
using the Laplacian model may be so large as to make responses meaningless for
many queries for small data sets such as a set of evanescent context information;
this is why we evaluate Magpie using the Gaussian noise model.
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Fig. 4: Perturbed Contexts

4 Experimental Evaluation

To evaluate our proposed approach, we implemented a pervasive context-sharing
application as an application protocol in the Opportunistic Network Environ-
ment ONE simulator [13]. Each of the Delay-Tolerant Networking (DTN) hosts
in the simulation simulates a mobile computing device with embedded sensors,
Magpie’s adaptive trust evaluation module and privacy sensitivity manager,
and an application that periodically consumes context information for its own
task. When the application’s context need cannot be satisfied locally (e.g., be-
cause the local host does not have the required sensor) the application generates
a context request that it sends to the locally running Magpie system, which
disseminates the request to any connected Magpie devices.

Our contributions are two-fold: (1) Magpie facilitates participation in con-
text sharing activities by implementing an adaptive trust scheme; and (2) Mag-
pie protects a context provider’s privacy by adding controllable noise into the
context being shared according to provider’s privacy sensitivity policy and the
level of trust between provider and the peer initiating the request. We performed
two sets of experiments to evaluate these two contributions.

In our first experiments, we compare the sharing participation of four differ-
ent schemes: (a) traditional all-or-nothing sharing based on a static trust policy;
(b) traditional all-or-nothing sharing with privacy consideration based on a static
trust policy; (c) traditional all-or-nothing sharing with Magpie’s dynamic trust
establishing mechanism; and (d) the full Magpie approach, with both privacy
preserving sharing and dynamic trust establishment. To capture the performance
in real pervasive computing environments, we conducted the experiments under
two settings that entail heterogeneous connectivity protocols, mobility models,
and transmit ranges. Table 1 gives the detailed simulation settings.

We ran two different situations: one with 30 nodes and one with 60 nodes.
In each, the set of nodes was divided into six equally sized groups as indicated
in the table. Nodes were allowed to communicate with other nodes regardless of
group. In the table, BT refers to the BlueTooth connection protocol, WiFi refers
to standard WiFi links, and highspeed indicates a high-speed and long range
wireless interface. The mobility models listed are all built into the ONE simula-
tor, and their names are relatively self-descriptive. The world size parameter in
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ONE was set to the same size in both settings (4500m× 3400m), resulting in a
denser network in the second (i.e., 60 node) case.

Protocols Mobility TX range (m) Speed (m/s) Description

Group 1 BT roads 10 (0.5, 1.5) slow pedestrian
Group 2 BT pedestrian-path 10 (2.7, 13.9) car
Group 3 BT & WiFi tram4 20 (0.5, 1.5) pedestrian
Group 4 BT & highspeed mainroads 500 (7, 10) super connectivity
Group 5 BT tram10 10 (7, 10) commuter
Group 6 BT shops 10 (6, 12) shop runner

Table 1: Simulation Settings

We first demonstrate the success of Magpie in facilitating the sharing of
context information among peer devices. We recorded the sharing interactions
of the experiments under the four schemes described above to compare how
different aspects of Magpie affect the community participation in the sharing
activity. During the experiment, we simulated five types of context information
including three that are continuous measures of ambient context (temperature,
light intensity, and noise level), one that is categorical data (power switch) and
one that is discrete data (office floor). We run the experiments for 20,000 seconds
to ensure that the schemes with trust establishing mechanisms run for a period
of time after reaching their stable stages.

In Fig. 5, we show the sum of the number of completed sharing interactions
in an experiment lasting 20,000 seconds. There is a noticeable increase (approx-
imately 4×) when Magpie’s dynamic trust is used (schemes c and d). This
suggests that our dynamic trust establishing mechanism explores significantly
many more sharing interactions for upper-layer context-aware applications. We
can also see that the schemes that employ Magpie’s privacy sensitivity met-
rics have slightly lower participation than their counterparts. This indicates that
Magpie is succeeding in reducing the sharing for privacy preservation by making
the decision of selecting the best possible sharing strategy context-dependently
harder. Finally, it can also be seen that context sharing becomes approximately
10% more frequent in the more densely connected community, which hints at
situations in which Magpie will be particularly useful.

We next plot the evolution of trust values during the above experiments to
understand how the increase in interactivity occurs. We measured the mean trust
levels of the context recipients of the same sharing interactions recorded by a
single experiment in 10 second intervals. The result is shown in Fig. 6. As this
graph shows, the trust level in schemes a and b stays constant throughout the
experiment as expected (they both use a static trust model). In schemes c and d,
the trust levels oscillate at the beginning and then gradually rise until relatively
stabilizing. This observed trends indicate that Magpie’s privacy preserving shar-
ing helps pervasive devices to become familiar with their surroundings and to
establish meaningful trust relationships; this matches our daily social experience:
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Fig. 5: Sharing Activity Participation Fig. 6: Trust Establishing Process

we need to be a little extroverted when we arrive in a new place in order to know
those who can we get along with and those with whom we cannot.

Magpie’s primary goal is to balance an individual’s privacy protection
against the community’s context availability. In our second set of experiments,
we take a joint view of a two day long simulation with 60 devices in a larger area
(6000m×4500m). We recorded changes in trust levels, sharing interactions, and
quality of shared contexts (as measured by the empirical error [10]) for three con-
text types (with privacy sensitivity (i.e., ε) selected from among {0.4, 0.6, 0.8})
to investigate how these settings affect each other from an application’s view.

Fig. 7 shows the results. The x-axis of all three plots show the elapsed time
of the simulation. The middle plot shows the sum of the number of interactions
that happened for each type of context in the immediately preceding 600s. The
context for which the provider has a low privacy sensitivity (red in Fig. 7) is
shared more frequently than medium (green) or high (blue). They have been
shared 7.0486, 6.8625, and 5.4722 times per interval on average, respectively.
By comparing to the trust level graph in the top of Fig. 7, we can explain this
difference as it is apparent that the context with high privacy sensitivity requires
a higher level of trust for the provider to participate in this risky behavior.

If we take a closer look at the corresponding trends in the context quality
graph (at the bottom of Fig. 7), the least shared type of context (blue in the
figure) also results in the the highest percentage of error when it is shared. This
is because Magpie shares the obfuscated version of this context in lieu of sharing
the raw data, and the privacy sensitivity requires a higher degree of obfuscation
than for the other two context types. Note also that the error percentage for all
three context types declines over time; this is a result of the gradually increasing
trust levels, which result in higher quality sharing as the participants get to know
one another better.5

5 Code and full results at: https://github.com/liuchg/OneSim_PCSharing.git
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Fig. 7: Joint results from Experiment 2

5 Conclusions and Future Research

Through collaboration, mobile and pervasive computing devices can enjoy un-
precedented context availability and help users to exploit the nearby environ-
ment. However, sharing context information sensed by a user’s personal device
poses threats to the user’s privacy and must be controlled. We introduced Mag-
pie which, by dynamically evaluating the risk of disclosing potentially private
data based on the level of trust between the participants and the individual-
ized context-dependent sensitivity, helps users to select sharing strategies for
context. In Magpie we assumed trustworthiness to be reciprocal relationship.
Future work will explore additional factors to determining the trustworthiness
of a collaborating peer, including relaxing this assumption. In our initial work
with Magpie, we have demonstrated that there are context types amenable to
our simple data perturbation mechanisms. This may not be true for all types
of context information; future work will look at specialized ways to add noise
to common types of context data to increase the applicability of Magpie. Cur-
rently, Magpie responds to each context request individually; it is possible that
multiple neighboring devices may request the same or similar information from a
user. Optimizations to Magpie’s behavior could save some processing overhead
by using results of previous computations.

In this paper, we built a prototype of our current vision of Magpie. Given
this prototype, we performed a series of application-oriented experiments per-
formed on the ONE simulator. Even without the enhancement discussed above,
this evaluation validated that Magpie can effectively facilitate context sharing
activities by implementing an adaptive trust scheme and can protect a context
provider’s privacy by adding controllable noise into the context. We expect that
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future work will enhance Magpie’s capabilities and extend the types of context
to which it is applicable.
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13. A. Keränen, J. Ott, and T. Kärkkäinen. The one simulator for dtn protocol eval-
uation. In Pro. of SimuTOOLS, page 55, 2009.

14. D. Christin, A. Reinhardt, S. S. Kanhere, and M. Hollick. A survey on privacy
in mobile participatory sensing applications. Journal of Systems and Software,
84(11):1928–1946, 2011.

15. L. Pelusi, A. Passarella, and M. Conti. Opportunistic networking: data forwarding
in disconnected mobile ad hoc networks. IEEE Comm. Mag., 44(11):134–141, 2006.

16. N. Luhmann. Familiarity,n.confidence, trust: Problems and alternatives. Trust:
Making and breaking cooperative relations, 6:94–107, 2000.

17. H. Li and M. Singhal. Trust management in distributed systems. IEEE Computer,
40(2):45–53, 2007.

18. S. S. Babu, A. Raha, and M. K. Naskar. Trust evaluation based on nodes char-
acteristics and neighbouring nodes recommendations for WSN. Wireless Sensor
Network, 2014, 2014.

19. M. G. Uddin, M. Zulkernine, and S. I. Ahamed. Cat: a context-aware trust model
for open and dynamic systems. In Proc. of SAC, pages 2024–2029, 2008.



18 Chenguang Liu, Christine Julien

20. A. A. Selcuk, E. Uzun, and M. R. Pariente. A reputation-based trust management
system for p2p networks. In Proc. of CCGrid, pages 251–258, 2004.

21. L. Sweeney. k-anonymity: A model for protecting privacy. Int’l. Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

22. I. Bilogrevic, J. Freudiger, E. De Cristofaro, and E. Uzun. Whats the gist? privacy-
preserving aggregation of user profiles. In Proc. of ESORICS, pages 128–145. 2014.

23. A. Reinhardt, F. Englert, and D. Christin. Averting the privacy risks of smart
metering by local data preprocessing. Pervasive and Mobile Comp., 16:171–183,
2015.

24. G. Pallapa, S. K. Das, M. Di Francesco, and T. Aura. Adaptive and context-aware
privacy preservation exploiting user interactions in smart environments. Pervasive
and Mobile Computing, 12:232–243, 2014.

25. U. Hengartner and P. Steenkiste. Avoiding privacy violations caused by context-
sensitive services. Pervasive and Mobile Computing, 2(4):427–452, 2006.

26. A. Tomasic, J. Zimmerman, A. Steinfeld, and Y. Huang. Motivating contribution
in a participatory sensing system via quid-pro-quo. In Proc. of CSCW, 2014.

27. B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Bal-
akrishnan, and S. Madden. Cartel: a distributed mobile sensor computing system.
In Proc. of SenSys, pages 125–138, 2006.

28. R. Shokri, G. Theodorakopoulos, P Papadimitratos, E. Kazemi, and J. Hubaux.
Hiding in the mobile crowd: Locationprivacy through collaboration. DSC, IEEE
Trans on, 11(3):266–279, 2014.

29. Y. Liu, A. Rahmati, Y. Huang, H. Jang, L. Zhong, Y. Zhang, and S. Zhang. xshare:
supporting impromptu sharing of mobile phones. In Proc. of MobiSys, 2009.

30. N Golrezaei, A Molisch, A G Dimakis, and G Caire. Femtocaching and device-to-
device collaboration. IEEE Comm. Mag., 51(4):142–149, 2013.

31. A. Oulasvirta. Finding meaningful uses for context-aware technologies: the hu-
manistic research strategy. In Proc. of the SIGCHI Conference on Human Factors
in Computing Systems, pages 247–254, 2004.

32. M. Stephen. Formalising trust as a computational concept. PhD dissertation.
University of Stirling, Scotland, 1994.

33. C. Duma, N. Shahmehri, and G. Caronni. Dynamic trust metrics for peer-to-peer
systems. In Proc. of DESA, pages 776–781, 2005.

34. X. Jiang, J. Landay, et al. Modeling privacy control in context-aware systems.
IEEE Pervasive Computing, 1(3):59–63, 2002.

35. Y. Lu, Z. Wang, Y.-T. Yu, R. Fan, and M. Gerla. Social network based security
scheme in mobile information-centric network. In Proc. of MED-HOC-NET, 2013.

36. I. Parris, G. Bigwood, and T. Henderson. Privacy-enhanced social network routing
in opportunistic networks. In Proc. of Percom Workshops, pages 624–629, 2010.

37. Yu.K. BelyaevE.V. Chepurin (originator). Weibull distribution. http:

//www.encyclopediaofmath.org/index.php?title=Weibull_distribution&

oldid=18906.
38. R. Sarathy and K. Muralidhar. Evaluating laplace noise addition to satisfy differ-

ential privacy for numeric data. Trans. on Data Privacy, 4(1):1–17, 2011.


