
Demo: MadApp: Dynamic Content Support for
Delay-Tolerant Web Applications

Venkat Srinivasan and Christine Julien
Center for Advanced Research in Software Engineering

The University of Texas at Austin
Email: venkat.s@utexas.edu, christine.julien@mail.utexas.edu

Abstract—This paper showcases MadApp, an application-level
development framework that supports the expressive develop-
ment and flexible deployment of applications for web applications
in delay-tolerant networks. MadApp allows web applications to
be developed in two pieces. First, a static piece that contains
unchanging content can be downloaded from a traditional web
server. This static piece may specify “holes” that designate places
in which dynamically collected content can be integrated into the
web application as this content is opportunistically collected from
the pervasive computing environment. MadApp supports both
the development of these web applications by making is easy to
specify this missing content and how it is dynamically integrated
and the deployment of the web applications by providing mid-
dleware support for collecting and integrating content on the
fly. This demonstration showcases how MadApp can be used to
support such opportunistic web applications through a webpage
integrated with the demonstration event itself. Users will be able
to download a webpage that contains a static map and a listing
of the demonstrations. As users move through the demonstration
space, they can generate content, e.g., photos of demonstrations,
which their app will then share opportunistically with others in
the exhibition space.

I. INTRODUCTION

You arrive at a conference exhibition event and
download (from the Internet) a schedule and map
of the venue. As attendees wander around the event,
they generate photographs and reviews of the avail-
able demonstrations. As you wander, opportunisti-
cally encountering other attendees, your view of
the schedule and map is dynamically updated to
include new information, including these snapshots
and reviews, allowing you to adjust your plan to
target the exhibitions that are of the most interest to
you.

Scenarios like this abound in pervasive computing, but build-
ing an application that can tolerate such dynamic content
shared via opportunistic peer-to-peer connections using today’s
programming tools is complex. We have built MadApp [11],
a middleware that supports the development of this style
of delay-tolerant application. Using MadApp’s programming
constructs, developers can easily create applications that seam-
lessly handle frequent disconnections, significant uncertainty
in data and resource availability, and extreme delays in content
arrival. MadApp allows web applications to specify the types
of content of interest, and, as data arrives, the MadApp
middleware demultiplexes it to already executing applications.

MadApp provides natural and intuitive programming con-
structs integrated into common web application development
frameworks. These programming constructs make it simple
for developers to enable the application-layer to flexibly in-
corporate dynamic information received on-the-fly with un-
predictable delays. While its conceptual model is platform-
independent, our implementation of MadApp is integrated with
the Django web framework, making it simple and straightfor-
ward for application developers to use.

!"#$%&'()*%&
!"#$%&'()*%&+","#&)'-&.%$-/&0"1)$0-$-*#&
.+'(')'0'12&$,'-/&)$+&+"&$'*)%"+&-$%("#&
'10'+'+*1-&*-&,.3"#$&$-&+","#$&%.21.&.,'4*.5&
!

"#$%!

!"#$%&'($$
$$$$$$%)&*&+,'$(-+-$

&
!

!.#$/'/0-*/1&$(-+-$
$$$$$$*/%+&'&2%$

'!

'!

'!

!3#$45(-+&$$
$$$$$$(/%5*-6$

!7#$,55,2+4'/%08-**6$
$$$$$$8,**&8+$(-+-$

()%*#+!

()%*#+!

(,-.#+)/!

Fig. 1. MadApp Conceptual Model

Fig. 1 shows MadApp’s conceptual model. The user’s device
first downloads the static content from an ordinary web-server
in the Internet. This static content (e.g., a webpage) comes
with “holes” that indicate the type of expected information.
MadApp then listens to receive this information from any
opportunistically connected “peer” devices that may become
connected in the immediate environment. As these peers
share relevant information, MadApp sends the received content
along to the registered applications, which can, for example,
update the content displayed to the user.

In addition to our example scenario, the MadApp approach
is widely applicable, for example in developing regions, where
asynchronous web page interactions have been shown to be
preferable when connectivity to the Internet is slow and
unreliable [5], [6]. MadApp sits in the context of existing
approaches applied to opportunistic networks, for example
approaches that use a combination of existing infrastructure
and peer-to-peer interactions [2], [3] or that use proxies and
prefetching to support browsing in delay-tolerant networks [1],

[4], [10]. Other approaches have shown how to use peer-to-
peer connections to opportunistically route (usually multime-
dia) content [9], [12]–[15] or to manage connections when the
opportunistic network experiences a high degree of churn [8].

In this context, the key innovation behind MadApp is that
the content available to the web application can be received
across multiple delivery vectors without the application itself
having to handle or even be aware of the different modalities.
This entails novel contributions at two levels: (1) MadApp uses
widely adopted web application strategies to support collecting
content from multiple delivery vectors and (2) MadApp pro-
vides simple and intuitive programming constructs that focus
on enabling average web programmers to create these highly
flexible applications. In the most likely case (and the one used
as part of this demonstration), the basic (static) information
for a web page can be received in the traditional manner by
downloading it from an ordinary web server in the Internet,
while dynamic media content (e.g., pictures, videos, and live
updates) can be acquired directly from peer devices that are
encountered in the physical environment.

II. IMPLEMENTATION

Our implementation of MadApp builds on the widely
used Django web framework to enable smooth transition for
otherwise ordinary web developers. In the implementation
we demonstrate, MadApp assumes a statically defined set
of peer devices. We do not assume that the client device
is persistently connected to all peers all the time; instead
MadApp connects to peers as they become available and can
disconnect and reconnect to peers as mobility dictates. This is
for demonstration purposes; the MadApp middleware builds
on approaches in the literature that can discover available
connected devices in the pervasive computing environment,
e.g., via Bluetooth or Wi-Fi connections [7], which can easily
replace our static neighbor definition component.

Fig. 2 shows the concrete implementation of the MadApp
architecture, which is distributed across three types of physical
components. The Client (in the upper left of the figure)
provides the user-facing web application, in our example and
demonstration, via any browser app on the device. The HTML
Server (in the lower left of the figure) is an ordinary Django
web server running in the Internet. The HTML Push Server
runs on a peer device and provides dynamic content to fill
in the client’s browsing experience. A MadApp instance may
consist of many clients and push server devices all opportunis-
tically connecting and disconnecting from each other.

A MadApp interaction begins on the client, who requests
a MadApp-enabled webpage. This webpage is downloaded in
the standard way from the HTML server through the Django
framework. However, when the MadApp-enabled webpage
arrives at the client, the MadApp middleware detects any
“missing” content in the received webpage. This missing
content is indicated by the web application developer through
the use of hashtags that indicate the type of content desired and
are associated with callbacks that execute when any content
matching the hashtag is received. In the simplest case (and

HTML%Server%

Client%

HTML%Push%Server%(Peer%Device)%

Browser/(
Applica/on(

Django((
Framework(

Template(Layer(

Model(Layer(

Views((
Layer(

URL(
Dispatcher(

Caching(
Framework(

Database(

Browser/(
Applica/on(

Django((
Framework(

Template(Layer(

Model(Layer(

Views((
Layer(

URL(
Dispatcher(

Caching(
Framework(

Database(

*.html(

…(event(
listeners(

1(

2(

views.py(server(
sent(
events(

4(

5(

6(3(

MadApp(

Fig. 2. Architecture of Django-based implementation. A client requests a
MadApp enabled webpage (step 1), which is retrieved via Django in the
traditional way (step 2). The webpage is delivered to the client and loaded on
top of MadApp (step 3). Asynchronously, peer devices’ push serves generate
content, which is passed into the peer device’s Django views layer (step 4),
encapsulated in a server-sent event (step 5) and sent to the client device using
the server-sent event implementation (step 6).

the one used in our demonstration application), this callback
simply adds the received content to the displayed webpage in
a location and manner designated by the webpage developer.

Users of the push server devices may opportunistically
generate content (e.g., by taking photographs of an event).
The user then makes this content available to the MadApp
push server through its sharing interface. Then the MadApp
HTML push server implementation, upon discovering a peer,
simply pushes this content to the newly connected peer. On the
peer (i.e., the client), the received information is then passed
along to the registered application.

MadApp enabled webpages can be viewed on most common
web browsers; thus the “client” depicted in Fig. 2 can be
hosted on any device without requiring any specialized func-
tionality. The HTML server in Fig. 2 is a standard Django web
server. In our demonstration (described in more detail in Sec-
tion III), we host our own web server that serves up MadApp
enabled webpages. For the purposes of this demonstration,
we created an implementation of the MadApp push server as
an Android application. When this demonstration application
launches, it displays a graphical interface to the user to allow
him to create and share content; in our demonstration, a user
can take a photo with the device’s camera, tag the photo with
a keyword, and designate it to be shared.

To achieve the full push server functionality, the appli-
cation must also launch the Django web framework in the
background. This is necessary to support the server sent
events1 that must move from the peer device directly to the
client device. Basically, the Android application becomes a
small web server that can push shared content over local
wireless network connections. To accomplish this, we used
the SL4A2 python interpreter. When it starts, the MadApp

1https://github.com/niwibe/sse
2http://code.google.com/p/android-scripting

Android application launches both the graphical user interface
described above and the python interpreter. It loads the Django
python implementation into the interpreter, and, when new
content is generated, the views.py implementation grabs
the new content and sends it to any connected peer devices.
The push server also keeps track of what content it has sent to
which other client devices. When a new client device connects,
the push server sends that client any content that it has not
yet sent to that client.

On the client side, the javascript definitions embedded in the
MadApp enabled webpage displayed in the client’s browser
automatically catch any received content and distribute it to
any “listeners” in the webpage that are waiting for content with
the received tags. The client’s webpage then updates to display
the newly received content. As described previously, the power
of MadApp comes from the fact that the live content sharing
does not require devices to coordinate across the Internet;
instead the peer-to-peer content sharing can be supported
directly by technologies like Wi-Fi Direct3 or LTE Direct4; in
our demonstration, we use 802.11 ad hoc connections for this
peer-to-peer content sharing simply because this modality is
supported by the largest number of currently available devices.

III. DEMONSTRATION

We have studied our implementation of MadApp using a
simple “tourism” webpage that displays photos of attractions
shared by nearby tourists [11]. To demonstrate its capabilities
and potential, we developed a second demonstration that uses
the conference venue and events directly. The demonstration
will execute during the conference’s demonstration session and
consist of three components:

1) We will run (locally, on a laptop) a Django web server
that will host a MadApp enabled webpage that lists the
demonstrations and posters that can be viewed during
the session. If the information is available, the webpage
can also provide a map of the contributions’ display
locations. Because it is a MadApp enabled webpage,
the page will be “missing” content, with the intent that
it will be filled in dynamically, as it is generated.

2) Any device with a web browser (regardless of operating
system) should be able to download and display this
webpage. Therefore any of the conference visitors can
access the live, dynamic page providing details about
the available demonstrations and posters. However, to
showcase the true use cases of MadApp, these devices
will have to join a local device-to-device network (via
Wi-Fi) that will allow the content to be distributed
without the support of any infrastructure (i.e., wireless
access points or other means of accessing the Internet).

3) We will have available a handful of our own Android
devices that visitors can pick up and use as they walk
around the conference venue. These devices will be
dedicated push servers, and the users of these devices

3http://www.wi-fi.org/discover-and-learn/wi-fi-direct
4http://www.qualcomm.com/research/projects/lte-direct

will be expected to take photographs of the contributions
to be shared with other client devices displaying the
MadApp webpage in their browsers. We will also make
the MadApp Android application available for download
so that other users with Android devices can launch the
push server on their own devices if they desire to.

IV. TECHNICAL REQUIREMENTS

While the demonstration will be targeted to run using a
locally defined network that does not require the Internet, the
availability of a wireless access point would be an enabler of a
richer demonstration experience (showing downloading of the
MadApp enabled webpage from the Internet) and allowing
visitors to download the MadApp Android application to use
on their own device if they choose.

Beyond networking capability, we need a reasonably sized
and prominently placed space to attract users and explain the
project. There are no other particularly special requirements.

ACKNOWLEDGMENTS

This work was funded, in part, by the National Science
Foundation (NSF), Grant #CNS-0844850 and the Department
of Defense (DoD), Grant #H98230-12-C-0336. The views
and conclusions herein are those of the authors and do not
necessarily reflect the views of the sponsoring agencies. The
authors would like to thank Agoston Petz for his initial work
on the project and input on the implementation.

REFERENCES

[1] A. Balasubramanian, B. Levine, and A. Venkataramani. Enhancing
interactive web applications in hybrid networks. In Proc. of MobiCom,
pages 70–80, 2008.

[2] A. Balasubramanian, Y. Zhou, W. Croft, B. Levine, and A. Venkatara-
mani. Web search from a bus. In Proc. of CHANTS, 2007.

[3] S. Chava, R. Ennaji, J. Chen, and L. Subramanian. Cost-aware mobile
web browsing. IEEE Pervasive Computing, 11(3):34–42, 2012.

[4] B. Chen and M. Chan. MobTorrent: A framework for mobile internet
access from vehicles. In Proc. of INFOCOM, pages 1404–1412, 2009.

[5] J. Chen, S. Amershi, A. Dhananjay, and L. Subramanian. Comparing
web interaction models in developing regions. In Proc. of DEV, 2010.

[6] J. Chen, L. Subramanian, and J. Li. RuralCafe: Web search in the rural
developing world. In Proc. of WWW, pages 411–420, 2009.

[7] T. Clausen, C. Dearlove, and J. Dean. Mobile ad hoc network
(manet) neighborhood discovery protocol (nhdp). IETF RFC 6130,
http://xml2rfc.tools.ietf.org/html/rfc6130, 2011.

[8] J. Eriksson, H. Balakrishnan, and S. Madden. Cabernet: Vehicular
content delivery using WiFi. In Proc. of MobiCom, 2008.

[9] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava. PROMISE:
Peer-to-peer media streaming using CollectCast. In Proc. of MM, 2003.

[10] F. Malandrino, C. Casetti, C. Chiasserini, and M. Fiore. Content
downloading in vehicular networks: What really matters. In Proc. of
INFOCOM, pages 426–430, 2011.

[11] V. Srinivasan and C. Julien. MadApp: A middleware architecture for
delay-tolerant web applications. Under Review, PerCom 2014.

[12] D. Tran, K. Hua, and T. Do. ZIGZAG: An efficient peer-to-peer scheme
for media streaming. In Proc. of INFOCOM, pages 1283–1292, 2003.

[13] J. Wu, Z. Lu, B. Lu, and S. Zhang. PeerCDN: A novel P2P network
assisted streaming content delivery network scheme. In Proc. of ICCST,
pages 601–606, 2008.

[14] M. Zhang, J.-G. Luo, L. Zhao, and S.-Q. Yang. A peer-to-peer network
for live media streaming using a push-pull approach. In Proc. of MM,
pages 287–290, 2005.

[15] X. Zhang, J. Liu, B. Li, and T. Yum. CoolStreaming/DONet: A data-
driven overlay network for peer-to-peer live media streaming. In Proc.
of INFOCOM, pages 2102–2111, 2005.

