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Abstract. In ubiquitous computing environments, we are surrounded by signifi-
cant amounts of context information about our individual situations and the situ-
ations we share with others around us. Along with the widespread emergence of
ubiquitous computing and the availability of context information comes threats
to personal privacy that result from sharing information about ourselves with oth-
ers in the vicinity. We define an individual’s context to be a potentially private
piece of information. Given the individual context of multiple participants, one
can compute an aggregate context that represents a shared state while at the same
time preserves individual participants’ privacy. In this paper, we describe three
approaches to computing an aggregate measure of a group’s context while main-
taining a balance between the desire to share information and the desire to retain
control over private information. Our approaches allow dynamic tuning of infor-
mation release according to trust levels of the participants within communication
range. By evaluating our approaches through simulation, we show that sharing ag-
gregate context can significantly increase the rate at which a group of co-located
users learns an aggregate measure of their shared context. Further, our approaches
can accomplish high quality context sharing even in situations with low levels of
trust, assuming the availability of a small number of highly trustworthy partners.

1 Introduction
Ubiquitous computing allows users to share information about their personal situations
directly with one another, enabling users to collaboratively construct aggregate views
of their shared local situations, or context. Constructing these aggregate views requires
sharing potentially highly sensitive and personal information, which in turn relies on
users’ trust in one another. Imagine a mobile app that can communicate with other
nearby mobile devices and retrieve the names of the apps that other mobile devices’
users are using. This could be useful from a social connectivity perspective; we could
learn what other apps that other people in a similar social situation are using at a given
time. For example, at a sporting event, we could determine what other apps nearby
spectators are using to augment their experiences, for example to check scores or view
replays. However, the app poses a significant threat to the privacy of the mobile device
users. Our approach strives to address the tension between this privacy constraint and
the incentives for exchanging context information among nearby mobile devices.

This paper explores practical mechanisms to enable ubiquitous computing users to
construct aggregate views of their shared context while retaining control over the dis-
semination of their private data. In our target environment, participants with smart mo-
bile devices (e.g., smart phones) collect and share information with one another directly
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(i.e., across peer-to-peer links) without the support of an infrastructure. Such an envi-
ronment is becoming increasingly commonplace as smaller, wearable devices are be-
coming mainstream: mobile phones record users’ locations using GPS and other local-
ization technologies; Google Glass can take pictures, record videos, recognize a user’s
voice, and capture myriad context information about a user1; Nuubo, a wireless cardiac
monitoring platform, can transmit physiological parameters to a user’s doctors2; Sony’s
smart watch can connect to Android phones and display received texts, emails, and
notifications3. These devices possess considerable computing power and can commu-
nicate through direct wireless channels. Direct interaction among nearby users enables
new forms of data sharing but also presents a challenge in enabling users to control the
release of their potentially private information. Only by sharing information, however,
do participants reap many of the benefits of the information-rich environment.

We assume an established “trust network” in the ubiquitous computing environ-
ment. Specifically, for a given participant, this provides a trust value for every other
participant in the network. Work exists in establishing flexible trust networks in mobile
ad hoc environments [6, 10, 14, 17, 20]. Our context aggregation and sharing mecha-
nisms utilize trust values computed by such a trust network to determine the amount of
private information to release to other nearby users. Returning to our previous example,
at a sporting event, a spectator is likely to be seated nearby a group of friends or family
with whom he has a high degree of trust. The spectator is perfectly willing to share pri-
vate information with these trusted friends; aggregating together the context of a group
of trusted friends can obfuscate each individual’s private information, enabling the ag-
gregate to be shared with acquaintances with a somewhat lower level of trust. Using
this novel combination of trust and aggregation, our privacy preserving context distri-
bution mechanism reduces the risk of privacy leakage. Our approaches allow users to
gradually reveal their information in aggregate, to both protect the individuals privacy
and to converge to a collective (correct) aggregate of context information.

Our motivation stems from users’ needs to be able to feel safe to collect and share
context information in settings that lack centralized trusted authorities. Limited work
exists on privacy in ubiquitous computing, but most approaches require elaborate, cen-
tralized infrastructure; we review these methods in Section 2. Our approaches target
completely infrastructure-less environments and rely on direct, peer-to-peer wireless in-
teractions among users’ devices. We make the following concrete contributions: (i) we
define three aggregation schemes that explicitly trade individual privacy for the degree
of data sharing in mobile ubiquitous computing environments; (ii) we tune the amount
or nature of sharing to established measures of trust; and (iii) we evaluate our aggrega-
tion approaches under different deployment scenarios and trust networks. We measure
our approaches’ abilities to converge to a correct assessment of the shared context in
a short amount of time. Our approaches can significantly speed up the rate at which
the entire group learns an aggregate measure of their shared context. Further, our ap-
proaches achieve a high quality of context aggregation, even with low levels of trust
among participants, as long as there are a small number of highly trusted collaborators.
1
http://www.google.com/glass/start

2
http://www.nuubo.com

3
http://sonymobile.com/us/products/accessories/smartwatch/specifications
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2 Related Work
Our basic goal is similar to that of differential privacy in statistical databases: it should
be possible to accurately query a database while maintaining the privacy of individuals
whose data is represented in that database [5]. Specifically, queries should release infor-
mation about the population represented in the database without releasing information
about any individual that is not generally publicly available. Techniques from differen-
tial privacy motivate our goals, but they assume that information about the population
is collected in a single (secured) central database.

One of an individual’s most sensitive pieces of data is the individual’s location;
many techniques exist to protect the privacy of individuals’ locations. Most approaches
somehow augment the location data, for example protecting sensitive location trajecto-
ries in a centralized database by inserting realistic fake trajectories [19], by perturbing
location trajectories by “crossing paths” of multiple users [9], or by adding uncertainty
to objects’ locations in moving object databases [1]. These solutions are specific to lo-
cation data, and the focus is often on attempting to maintain a high fidelity (correctness)
of responses to queries about locations while preserving privacy.

Significant recent efforts have focused on privacy and on its interplay with crowd-
sensing specifically and with mobile distributed sensing more generally. In the former
scenarios, a query issuer requests information that is sensed by mobile participants,
potentially aggregated, and returned to the querier. Ensuring participation requires en-
suring privacy, most often with respect to the location of the user whose device does the
sensing [4, 15, 16]. Other approaches take advantage of the additive properties of de-
sired aggregates and use data slicing [25] or cryptographic techniques [13] to compute
complete aggregates for independent sets of data providers. These approaches either
assume resilient communication (e.g., no slices of data can be lost) or an ultimate back-
end (centralized) server. In contrast, we aim for a purely distributed approach in which
all of the users desire the aggregate of context information shared among themselves
and not mediated by a service provider that sits between the querier and the tasked mo-
bile sensing devices. We also explore the novel use of trust in influencing the release of
private information in mobile and ubiquitous computing environments.

Other approaches have attempted to preserve privacy for data types beyond loca-
tion by introducing noisy data in participatory sensing [7]; this work’s motivation is
quite close to our own, where individual users compute aggregates (fusions) over lo-
cally available data, but this related work does not incorporate trust (instead relying on
random perturbations). The approach circumvents the fundamental limitations of per-
turbation for privacy by taking advantage of properties of the targeted time series data.

Our motivation (and approach) is also similar to secure multi-party computa-
tion [26], in which participants share information to jointly compute some function
(e.g., an aggregate) over their individual data without explicitly releasing their (poten-
tially private) individual information. This technique has been applied to distributed
data mining [3], to computing a sum of private data while relying on data slicing [24],
and even to collaborative filtering in peer-to-peer networks [2]. While the approach is
decentralized, it requires a high degree of controlled coordination among participants
that is not possible in purely ad hoc environments. Further, because it is based on cryp-
tographic primitives, the computational complexity is not reasonable for mobile devices
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or common tasks [18]. We take advantage of the fact that coordinating parties in mobile
and ubiquitous computing situations may not be completely distrustful of each other,
and we leverage this trust to reduce the cost of achieving acceptable levels of privacy.

Existing work that combines trust and privacy generally focuses on trading privacy
for trust, i.e., revealing private information to others to earn a more substantial level of
trust [23], and on incentivizing this tradeoff [22]. We look at trust and privacy from a
different perspective, presupposing a framework for establishing trust in other individu-
als that allows graduated release of private information based on established trust levels.
Establishing trust among collaborating parties has been well studied in both completely
distributed mobile ad hoc networks and in pervasive computing, and several approaches
exist that we can rely on to establish trust values between individuals [6, 11, 20, 21]. For
the remainder of this paper, we assume such a mechanism is in place and that, in using
such a mechanism, we can rely on a trust table that is available to each individual on
the local device. The trust table maps an another individual’s identifier to a trust level,
which our algorithms will use in determining how to share data.

3 Trust-Based Sharing of Context
Our operational model is one in which a group of participants make independent de-
cisions about sharing context, without the aid of any infrastructure. The goal of the
participants, in general, is to learn some aggregate measure of the entire group’s con-
text (e.g., the apps in use by other nearby spectators at a sporting event, the average
grade of a group of students on an exam, an average of a health indicator for a group
at a fitness club, or the bounding box of the locations of contributors to a participatory
sensing application). When a participant i encounters a participant j, i must decide what
information to share, where the options range from sharing i’s individual context data
(which results in the largest loss of privacy) to sharing an aggregate that combines i’s
data with some other participants’ context values. This partial aggregate that each par-
ticipant computes is that participant’s working estimate of the target global aggregate.
We assume that the only way for participants to exchange information is to encounter
each other and make that exchange directly, i.e., through a peer-to-peer connection. Our
approach assumes the aggregate functions can be computed incrementally (e.g., a sum,
average, minimum, maximum, union, bounding box of locations, etc.) and that individ-
uals’ context values do not change. Along with each aggregate, we maintain a list of
contributors to the aggregate to prevent including a participant multiple times.

The novelty of our approach lies in the following key observations. First, we do not
commonly find ourselves in situations in which we have absolutely no trust in any other
participants. Second, mutually trusting participants can work together to aggregate their
information to obfuscate their individual context, increasing their individual levels of
privacy. Third, sharing aggregate measures of context contributes positively to an entire
group learning a (near) correct value for the aggregate of the entire group. While Alice
may be willing to reveal her individual exam grade to her best friend, Bob, (and Bob
may be willing to do the same), she may feel more self-conscious about releasing it
to Cindy, who she does not know (or trust) as well. However, once she and Bob have
exchanged their individual context information, they can aggregate (e.g., average) their
scores and give the average to Cindy, sacrificing less of their individual privacy. Of
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course, an average of two grades provides only a small degree of added privacy; an
average of 50 grades provide much more. Therefore, sharing aggregate context values
depends not only on the trust values associated with the recipients, but also, at least
indirectly, on the size of the aggregate (i.e., the number of values aggregated).

We assume that each participant (e.g., device, application, or user, depending on
the application) maintains its own trust table, that holds a trust value for every other
participant. It is not required that trust values are mutual (i.e., participants i and j need
not have the same level of trust in each other). Trust values can be based on reputa-
tions, can be learned, can change over time, and can even be context-dependent [21];
these concerns are outside the scope of this paper. Instead, we rely on the availability of
this trust information to determine when to share potentially private context informa-
tion. Concretely, we assume that, when a participant is about to share private context
information, the participant can query its local trust table to determine the level of trust
associated with the potential recipient of the data. Based on the level of trust, the partic-
ipant can determine whether to share information and what specifically to share (e.g.,
individual context data or an aggregate of multiple individuals’ context data).
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Fig. 1. An Example of Trust-Influenced Context Sharing;
“Aggregate” in this case is the average value; “Agg. Size”
designates the number of participants represented in the ag-
gregate

We assume trust values
are on an unbounded con-
tinuous scale; a value of 0
indicates complete trust, and
larger values indicate lower
trust. For convenience, we as-
sume that the trust table val-
ues correspond to aggregate
sizes; if participant i has a
trust value of x for participant
j, then i is willing to share
its information with j as long
as it is contained in an aggre-
gate with size greater than x.
Practically, this representation
of trust values requires a pro-
cessing step to convert trust
values computed from a scheme such as [21]. Fig. 1 shows a small example that demon-
strates some of these concepts; in the figure, Alice is willing to share her individual
context information with Bob, who can then combine it and share it with Cindy, who is
less trusted by both Alice and Bob. We next describe four schemes that determine how
to share context information, given the availabile trust information.

Scheme 1: Individual Context Only. The first scheme is a baseline; in the first
scheme, participants only ever share individual context, and they only share that con-
text with other participants that they trust completely (i.e., for which the trust value is
0). When participant i encounters participant j, i determines whether j is completely
trusted. If not, i does nothing. If j is completely trusted, participant i sends participant
j its individual context information. Upon receiving this information, j incorporates i’s
information into an incrementally computed aggregate (that includes j’s own context
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information as well as any other pieces of information that j has received from other
participants). In this scheme, as average trust decreases, context information moves
more slowly, and the aggregate that any participant can feasibly compute is just the
average of context values from other participants that completely trust the participant.

Scheme 2: Aggregate Context Only. In the second scheme, participants incremen-
tally compute aggregates and share only those aggregates with other participants they
encounter. Aggregates can be computed incrementally by adding in additional partic-
ipants’ context if they are not already represented in the aggregate or by merging two
aggregates if their contributor lists are disjoint. When participant i encounters partici-
pant j, to determine whether to share the computed aggregate, i retrieves j’s trust value
from the trust table. If the size of the aggregate is larger than the trust value, then i
sends the aggregate to j. If not, i sends nothing to j. This scheme is a generalization of
Scheme 1, as an aggregate of size one is simply the individual context information of
participant i. On the receiving side, things are a bit more complicated when receiving
an aggregate than when receiving a piece of individual context. Because the recipient
may already store a partially computed aggregate, the recipient must determine what to
do with the new aggregate. In general, if there is an intersection in the contributors to
the received aggregate and the stored aggregate, the recipient can only keep one of the
aggregates4. In Scheme 2, we keep the originally stored aggregate. If there is not an in-
tersection in the contributors to the received and locally stored aggregates, the recipient
merges the aggregates, generating an even larger aggregate.

Scheme 3: Smart Aggregate Context. This third scheme differs from the second
only in that instead of the recipient keeping the original aggregate, it keeps the larger of
the two aggregates (i.e., the larger of the received aggregate and the previously stored
one). Intuitively, this scheme should perform better with respect to the computation of
the correct aggregate value; as we will see in Section 4, this is not always the case.

Scheme 4: Mixed Information. The fourth scheme mixes aspects of the above
approaches. When participant i encounters j, i still uses its trust value for j to determine
what to send. However, in addition to sending the aggregate if the aggregate size is
larger than j’s trust value, if j’s trust value is 0 (i.e., i completely trusts j), i also sends
its individual context. Upon reception, j behaves like the second scheme unless there is
an intersection between i’s transmitted aggregate and j’s stored aggregate. If there is no
intersection, j just merges the two. If there is an intersection, j instead simply merges
i’s information into j’s stored aggregate. At first glance, these seems to be an obvious
addition, but this fourth scheme does come with the disadvantage of exchanging extra
information, which comes at an increased cost of communication; in Section 4, we
investigate whether this effective doubling of the overhead achieves better results.

4 Experimental Results
To compare and contrast our schemes for context sharing subject to privacy constraints,
we implemented the schemes in our Grapevine context framework [8]. Grapevine pig-
gybacks context information (whether individual context or aggregate information) on
data packets transmitted in the course of other network (application) traffic.
4 Some aggregation functions are duplicate insensitive, and any aggregates can be merged. We

assume this is not the case, and address the issue of duplicate sensitive aggregates instead.
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We implemented our approaches in the ONE network simulator [12]. Each node was
assigned a context value and given the task of attempting to find the average of all of the
context values in the network. We assume context values are static; we discuss handling
dynamic context values in Section 5. We measure the percent error of each node’s
estimate of the global aggregate. The overheads of our approaches are low (see [8] for
a presentation of the overhead of piggybacking context information in Grapevine). The
approaches all generate the same amount of extra data except for the Mixed Information
scheme, which generates twice the number of piggybacked bits.

Table 1. Simulation Settings

Setting Value
Transmit speed 250 KB/second
Transmit range 30 meters
Movement Random waypoint
Speed U(3, 4)

World size 300m × 300m

We first look at simple networks in which a par-
ticipant can have just one of two levels of trust in an-
other participant: high (complete trust) or low (com-
plete distrust). Our second set of experiments ex-
tends the complexity of the trust distributions in the
simple network. Our final experiments explore more
realistic deployments. We plot the average error in
the computed aggregate over time; we stopped the
simulations when the aggregate had stabilized. Table 1 gives the evaluation settings.

Binary Trust. In the first stage of our experiments, we used a small network and
highly control trust values to benchmark the behavior of our four schemes. These net-
works consisted of 10 mobile participants. Grapevine does not generate its own traffic;
instead it piggybacks context (either the individual context value or a computed aggre-
gate) on top of these application-level packets. Each participant generated a new packet
for some other randomly selected participant, on average, every five seconds. In general,
this relatively high traffic load is beneficial to context sharing since context information
can spread more quickly. We provide results for situations when each participant trusted
100%, 70%, 50%, 30%, or just 10% of the other participants.

Starting from the bottom of Fig. 2, we see that when the levels of trust are high,
nothing significantly outperforms just sharing individual data. Because participants are
able to directly collect the data that goes into the aggregate, the aggregate’s error is very
low. As we move to the mid-range of trust values, the quality of the four schemes comes
together. At 30% trustworthy participants, we start to see that when the trustworthiness
of the participants falls, the aggregate schemes show the potential to outperform the
individual scheme. Finally, for the situation with very low trust, the quality of the ag-
gregate falls off precipitously, indicating that, when a participant trusts very few others,
it is difficult to share aggregate information with any quality.

Mixed Trust. In our second experiments, we explored these last two points in more
depth, attempting to identify trust distributions in which the aggregate schemes excel
(and thereby push the envelope of protecting privacy in the face of untrustworthiness)
and attempting to identify just how low we can push the trustworthiness of participants
and still achieve a reasonably low error rate in the aggregate. We stay with our simple 10
participant network, but we explore the trust distributions shown in Fig. 3, assigning a
fraction of the participants to be highly trustworthy (with whom a participant will share
individual data), a fraction to be of medium trustworthiness (with whom a participant
will share a medium sized aggregate; in this example, an aggregate of size 5 or larger),
and a fraction to be completely untrustworthy.
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(a) 10% Trusted (b) 30% Trusted

(c) 50% Trusted (d) 70% Trusted

(e) 100% Trusted
Fig. 2. Average quality of computed aggregate with two trust values: high and low
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Fig. 3. Trust Distributions

When there is a very low level of trust among
the participants (Distribution 5 in Fig. 3 and
the corresponding results in Fig. 4(d)), the qual-
ity of the aggregate remains quite low. Further,
when the trust levels are relatively high (Distri-
bution 2 in Fig. 3 and the corresponding results
in Fig. 4(a)), directly sharing individual infor-
mation remains the best option. Where the trust
levels are more mixed (Fig. 4(b) and (c)):, we see
potential for aggregation to improve information
quality while adhering to participants’ privacy
requirements.
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(a) Distribution 2 (b) Distribution 3

(c) Distribution 4 (d) Distribution 5

Fig. 4. Average quality of computed aggregate with three trust values in distributions from Fig. 3

Random Trust. For our last experiments, we evaluate how our schemes would per-
form “in the wild.” We increase the size of the network to 50 mobile participants. We
assign a participant’s trust value for another according to three different trust distri-
butions, shown in Fig. 5: Random, in which the trust is chosen equiprobably from 10
possible trust values ranging from completely untrustworthy to completely trustworthy,
More Trusted, in which the choice is weighted toward the more trustworthy values, and
Less Trusted, in which the choice is weighted toward the less trustworthy values.
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(c) Less Trusted

Fig. 5. Random Trust Distributions

We highlight two key findings that demonstrate the benefits of using trust to control
the release of private information in dynamic networks. Fig. 6 shows that sharing ag-
gregate information can significantly help distribute context information, especially
in situations of relatively low trust, assuming a handful of highly trusted participants
in the network. In the More Trusted case (Fig. 6(a)), the benefits of sharing aggregates
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is marginal compared to sharing individual context. Even in this scenario, however,
sharing aggregates leads to a quicker assessment of the aggregate value (i.e., the curves
for the Aggregate and Mixed Information schemes lie to the left of the the Individual
scheme). More strikingly, Fig. 6(b) shows that, for the Less Trusted distribution, all
three aggregate schemes drastically outperform the Individual scheme, both in terms of
the speed of assessing the aggregate and in the quality of the computed aggregate. In the
Individual scheme, there are simply not enough direct contacts with highly trustworthy
individuals to compute an accurate aggregate from only individual information.

(a) Random trust weighted to high trust (b) Random trust weighted to low trust

Fig. 6. Average quality of computed aggregate with weighted randomly assigned trust values

In Fig. 7, we use the Random trust distribution from Fig. 5; Fig. 7(a) uses the
same traffic generation rate as before: on average, each participant generates a new
application-level packet every 5 seconds. In Fig. 7(b), on average, each participant gen-
erates a new application-level packet only every 50 seconds. Understanding the be-
havior of our schemes under these lower traffic conditions is important since reducing
network overhead is essential in these dynamic networks that rely almost exclusively on
battery operated devices and wireless links. Fig. 7 shows that, in situations when fewer
opportunities are available for piggybacking context, sharing aggregate information
results in much more rapid and higher quality computation of the global aggregate.

(a) Random Trust
(1 packet per participant every 5 seconds)

(b) Random Trust
(1 packet per participant every 50 seconds)

Fig. 7. Average quality of computed aggregate with randomly assigned trust for different traffic

Figs. 6(b) and 7(b) highlight another key benefit of Grapevine. In many ubiquitous
computing scenarios, users find themselves in situations where they will choose not to
share any of their context information because of the potential sacrifice of their privacy.
By enabling users to share their context information within aggregates instead of only
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individually, Grapevine enables a much higher degree of context sharing and learning,
improving the experiences of all participants in the ubiquitous computing application.

5 Conclusions and Future Work
We explored using trust to influence how private context is shared in dynamic mobile,
ubiquitous computing applications. By incrementally computing aggregate measures of
context and basing how aggregates are shared on their size relative to the trustworthiness
of the recipient, our context sharing schemes control the release of private information.
Both the degree of trustworthiness and the desired quality of aggregate information are
application-dependent; the results in this paper give a foundational understanding that
application designers could use in making tradeoffs for their implementations.

For convenience, we used a linear correlation between trust values and aggregate
sizes to demonstrate the relationships between decreasing trust and increasing aggre-
gate sizes. While this gives important insights, the relationship between trust and the
size of the shared aggregate may not be linear. Studying alternative (i.e., non-linear)
relationships and the ability of application developers to tune them is future work. Fur-
ther, when a participant shares individual context, the recipient has complete control of
that information and could potentially share the individual data directly. This must be
accounted for by conservatively assigning trust; this is why the results in Fig. 6(b) are
so important: even in scenarios weighted towards lower trust, having a small number of
highly trustworthy partners is sufficient for bootstrapping context sharing.

Further, our approach “leaks” the identity information of the participants in the
aggregate measures. This information may be obfuscated (i.e., revealing an anonymous
but unique identifier may arguably release less personal information), but nonetheless,
there is potential to tie the identifier back to the identity of the contributor. Future work
will investigate how to further protect this identity information. Our approach computes
an aggregate for a single snapshot of participants’ context values. Other applications
may need to allow participants to change their context values and have those updates
reflected in the computed aggregate. Updating context values contained in an aggregate
is non-trivial and is the focus of our ongoing work.

Figs. 6(a) and 7(a) show that the Smart Aggregate scheme often performs worse
than even the Aggregate scheme. It turns out that receiving a larger number of smaller
aggregates results in a higher information diversity, making it more likely that the re-
cipient can merge aggregates. This points to another possible scheme, one in which a
participant keeps and shares multiple smaller aggregates, sending a recipient aggregates
only as large as required by the trust values. This also has potential benefits for updating
context values, as updating within a smaller aggregate is likely to be easier.

In summary, this work is the first of its kind to use trust to obfuscate private con-
text in mobile ubiquitous computing environments. This is feasible for applications that
compute aggregates of shared local context and can tolerate a small error in that compu-
tation. Our schemes are particularly suited to cases where the application traffic is low
and there is generally low trust mixed with a handful of highly trustworthy partners.
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