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Abstract—Pervasive computing applications commonly involve
user’s personal smartphones collecting data to influence ap-
plication behavior. Applications are often backed by models
that learn from the user’s experiences to provide personalized
and responsive behavior. While models are often pre-trained on
massive datasets, federated learning has gained attention for its
ability to train globally shared models on users’ private data
without requiring the users to share their data directly. However,
federated learning requires devices to collaborate via a central
server, under the assumption that all users desire to learn the
same model. We define a new approach, opportunistic federated
learning, in which individual devices belonging to different users
seek to learn robust models that are personalized to their user’s
own experiences. However, instead of learning in isolation, these
models opportunistically incorporate the learned experiences of
other devices they encounter opportunistically. In this paper, we
explore the feasibility and limits of such an approach, culminating
in a framework that supports encounter-based pairwise collab-
orative learning. The use of our opportunistic encounter-based
learning amplifies the performance of personalized learning while
resisting overfitting to encountered data.

Index Terms—pervasive computing, federated learning, collab-
orative deep learning, distributed machine learning

I. INTRODUCTION

Smartphones, wearable devices, and other devices that
fill pervasive computing environments are imbued with in-
creasingly complex sensing, computation, and communication.
However, applications still primarily rely on centrally located
servers to support building and executing predictive models for
real-time interactions. In this paper, we define opportunistic
federated learning, which explores the potential for device-to-
device collaboration to build expressive, accurate, and person-
alized models for use in pervasive computing applications.

The Setting. We consider pervasive computing applica-
tions that rely on models for classification, recommendation,
or prediction. Examples include predicting the next word a
smartphone user might type, classifying objects in a captured
image, or predicting whether a captured photo is likely to be
shared on social media. The training data for these models is
crowdsourced — it is generated by a distributed set of inde-
pendent devices. The derived models are potentially personal,
both with respect to the fact that their outputs may be tailored
to an individual and to the fact that the training data may be
privileged, private, or proprietary. The goal is not for devices

to converge to a single global model but rather for them to
selectively collaborate to construct personalized goal models.
The devices comprising pervasive computing environments are
generally commodity smartphones, with on-board computing,
storage, and wireless communication (e.g., WiFi and Blue-
tooth). They are resource constrained in energy, computation,
and communication, yet they are capable of communicating
directly with one another through opportunistic encounters.

Contributions. We introduce opportunistic federated learn-
ing and a novel approach to model sharing that we term
opportunistic momentum. Devices belonging to individuals are
bootstrapped with an initial model, which they personalize
based on their experiences, as represented by the data collected
by the device. When a device (the learner) encounters another
device opportunistically (the neighbor), it uses a summary
of the neighbor’s available data to determine whether asking
for learning support is (1) beneficial, based on the similarity
(or dissimilarity) in their training data and learning goals and
(2) feasible, based on the expected duration of the potentially
fleeting encounter. The latter is predicted based on real-time
information about mobility patterns and other context. If model
collaboration is likely beneficial and feasible, the devices
opportunistically exchange model gradients to generate a new
local model for the learner. We present our approach as an
egocentric one; of course it is possible that both devices in
a pair can benefit from the assistance of the other, and an
encounter may be used to support both participants as learners,
depending on communication and computation constraints.
Concretely, the paper’s novel contributions are:

o We introduce opportunistic federated learning as an
architectural pattern for learning from encounters and
opportunistic momentum as an algorithmic tool for in-
corporating experiences of others.

o« We examine the feasibility of opportunistic federated
learning with respect to realistic differences in data
distributions in pervasive computing networks.

+« We examine the practicality of opportunistic federated
learning with respect to the duration of encounters in
pervasive computing applications.

In the long term, opportunistic federated learning will be
one piece of a larger ecosystem in which cloud, edge, and



opportunistic interactions are used in concert based on the in-
stantaneous network conditions and application requirements.

II. MOTIVATION AND RELATED WORK

Motivating Applications. Pervasive computing is teeming
with applications that benefit from machine learning but for
which training data is inherently private. These applications
are often best served by personalized models. We focus on
problems where the training task is self-labeling, including
applications like keyboards that predict the next emoji the
user will select based on the text they have typed [29],
activity recognition on smartphones [31], or predictions of
the popularity of content in social networks [37]. Self-labeling
data makes it possible for devices to generate training data on-
the-fly as part of a user’s normal interaction with their device.

Different devices may have different experiences and gener-
ate widely varying data. We capture this diversity as a skew in
the devices’ data label distributions, i.e., the fraction of each
label that a device “sees” [25, 33]. A car driven primarily on
local roads may have very few images of semi-trucks in its data
set, while a long-haul truck may have few samples of bicycles
or children playing. An pedestrian application that recognizes
landmarks might collect images of trees, mailboxes, and stop
signs in the suburbs; the same application in a city center
might see traffic lights, large buildings, and road signs. In
emoji prediction, the emojis used by a teenager are likely to
be very different from those used by a middle-aged adult.

Different devices may also have different goal distribution,
i.e., the subset of labels the device wants to be able to classify
correctly. While some goal distributions may be the entire set
of labels, many goal distributions will be a subset of the label
space. An object recognition system for vehicles may need
to learn the entire label set for safety reasons. A landmark
recognition system’s goal distribution may be identical to its
data distribution. And a user’s emoji goal distribution may
include any emoji used by others of a similar demographic.

Mobile devices are capable of on-device training but they
do not want to share raw data. However, they may learn from
neighboring devices that they encounter opportunistically. The
characteristics that underlie our target applications are:

o data distribution diversity: the data one device encounters

often differs from the data other devices encounter

e goal set diversity: two devices’ goal distributions may be

very different and may differ from the data distributions

o encounter benefit: devices benefit from opportunistic col-

laboration, but the benefits depend on overlaps between
the devices’ goal and data label distributions

e data privacy: devices are not willing to share their raw

data with other devices they encounter opportunistically

Background and Related Work. As the capabilities of
devices and the desire for data privacy have increased, fed-
erated and decentralized learning have emerged. We take
for granted that deep learning has already moved into the
pervasive computing world and focus here on efforts that
go beyond applying inference to also enable some form of
learning within the pervasive computing devices.

In federated learning, devices collaborate to construct a
global model in a way that enables each individual device
to maintain the privacy of its own data [21, 28]. Classically,
a central coordinator orchestrates the process by delivering
a model to each remote device, collecting and aggregating
devices’ contributions to training that model, then generating
and distributing an updated model to continue the process.
There are many applications of federated learning in pervasive
computing. Wake word detection, also known as keyword
spotting in smart home voice assistants, can use federated
learning, protecting the potentially private audio data collected
at users’ end devices [24]. One of the most classic federated
learning applications is next word prediction on a mobile
device keyboard [11]. Still other applications have explored
on-device image classification and image processing [35].

Recent work has also explored distributing the federated
learning task across a hierarchical edge network [13] or
selecting a coordinator from among a set of fog nodes [36].
These approaches are driven by a single coordinator and aim
to learn a single global model. This differs from our goal,
in which the effort is distributed and opportunistic, with each
device operating egocentrically to improve its own model.

Related efforts in decentralized and personalized learning
remove the coordinator. Some approaches frame the goal as
a distributed consensus problem and rely solely on peer-to-
peer interactions to disseminate model updates [6, 15]. Others
personalize federated learning on mobile devices [16], even
when users are expected to have diverse learning goals [34].
These efforts personalize local models that optimize a client’s
model against its own dataset, while still contributing to
the training of a shared global model. Others have used
collaboration among devices to improve local learning [32];
these approaches place significant constraints on collaboration
or make strong assumptions about predictable contacts.

In simultaneously performing federated learning for a global
goal and personalization for a local one, existing work has
each client solve an optimization problem over its local data
using a hyper-parameter that specifies the trade-off between
the accuracy of the global and local models [7]. Alternatively,
meta-learning can be used to adapt a global model to a local
dataset [9]. These efforts are still based on a traditional fed-
erated learning backbone with a central server. Finally, recent
work clusters clients with similar data distributions [27] or
similar local updates to the global model [3] and trains a group
model. Though these approaches provide some improvement
with respect to both the global and local models [10], they
are less applicable to pervasive computing, where clients are
moving and their communications is opportunistic.

Even in federated learning, sharing model parameters or
gradients potentially reveals something about private data, and
efforts exist to attempt to reverse engineer these abstractions
and recover sensitive information [39]. In practice, however,
these techniques are limited, and the working consensus is
that federated learning provides increased privacy relative to
centralizing raw data [14]. In addition, privacy is not the only
reason to employ federated learning; sharing model gradients



can incur reduced communication costs relative to directly
sharing the raw data [21].

III. OPPORTUNISTIC FEDERATED LEARNING

We focus on applications that rely on deep learning models
for prediction or classification tasks in which each device
personalizes the model for its own use [8, 16, 34]. In contrast
to prior work, we examine the benefits of incorporating op-
portunistic collaboration. Similarly to federated learning [28],
collaborating peers desire to protect their raw data and instead
share only snapshots of learned models.

Fig. 1 shows an overview of our framework. We start
with a pre-trained generic model that we tailor using task-
specific data to create a bootstrap model that is distributed
to participating devices. Devices are controlled and carried
by individual users, and they generate or collect (labeled)
data. This local data is used to continuously fine-tune (i.e.,
personalize) the local model. When a device (the “learner”)
encounters another device (“the neighbor”), it may request
the neighbor to perform a round of training on the learner’s
model using the neighbor’s data. The learner sends its model
parameters to the neighbor; the neighbor trains the model
with its local data and returns the gradients, which the learner
incorporates into its personal model. Though we assume that
neighboring devices will participate, there is plenty of work on
incentivizing collaboration in opportunistic environments [18,
19], which we can adopt in our scenarios in future work.

We describe the procedure for deciding whether to initiate
this process in more detail below; as a preview, it is based
on two inputs: (1) a comparison of the neighbor’s data label
distribution with the learner’s goal distribution and (2) a
prediction of the expected duration of the encounter. For the
second, we rely on a long history of prior work in mobility
and contact prediction [38, 4].

A. Data Label Distributions and Goal Distributions

We assume a set of N devices C = {Cy,...,C;,...,Cn},
each with its own local data set, D,. In our example appli-
cations, these data sets are generated when the device takes
images of its surroundings, shares images to social media, or
sends text messages with emojis. Each sample is associated
with a label (e.g., a photo may be labeled with a landmark or
object within it; another photo may be labeled with whether
it was shared on social media; a sequence of words may be
labeled with the emoji that follows them). We capture device
C;’s data label distribution (L;) as the relative frequency of
each label within the local data set. The goal of opportunistic
federated learning is to learn a local model for some task, i.e.,
to learn a model that can correctly label a novel input. Each
device has a goal distribution (G;) of labels that it desires for
its model to be successful at classifying. It is common that a
given device’s goal and data label distribution differ, and any
two given devices may have different goal distributions.

B. Opportunistic Federated Learning

Each device C; constructs its own local model, w;. Because
the local model changes over time based on the device’s local
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Fig. 1: System Architecture. The process optionally starts with a pre-
trained model, which is specialized using task-specific data into the
bootstrap model that is distributed to participating devices. Devices
continuously fine-tunes a personalized model using locally collected
data. Each device also uses on-device mobility and contact prediction
to help decide when to engage in opportunistic federated learning
exchanges with encountered devices.

training and encounters, we indicate a local clock ¢; associated
with C;’s model (wti)' we increment ¢; every time C;’s local
model is updated. C;’s bootstrap model is w}.

Opportunistic federated learning updates the local model
based on a combination of the device’s local data and gradients
obtained from encounters in order to optimize the local model
for the goal distribution G;. Formally:

| E|

mln{ Zé wl ,Dgl)} (1)

;=0
where FE; refers to the set of encounters that C; has, and
Dg, is a hypothetical data set with a data label distribution
that satisfies the goal distribution G;. Intuitively, we strive to
minimize the loss of a model that is learned from incorporating
training across the encounters in F;.

The workflow is shown in Algorithm 1. All devices partici-
pate in continuous neighbor discovery [17, 20], through which
they opportunistically discover nearby devices. The framework
relies on three things: a similarity metric, a contact duration
prediction, and a mapping of labels to learned gradients.

The algorithm first computes the similarity between the
learner’s goal distribution and the neighbor’s data label dis-
tribution to determine whether the encounter will provide a
useful learning opportunity. While there are many sophisti-
cated metrics for similarity, our distributions are not wildly
diverse, so we opt for a relatively simple metric. Specifically:

Zmln (P (1), P2(1)). 2

leL

sim(Py1,Ps)

Intuitively, if a label appears in both distributions, the sum
includes the minimum frequency of that label in the two



Algorithm 1: Opportunistic Federated Learning

1 sim (P, Pz): similarity metric for label distributions

2 contact(t;,Cs,C;): predicted duration of encounter with
device 7 at time ¢;

3 I'[£]: maps a subset of labels to the most recent encounter
gradient trained on those labels

4 Function ONDISCOVER: L;

5 if sim(Gs, L;) > 7 then

6 w = w

7 for » <~ 0 to p do

8 request computation of V£(w'; D;)
9 T[L;] « Ve(w';Dy)

10 w’ < AGGREGATEGRADIENTS

1 end

12 witt W’

13 end

14 end

distributions. If two distributions have no labels in common,
the similarity score will be 0; if the two distributions are
identical, the similarity score will be 1.

Algorithm 1 also relies on a predicted contact duration
between two devices C; and C; at time ?;. This is provided
by the underlying system, based on a system-level algorithm
on each device that uses the device’s context information to de-
termine a likely length of contact. The specific implementation
is outside the scope of this paper; we assume an off-the-shelf
method to estimate contact duration [38, 4].

Thirdly, Algorithm 1 uses a data structure, I', that maps
subsets of the label space (the keys) to gradients learned
from encounters (the values). This structure is initially empty,
but as the learner encounters and interacts with neighbors, it
fills up with mappings from each label subset to the most
recent gradients learned on that label subset. For instance, if
the neighbor’s data label distribution contains labels A, B, C,
the learner will map the subset A, B, C to the final gradient
returned from the learner in Algorithm 1.

When a device discovers a neighbor, the devices imme-
diately exchange data label distributions. Each device in-
dependently executes the ONDISCOVER function that starts
on line 4 of Algorithm 1. The local device (the learner)
compares the neighbor’s data label distribution to its own goal
distribution using Equation 2. If the similarity is greater than a
threshold (7), the learner decides to engage with the neighbor
to perform a session of remote training. This session comprises
a customizable p number of rounds; p may be dictated by the
task and underlying model, by the expected duration of the
contact, or by some combination. If the pair of devices needs
to split the duration of the encounter to perform the exchange
in both directions, p might also be limited and negotiated.

Each round within a session (lines 8-10 in Algorithm 1) has
two steps. First, the learner (¢) requests remote learning from
the neighbor (7). The learner sends the neighbor a copy of its
current model by sending a summary of the model parameters.
The neighbor loads the model and uses its own local data
to compute the gradient V{(w’; D;), which it returns to the
learner. The learner stores the returned gradient in the I' data
structure, mapped to the label set £;. If a mapping to L;

already exists, it is replaced. The learner applies one of a
suite of gradient aggregation algorithms (described below),
including a round of training on its own local data. These
actions update the local model, which is used in any remaining
rounds (i.e., the updated model is sent to the neighbor to repeat
steps 8-10 in Algorithm 1). When the algorithm has completed
p rounds, the learner’s local model is updated, and the device
is ready for the next encounter.

C. Aggregating Encounters

We implement two general options for filling in the AG-
GREGATEGRADIENTS function in line 10 of Algorithm 1 to
update the local model. We refer to the first of these as greedy
aggregation. Simply put, greedy aggregation directly averages
in the gradients learned by the neighbor after incorporating one
round of local learning. Formally, the update to the model w’
in line 10 of Algorithm 1 is computed as:

wie,,60) (VW' D)) +wie, 6, (VE(w'; Dy))

., 3
WLi,Gi) T WiL;,6)

The two gradients (the local one and the one from the
neighbor) are both weighted with respect to the similarity
of the corresponding data label distribution with the goal
distribution. Building on existing work that similarly uses
weights to address unbalanced data [7], the weights are:

wiz,g) = exp(=A x (1 = sim(G, £))), )

where )\ reflects how a model is prone to overfitting to a dataset
that is small relative to the total number of labels. It can also
be interpreted as a model’s preference for a highly balanced
dataset. For our experiments, we obtained A empirically by
running a series of personalization rounds using subsets of
the training data used for the bootstrapped model.

This approach learns quickly from a device’s encounters. On
the other hand, when the data encountered is unbalanced with
respect to the goal distribution, the model can overfit at the
expense of the labels it encounters less frequently. Our second
approach addresses this by computing a windowed average
over a diverse set of recent encounters, where the diversity
is determined by differences in the data label distributions of
the contributed gradients. Every exchange with an encountered
neighbor generates an update to I', which maps a neighbor’s
data label set to the gradients learned from that set. During a
new encounter, this approach averages over all of these stored
gradients before generating the update to w’. While this slows
the speed of learning, it provides increased stability, especially
when the learner encounters highly unbalanced data label
distributions. We term this approach opportunistic momentum.
Formally, the update to w’ is computed as:

wie,,g) (VW' Dy)) + ( > (e,ver ww,gi)V)

W(Li,6:) T 2o(£,v)er W(L,G)

®)

The first term of the numerator accounts for the (weighted)
contribution of a round of training on C;’s local data. The
second term sums the gradients stored in the non-empty entries



in I', each weighted based on similarity. Before evaluating our
approaches, we examine one final concept in our framework,
the notion of decay with respect to the learning rate.

D. Learning Rate and Decay

Appropriately tuning the learning rate is important to avoid
overfitting. We dynamically tune the learning rate by utilizing
the concept of decay, which is common in deep learning [1].
Because our approach is completely decentralized, the learning
rate for each device evolves independently. The learning rate
at time t¢; for device C; is nf = nafi, where 7 is an initial
learning rate and o' is the decay, computed as:

5))
)+ 1

exp(k x (¢ — ||w? — w}’

(6)

b= exp(k X (¢ — Hw? — wfi

where
ay, < min{ag, ...,ar,—1}, 0 < ¢, 0 < K, @)

and ¢ and k are constants. Opportunistic federated learning
avoids overfitting to continuous encounters with a heavily
skewed dataset by making an assumption that the minimum
for a personalized task exists somewhere not too far away
from the bootstrap model on the loss surface. The decay
factor « is a sigmoid function, where an L2 distance from
the initial weight is scaled and used as an input. This design
encourages C,;’s model to find a solution near the bootstrap
model, as we assume it ensures a certain level of performance
for all labels. As the model becomes more personalized, the
learning rate decreases proportionally to the decay factor to
seek a more fine-grained solution. At the same time, we only
take the minimum of the decay factor to prohibit the model
from reverting completely back to the original solution (the
bootstrap model). The values of 7, ¢ and « are global constants
determined prior to bootstrapping; like A above, we determined
the values by running experimental training with a subset of
training data used for bootstrapping the initial model.

IV. EVALUATION

We benchmark and evaluate our opportunistic federated
learning framework in two threads. First, we present controlled
experiments in which we manipulate devices’ encounter pat-
terns and data distributions in order to learn about and demon-
strate how these impact performance. We the use realistic
scenarios to demonstrate how opportunistic federated learning
might perform in more realistic scenarios.

A. Datasets and Models

Opportunistic federated learning requires training models
on commodity mobile devices. Further, training must be
completed within the timeframe of an encounter between
two neighboring devices. For these reasons, the models most
suitable for opportunistic federated learning are likely to be
relatively small and lightweight tasks. Our evaluation relies
on two classification tasks; MNIST and CIFAR-10. In future
work, we will explore pushing opportunistic federated learning
even more, with additional models and with models that grow

in size and complexity. In MNIST [23], the task is to correctly
label images of handwritten digits O through 9. We replicate a
“2NN” model from [28], which was used to prove centralized
federated learning empirically. The network is composed of
two fully-connected hidden layers, each with 200 neurons
and ReLU activations. Our second dataset is CIFAR-10 [22],
where the task is to recognize objects in images. We use
a convolutional neural network (CNN) model, which is 11
layers deep with convolutional, max pooling, and dropout
layers. MNIST and CIFAR-10 have 60,000 and 50,000 training
images respectively. We used 10% and 25% of the entire
training set, respectively, to train the bootstrap model and used
the remainder of the data to create the devices’ local datasets.
We chose these datasets because (1) they map to our
motivating applications; (2) the models can realistically be
trained on resource-constrained devices and (3) the datasets are
sufficiently large. There are many applications that satisfy the
first two constraints, but the third is more difficult to realize,
in particular because our evaluation demands the ability to
distribute the data in a skewed way among many devices.

B. The Feasibility of Encounter-Driven Learning

Opportunistic federated learning relies on coordinated
rounds of device-to-device exchanges that occur when users’
mobile devices encounter one another. It is essential to fit the
execution of the exchange within the duration of an encounter.
In particular, Lines 8-10 of Algorithm 1 unfold as (1) the
learner sends the model; (2) the neighbor performs one round
of training; (3) the neighbor returns the gradients; (4) the
learner performs one round of training and aggregation. These
four steps are repeated p times; the total needed time is:

tenc =pX (Qtsend + Qttrain + tagg)- (8)

To compute #;q;, and t,4,, we measured the computation
time on a Raspberry Pi 4 (which has computational capabilities
comparable to a smartphone). Training takes, on average,
1.543s and 5.74s for MNIST and CIFAR-10, respectively. For
all approaches other than opportunistic-momentum, t .44 is 0.
In opportunistic-momentum, Line 10 of Algorithm 1 requires
iterating over the table I'. The table has, at most, an entry
for every subset of the goal set; however in practice the table
is much smaller because it does not include entries that are
completely subsumed by another and because a learner does
not encounter all possible subsets of the goal set. To compute
tagq> We assumed the worst case |T| = 2!91, or [T'| = 32, given
that, in all of our experiments, the size of the goal distribution
set is 5. Measured empirically on the Raspberry Pi 4, the worst
case tqqy for MNIST and CIFAR-10 are 0.064s and 0.448s,
respectively, assuming I" is loaded in memory.

Finally, computing ts.,q requires knowing the size of the
model and the communication rate of the wireless channel; our
MNIST model is 778KB (199,210 parameters), while CIFAR-
10 is 4.8MB (1,250,858 parameters). Assuming two devices
are connected via WiFi-direct, whose datarate is 250Mbps,
tseng for MNIST is 0.020s and for CIFAR-10 is 0.153s. With



TABLE I: Required encounter durations (|T'| = 32, p = 6).
l

tirain [ tugg [ tsend tenc
MNISTw1rT 1.543s | 0.064s | 0.020s | 19.14s
MNISTE uetooth [.543s | 0.064s | 3.05s | 55.50s
CIFAR-10w1r1 5740s | 0.448s | 0.153s | 73.40s
CIFAR- 105 eto0th | 5.740s | 0.448s | 19.1s | 300.77s

a lower datarate Bluetooth connection (i.e., 2Mbps), the tsepnq
values are 3.05s and 19.1s, respectively.

Table 1 shows t.,. for both models. Many encounters
in pervasive computing environments will satisfy these re-
quired durations, especially with a WiFi-direct connection
(e.g., standing in line at the grocery store, chatting with a
friend on the street, etc.). The longer durations needed when
Bluetooth is used limit the usable encounters, but there are
still many pervasive computing encounters that fall within this
range (e.g., commuting on public transportation, eating in a
restaurant, or sitting in a meeting). For our simulations we use
a datarate of 1Mbps (a not-quite-ideal Bluetooth connection).

C. Evaluation Platform

We implemented our framework and algorithms in Python
using TensorFlow [26] and Keras [5].! The models can run
on resource constrained mobile devices. For the purposes of
this paper, we also created a simulation environment that
simulates each device’s instance of the framework separately.
The simulation environment provides an implementation of
the “device-to-device” communication by passing messages
between the threads. It also simulates the contact patterns that
drive the encounters between the simulated devices.

Determining whether to engage in an exchange has two
components: (1) whether it is likely beneficial, based on the
similarity between the data label and goal distributions and
(2) whether it is feasible based on the predicted encounter
duration. For the former, we use the similarity as computed
in Equation 2. For the latter, we assume that predictions
of contact duration from the underlying system are perfect;
relaxing this assumption is left for future work. Given the
predicted duration, we use Equation 8 for the amount of time
required to complete an encounter.

D. Controlled Experiments

In our first experiments, we tightly controlled encounters
and data distributions so that we could carefully benchmark
our framework. We performed extensive evaluations on both
datasets; due to space constraints, we show just one example.
We compare the performance of five approaches:

e local: the model trains only on the learner’s local data; for
comparison purposes, the model continues to train over
time even though no new data is generated.

e pairwise-fed-avg: the model trains using a pairwise ver-
sion of federated averaging [21]; a pair of devices perform
as many rounds of pairwise federated averaging as each
encounter duration allows, starting with a base model that
is the average of the two devices’ models, rather than
from the learner’s model as in the remaining approaches.

Thttps://github.com/UT-MPC/swarm
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Fig. 2: Comparing algorithm options for (a) MNIST and (b) CIFAR-
10. The x-axis is the number of encounters the device has experi-
enced. The y-axis is the model accuracy. Each shaded region is a
shift in the data distributions on the encountered devices.

o greedy-no-sim: the model trains on every encounter with-
out considering the similarity between the learner’s goal
distribution and the neighbor’s data label distribution us-
ing the greedy aggregation from Equation 3 with w = 0.5
(i.e., equal weight to local data and neighbor’s data).

o greedy-sim: we limit the training encounters to those of
sufficient similarity (7 = 0.2), still using w = 0.5.

e opportunistic-momentum: we train the model using the
strategy in Equation 5 with 7 = 0.2, including weights
determined according to Equation 4 and dynamic decay
of the learning rate (Equation 6).

The first two models are baselines for comparison; the re-
maining three models are all novel contributions of our work.
Our goal is to understand the conditions under which each is
suitable for supporting opportunistic federated learning.

Fig. 2 shows results for both datasets. MNIST has a label
for each digit in the range 0-9; in CIFAR-10 there is a label for
each class of object recognized in a photo. For simplicity, we
refer to both label sets with numbers 0-9. In Fig. 2, the goal
distribution contains exactly five of the ten labels, specifically
labels {0,1,2,3,4}. Every device has a local dataset of with
80 items in MNIST and 150 in CIFAR-10. The learner’s
local dataset contains equal numbers of labels {0,1}. The
encountered data label distributions change over time:

e first 100 encounters: 50% of the first 100 encounters are
with neighbors that see exactly and only labels {2, 3}, and
the other 50% are with neighbors that see three labels,
selected randomly from all ten labels.

o encounters 100-200: in the middle, 50% of encounters are



with neighbors that see exactly and only labels {3,4,5},
and the other 50% are with neighbors that see only three
labels, selected randomly from all ten labels.

o encounters 200-300: in the last period, 50% of encounters
are with neighbors that see exactly labels {4,5,6}, and
the other 50% are with neighbors that see only three
labels, selected randomly from all ten labels.

A completely egocentric approach that trains only on a
device’s local data (local in Fig. 2a) results in a model that
overfits very quickly. Pairwise federated averaging (pairwise-
fed-avg), while intuitively promising, also suffers under these
workloads (and in real environments). The reason is that
federated averaging combines the models of the two devices
to generate a new base model used for training. Because these
devices have been working independently, their models have
likely diverged. In contrast, the remaining approaches all use
the learner’s model as the base, even on the neighbor’s device.

The next approaches are greedy-no-sim and greedy-sim. The
former greedily incorporates whatever it can achieve with any
encountered neighbor, without considering its goal distribu-
tion. In this particular example, greedy-no-sim performs the
worst of our approaches because this example has a very
unbalanced and unstable distribution of encountered data.
When the encountered data is more well mixed, greedy-no-
sim performs better and is, in some cases, the best performing
approach. The downside of greedy-no-sim is most apparent in
the third region, when the likelihood that the device encounters
data label distributions that overlap with its goal distribution
decreases. In contrast, greedy-sim is more resilient to changes
in encountered data label distributions because it only requests
learning from devices whose distributions are sufficiently
similar to the goal distribution. This example uses a value
of 7 = 0.2 in Algorithm 1; even this minimal overlap has a
substantial benefit to performance. Larger values for 7 result
in even better performance for greedy-sim, albeit in exchange
for somewhat slower convergence.

In this example, opportunistic-momentum ended with the
highest accuracy. Opportunistic-momentum is the most re-
silient to dramatic changes in data distributions, and it is best
at avoiding overfitting to a distribution it sees for a period of
time because it continuously integrates meaningful gradients
that it previously collected, even if it does not continue to
encounter them.

The greedy approaches dip in performance as we move from
one region to another because the models have overfit to the
data label distributions.

In contrast, opportunistic-momentum 1is quite resilient to
sudden changes in data label distribution. Arguably, this
is a contrived situation, designed to benefit opportunistic-
momentum relative to other strategies. If the data distributions
that the user encounters are highly overlapping with the goal
distribution, the greedy strategies outperform opportunistic-
momentum. For this reason, we now step into more real-
world experiments, where the data distributions are much less
controlled and contrived.
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Fig. 3: Comparing algorithm performance for a real-world scenario
for (a) MNIST and (b) CIFAR-10. The x-axis is the elapsed time of
the simulation. The y-axis is the model accuracy.

E. Real World Scenarios

We next allow devices’ movement patterns to evolve in-
dependently according to the Levy walk mobility model [2,
30], which, among stochastic mobility models, is known to
capture human mobility well [2, 12]. Levy walk assumes that
the majority of an individual’s movements are in a small
local area, with a few very large movements every once in
a while. We opted for randomized mobility that allows more
careful understanding of the impacts of mobility, which in turn
enables a more careful benchmarking of the performance of
our algorithm. Future work will include evaluation on collected
mobility traces and on real devices.

We created a square space, divided into 9 equally sized
regions. Each device is assigned an anchor region (e.g., the
user’s home), with five devices assigned to each region. We
simulate episodes; in each episode, the user starts out at home,
makes some trips away from home, and returns home at
the end of the episode. Each runs consists of 10 episodes.
Devices encounter one another by coming within a pre-defined
communication range; some encounters are ephemeral, as the
devices move past each other on their trajectories, while others
are longer-lasting, as devices stay nearby for some period
of time. We assume that devices have perfect knowledge of
predicted encounter durations.

Each region is associated with two labels. Any device’s
whose anchor location is in that region has a data label
distribution that contains exactly those two labels. Each device
sets its goal distribution to be those two labels and three
additional randomly chosen labels. As such, devices with
anchor locations in the same region likely have different goal
distributions. This distribution of data and goals mimics a
real world environment where devices collect different data
depending on their experiences but also have diverse goals,
e.g., due to the fact that their different travel patterns lead
them to encounter different data that needs to be classified.

Fig. 3 shows the accuracy averaged over all 45 devices. For
both models, the framework performs as expected, given the
results in the controlled experiments. For CIFAR-10, however,
greedy-no-sim slightly outperforms greedy-sim.

In this scenario, the data label distributions and goal distri-
butions have a significant random component to them. As a
result, the labels are relatively well distributed among devices,
putting our models in a situation similar to the far left region of
Fig. 2. This benefit does come at a cost; because greedy-no-sim



takes advantage of every possible encounter, it has 18% higher
overhead compared to greedy-sim. This last observation opens
a piece of future work: designing an approach that can adapt
to the changing nature of surrounding data distributions. When
the encountered data is evenly distributed, the algorithm can
enter a greedy-no-sim mode, taking advantage of any and all
opportunity for collaboration. When the algorithm senses an
imbalance in encountered data, it could transition into greedy-
Sim.

In conclusion, these results show that our approaches to
opportunistic federated learning can consistently outperform
local personalized learning and can be very resilient to
overfitting and dramatic fluctuations in the encountered data
distributions.

V. CONCLUSIONS AND FUTURE WORK

This paper explored a novel paradigm for machine learn-
ing in pervasive computing, which we term opportunistic
federated learning. We defined a framework through which
devices can collaborate opportunistically with other devices in
their surroundings using only device-to-device communication
links. We defined an algorithm within the framework, oppor-
tunistic momentum, which provides a robust mechanism to
continuously integrate learning from encounters in a way that
improves over a well-informed greedy approach. Overall, our
results demonstrate that there are real-world pervasive com-
puting scenarios and applications that can garner significant
benefits from this collaborative yet personalized approach to
in situ training of reasonably coupled deep learning models.

Our results show the significant promise of opportunistic
federated learning for diverse pervasive computing applica-
tions. Near term future work will extend our evaluation to
even further understand the performance of the opportunistic-
momentum algorithm, including assessing the impacts of
increased varieties of goal distributions, evaluating even more
models (e.g., human activity recognition models), and relying
on real-world mobility traces. We should also consider what
happens when a device’s goal distribution changes, either
gradually (e.g., as emoji trends come and go) or abruptly (e.g.,
because a user changes their job or home environment). It is
possible that our approach will successfully adapt to gradual
changes, but more abrupt changes will require re-bootstrapping
a model, perhaps from an encountered neighbor.
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