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Abstract—Supporting mobile applications in densely populated
environments requires connecting mobile users and their devices
with the surrounding digital landscape. Device-to-device commu-
nications (without the support of an infrastructure) will play a
critical role in facilitating transparent access to proximate digital
resources. A variety of approaches exist to support device-to-
device dissemination, yet very few capitalize on the contextual
history of disseminated data itself to distribute additional data.
We introduce a fully decentralized model that captures the causal
history of shared information across a lifetime of device-to-device
propagation. Our approach enhances each transmitted message
with a spatiotemporal trajectory, a portion of the message’s
contextual history, which provides a window into the time-varying
state of the network and the overall spreading behavior of
the message. We benchmark the performance of spatiotemporal
trajectories at a global level and demonstrate the practical
utility of our constructs for making intelligent distributed routing
decisions through two use cases. The first illustrates how locally-
available contextual history may be used to make inferences
about remote nodes’ knowledge and thus direct routing of future
messages. The second example uses trajectories from different
types of data to identify commonly co-located data and devices,
which can then be used as substitutable routing targets.

I. INTRODUCTION

The sheer density of connected devices in everyday environ-
ments is rapidly growing. Supporting emerging mobile appli-
cations in these very dense deployments requires connecting
devices and their users to hyper-localized information. Such
data is intimately attached to a very specific space and time.
For many reasons, it is becoming apparent that pure device-
to-device interactions will play a pivotal role in connecting
users to this data. There are numerous mechanisms to support
the nuts and bolts of device-to-device message exchange, even
over multiple hops, and some are even “content-aware” (i.e.,
they distribute data based on its own semantics). However, few
approaches tap into the contextual history of the shared data.
We propose an approach whose key tenet is that knowing the
context in which a piece of data was created and the contexts
in which it has been shared over its lifetime can help determine
the future contexts in which that data might be relevant.

Consider a scenario that illustrates the utility of such contex-
tual history. At an outdoor festival with thousands of attendees,
festival-goers wish to find nearby mobile vendors of particular
food items, be alerted when friends are near, discover popular
photos of recent performances, receive coupons from vendors,
and be alerted about special events and limited offerings. In

such a densely populated environment, connecting attendees’
devices with the desired information may require device-
to-device interactions: the demand for fixed infrastructure
resources (e.g., cellular upload bandwidth) could greatly ex-
ceed available capacity [27]; round trip times to the “cloud”
may be too slow [26]; excessive data costs or quotas may
limit devices’ abilities to use a fixed network; and devices’
battery constraints may make short-range interactions far more
advantageous than long-range ones [28]. As a message is
opportunistically propagated between festival goers’ devices it
accumulates a contextual history comprising causal trajectories
of the device-to-device paths it traverses over space and time.
For example, as a user’s query for “vendors selling craft beer”
is disseminated using an epidemic protocol, we can represent
the query’s complete contextual history as a partially ordered
list of the timestamped pairs of devices the query traverses.
Knowing this history for one or more messages gives insight
into the evolution of the time-varying network topology and
indicates how messages tied to particular data have moved.
Instead of capturing the mobility of devices or humans (as
in existing approaches), these trajectories capture the mobility
of data. While this movement depends on opportunities for
message exchange governed by devices’ contact patterns, it
adds important and semantically rich information that can
influence various aspects of information diffusion in device-to-
device networks. Consider the following two examples, which
show the potential for the use of these trajectories:

• A beer vendor distributing digital coupons for craft beer
may use an algorithm that relies on trajectory information
about previously disseminated coupons to infer where in
the network his coupons have already reached, subsequently
using network resources to target new areas of the network.

• A pretzel vendor may use overheard trajectory information
to determine that beer and pretzel interest often overlap and
subsequently decide to route his pretzel coupons towards
beer interests, using the latter as a routing substitute for
(potentially unknown) pretzel interests.

Similar scenarios are found in other domains (e.g., vehicular
networks [18], smart cities [4], and emergency response [8]).

Problem Statement: The primary design challenge for
device-to-device mobile applications is operating under the
intermittency of connections that result from device mobility
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Fig. 1. Transmission graphs. Panel (a) shows an interval graph representing an opportunistic mobile network. Each solid black edge indicates 1-hop network
proximity and is labeled with the time interval in which the contact occurred; solid green and dashed blue arrows indicate transmission of message1 and
message2 (respectively). Panel (b) gives a more temporally-emphasized picture of the system, where a line corresponds to an edge in (a) and the active interval
is bold. The position of a numbered circle in an interval indicates the reception time of a message over that connection. The transmission networks of the
two messages are illustrated in (c) where a node’s position along the x-axis indicates the reception time.

while building a completely distributed model. Formal and em-
pirical studies of human mobility (e.g., [3], [22]) have driven
the development of a wide spectrum of protocols that provide
reliable and efficient dissemination of information within a
dynamic network topology. While most of these approaches
focus on human mobility (or the mobility of devices humans
carry), we instead focus on data mobility, i.e., time-varying
spatial and temporal properties that characterize the movement
or spreading of a piece of data within an opportunistic network
of mobile nodes. Analysis of real world human trajectory data
sets has been exceptionally useful for understanding humans’
spatiotemporal dynamics and interactions. Data trajectories,
on the other hand, are subject to an entirely different set of
barriers (e.g., physical, social, security) and can be very dif-
ferent from human paths. For example, consider Fig. 1, which
visualizes the device-to-device propagation of two messages
(indicated by the solid green and dashed blue lines) through
a transmission graph representation [25] of an opportunistic
network of mobile devices. The time-varying proximities of
the devices, shown in Figs. 1a and 1b, are a product of
(among other things) human mobility; as the humans carrying
these devices move, the devices come into contact with one
another. However, the causal trajectories of the two messages,
shown in Fig. 1c, while enabled by device proximity and
contact patterns, extend beyond the bounds of any single
device’s mobility—data mobility is rather a product of device
interactions. In Fig. 1, for example, nodes a and g never come
into physical contact (e.g., as a result of physical, social, or
temporal boundaries), however both messages originating at a
are eventually delivered to g. Harnessing the inferential value
of a message’s contextual lifetime directly within a highly
mobile environment requires a distributed approach that can
express the causal structure of message propagation.

Contributions: We introduce a completely distributed
model that uses a novel spatiotemporal trajectory data type
to capture a contextual history of device-to-device exchanges
of data. Our model provides two complementary views on data
mobility: a data-dependent view (i.e., what data is about) and
a data-agnostic view (i.e., how data moves). For example, the

transmission network in Fig. 1a may be viewed in a data-
dependent fashion in terms of message1’s trajectory (solid
green lines), message2’s trajectory (dashed blue lines), or
a union of both. Alternatively, the network’s time-varying
edges may be considered in a data-agnostic view irrespective
of the particular data that traversed those edges. Enriching
transmitted data with its contextual history gives a mobile
application local insight into the overall spreading behavior
of shared data and the time-varying topology of the network.
We benchmark the performance of our model’s constructs at a
global level using two empirical data sets. Finally, through two
use cases, we demonstrate the practical utility of our model
in improving opportunistic routing performance.

II. MODEL & TERMINOLOGY

Our model is based on the time-varying graph (TVG) [2],
which we extend to support spatiotemporal trajectories. While
a graph is a natural fit for representing a fixed network, a
time-varying graph is a natural means for representing data in
highly-dynamic and infrastructure-less networks.

Assumptions. Our model relies exclusively on device-to-
device communication. We assume nodes have unique iden-
tifiers and can detect the appearance and disappearance of
incident edges; we assume these links are managed by an
underlying discovery protocol. We also assume reliable mes-
sage delivery provided by the underlying link protocol. In the
remainder of the paper, therefore, we assume no lost messages,
i.e., if node u believes it sent a message to node v, this message
was received by v. The assumption of the use of device-
to-device links is not itself unrealistic, especially in light
of everyday users’ acceptance of emerging technologies that
support these links (e.g., BLE, WiFi-Direct) and applications
that use them (e.g., FireChat1). The reliance on devices to
contribute resources to forward messages for others requires
incentives [29]; these are orthogonal to our model, and we
assume that applications will either build in explicit (e.g.,
monetary) incentives or rely on implicit ones (e.g., the benefit
to an the individual for using the application).

1http://www.opengarden.com



Time-Varying Graph. We represent a network of mobile
nodes as a time-varying graph (TVG) G = (V,E, T , ρ, ζ,M).
V is a set of mobile nodes making contact with each other over
the lifetime (T ⊆ T) of the network. The temporal domain
T corresponds to R+ (continuous-time). E ⊆ V 2 is the set
of intermittently available (undirected) edges defined by the
contact between nodes; (x, y) ∈ E ⇔ x and y are in contact
at least once in T . For simplicity, we use undirected edges,
presuming that two nodes in contact can both transmit to and
receive from one another. In a real network this assumption
may not hold (i.e., links may not be symmetric). Our model
easily generalizes to a directed graph; the temporal domain
creates its own level of direction. The presence function,
ρ : E×T → {0, 1}, indicates whether a given edge is available
at a given time, and the latency function, ζ : E × T → T,
indicates the time it takes to propagate a message over a
given edge at a given time. To simplify presentation, we use
the constant ζ to indicate the latency for all edges and times.
To signify the time-dependent availability of edge e, we use
ρ[t1,t2)(e) = 1, which indicates that ∀t ∈ [t1, t2), ρ(e, t) = 1.
For example, in Fig. 2, ρ[1,3)(ab) = 1. So far, this is the same
definition of TVG as in [2]. Our model enhances this TVG by
adding M, a set of triples of the form (m, e, t), where each
triple signifies the transmission of message m on edge e ∈ E
at time t; to account for transmission times, all (m, e, t) ∈M
must satisfy ρ[t,t+ζ)(e) = 1.

In our model, each node maintains a local
TVG in which the identities the durations of each
neighbor’s contact are stored as first-hand knowledge.
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Fig. 2. A TVG G [2]. Edge labels repre-
sent time intervals during which edges are
available, i.e., ∪(t ∈ T : ρ(e, t) = 1).

Each transmitted
message carries the
message’s contextual
history, which is
extracted and locally
stored by a receiving
node as second-hand
knowledge. We present
the semantics of this
contextual history
later in this section. Local TVG maintenance is driven by
operations triggered by the appearance and disappearance
of incident edges and the reception of messages containing
contextual history metadata. We take an entirely distributed
approach; the global TVG G only exists in a virtual sense
as a union of the local TVGs maintained by the nodes:
G = ∪v∈V Gv . Before we provide the details of the algorithm
that maintains this first- and second-hand knowledge, we
introduce the key terminology and fundamental concepts.

Journey. We capture temporal reachability [24], [30] by
formalizing the notion of a journey. Informally, a jour-
ney represents a path through a network over time that a
message could have followed. A sequence of tuples J =
((e1, t1), (e2, t2), . . . , (ek, tk)), where e1, e2, . . . , ek is a walk
in G and ti+ ζ ≤ ti+1 for 1 ≤ i < k, is a journey in G if and
only if ρ[ti,ti+ζ ](ei) = 1. J(u,v) is a path over time from node
u to node v. We denote J ∗G as the set of all journeys in G and

J ∗(u,v) ⊆ J
∗
G as those journeys starting at node u and ending

at node v. If a journey exists from u to v, i.e., if J ∗(u,v) 6= ∅,
we say that a message from u can reach v at least once within
the lifetime of G, which we denote as u  v. However, this
relationship is not symmetric. For example, a  d via the
journey J(a,d) = ((ab, 1), (bc, 3), (cd, 7)) in Fig. 2; however,
no valid journey exists from d to a.

Transmission Network. While a journey represents po-
tential communication, a transmission network represents the
actual diffusion of a piece of information through the network,
i.e., the set of journeys that define the causal propagation of
a message in G. We formally define the transmission network
of m as J ∗G (m) ⊆ J ∗G , the set of all journeys along which m
traveled. While a single journey represents a time-dependent
path a message could take, a transmission network represents
the set of all journeys a message actually took.

Spatiotemporal Trajectory. To enable local insight into
a message’s contextual history, we introduce a novel spa-
tiotemporal trajectory data type. An outgoing message’s spa-
tiotemporal trajectory T (m) ⊆ J ∗G (m) is updated based on
a strategy before its transmission and attached as metadata to
the message. We define three core update strategies; additional
strategies could be derived and integrated based on application
or domain requirements. A node receiving m extracts T (m)
and inserts the contents into the local TVG (as described as
part of Algorithm 1 below). Conceptually, a spatiotemporal
trajectory serves two purposes. First, T (m) reveals a subset
of nodes that have received m and when those nodes received
m, which can be useful for an opportunistic routing protocol.
Second, T (m) provides a data-dependent view of the evolution
of G (from m’s perspective); this can support applications such
as computing a time-varying vicinity [23]. These two uses are
complementary because they enable the causal propagation of
m to be investigated in terms of the context of G or vice-versa.
We explore two related use cases in Section IV.

Update Strategies. A node appends a spatiotemporal tra-
jectory to each transmitted message. The attached trajectory
includes a portion of the node’s local view of the message’s
transmission network as well as a snapshot of the current
network from the node’s perspective. Exactly what is included
is determined by the trajectory’s update strategy. We introduce
three strategies that capture coverage of the message’s trans-
mission network to varying degrees. Fig. 3 illustrates these
strategies. Fig. 3a shows the entire transmission network. A
TVG (e.g., as shown in Fig. 2) annotates each edge of the
graph with a time interval associated with the relevant link.
In Fig. 3, we assume that the edges are available in stages,
from left to right across the figure. For example, all of the
edges incident to a are available in the interval [0, 1). This
simplification is purely for ease of presenting the figure and
the associated examples. The transmission network shows a
message that originates at node a (at the far left of the figure);
the other three panels show the trajectory information attached
to the message when it is received by node y, using each of
our core update strategies. We first describe our three update
strategies, then we examine their relative tradeoffs.
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Fig. 3. Spatiotemporal trajectory update strategies. Panel (a) shows a complete transmission graph for a message originating at node a, i.e., the given message
traversed all of the edges shown in panel (a). Panels (b)–(d) illustrate the trajectory received at y (darkened nodes and edges) when updated using each strategy.

Neighbors: Before transmitting m at time t to k neighbor-
ing nodes, the transmitting node vTX generates a new
spatiotemporal trajectory T (m) containing edges between
itself and all k neighbors that will receive m, i.e., T (m) =
∪i∈k((vTX , vRX i), t). T (m) is attached to m and transmit-
ted to each of the k neighbors. This strategy produces a
T (m) strictly representing the first hand receivers (i.e., the
“witnesses”) of m at t. For instance, Fig. 3b shows that the
trajectory received by node y contains information about all
other neighbors of v to whom the same message was sent.

Journey: Before transmitting m at time t to a neighboring
node vRX , the transmitting node vTX updates m’s trajectory
T (m) (or generates one if T (m) = ∅) by appending an
edge between itself and the receiver, i.e., T ′(m) = T (m)∪
((vTX , vRX ), t). This strategy produces a trajectory T (m)
that is precisely a journey of m in G (see Fig. 3c).

Journey+: This strategy combines the first two. Before trans-
mitting m at time t to k neighbors, the transmitting node vTX

updates m’s trajectory T (m) by appending an edge between
itself and each of the k receivers, i.e., T ′(m) = T (m)∪i∈k
((vTX , vRX i), t). This strategy produces a journey of m
enhanced with the receivers of m at every transmission along
the journey’s causal chain in G (see Fig. 3d).
When trajectories meet (i.e., when a node receives multiple

copies of the same message via different causal paths) the
knowledge in those trajectories can be merged at the receiver.
Consider the example in Fig. 4, which takes a partial view of
the transmission network in Fig. 3, now examining trajectories
received at node o. By merging trajectories for a message m,
a node can rebuild a more complete view of the transmission
network. Because the trajectory data type is generic, this
merging is possible even across trajectories created by different
strategies or for different messages.

None of these update strategies reproduces the exact trans-
mission network; in fact collecting such an omniscient, global
view is very expensive (if not impossible) in a distributed way.
As Fig. 3 demonstrates, the strategies produce trajectories that
vary in their coverage of the global transmission network.
Neighbors gives a very local view of the transmission; it
provides good spatial coverage, but only at a single instant in
time. It can be useful, for example, when y needs to know what
other nearby devices have the same knowledge, which y can
use, for example, to determine whether or not retransmitting a
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Fig. 4. Merging trajectories.

received message will be fruitful. The Journey strategy gives
exactly the trajectory of the received message. It provides
good temporal coverage but only captures the propagation
along a single causal path. This can be useful, for example,
when the message m “collects” information as it travels; the
trajectory then indicates from where (and which devices) this
information was collected. This is particularly insightful if
different copies of m may have different semantic value, i.e.,
copies that follow different paths convey different information.
Finally, Journey+ combines the coverage strengths of the
previous strategies but at the cost of added overhead. It
conveys, to the maximum degree possible without additional
coordination, m’s knowledge about its distribution relative to
the transmission network. Such a trajectory give applications
knowlege about m’s “coverage” of space and time, which may
influence future decisions about (re)transmitting the same or
similar information. Independent of m, these trajectories (and
their unions, across multiple messages) give a general picture
of the network’s evolving connectivity over time, which can be
used across applications and messages, i.e., in a data-agnostic
way, to reason about message distribution, generally.

Our approach maintains TVGs in a completely distributed
way. Algorithm 1 gives the operations a node u uses to
maintain its local TVG Gu, including how the TVG is updated
as trajectories are received. Initially, Gu only contains the node
u (itself); Eu, ρu, and Mu are empty. When u comes into
contact with a node v, onContact() is triggered, which ensures
that v ∈ Vu and e = (u, v) ∈ Eu and then updates ρu
to indicate the (temporally labeled) presence of e. When v
moves out of contact, onTimeout() is triggered, which updates
ρu to indicate that e is no longer present. Both onContact()
and onTimeout() alter Gu based on u’s first-hand knowledge.



Algorithm 1: Local time-varying graph operations at
mobile node u performed on u’s local TVG instance Gu.

1 Gu ← ({u}, ∅, [now(),∞), ∅, ζ, ∅)

2 onContact with a neighbor v at time t:
3 e = (u, v)
4 Vu ← Vu ∪ v
5 Eu ← Eu ∪ e
6 ρu,[t,∞)(e)← 1

7 onTimeout of a neighbor v at time t:
8 e = (u, v)
9 ρu,[t,∞)(e)← 0

10 onReception of a message m:
11 extract T (m) from m
12 foreach tuple (e = (i, j), t) in T (m) do
13 Vu ← Vu ∪ {i, j}
14 Eu ← Eu ∪ e
15 Mu ←Mu ∪ (m, e, t)
16 ρu,[t,t+ζ)(e)← 1

17 getTrajectory of a message m in window [t, t′):
18 return ∪{w ∈M : w.m = m ∧ t ≤ w.t ≤ (t′ + ζ)}

The injection of second-hand knowledge is performed by
onReception(), which is triggered whenever a message m is
received. This operation extracts m’s spatiotemporal trajectory
T (m) and inserts its contents into Gu tuple-by-tuple. Given
trajectory tuples of the form (e = (i, j), t), each tuple’s
nodes and edge are added to Vu and Eu (respectively), ρu
is updated to indicate the presence of e for the duration of the
transmission [t, t + ζ), and a tuple (m, e, t) is added to Mu

indicating the transmission of m on edge e at time t. Finally, u
may retrieve the spatiotemporal trajectory of message m within
a time window using getTrajectory().

Device Mobility and Disconnection. It is worth briefly
discussing the impacts of device mobility and intermittent
connectivity on our model. While we focus on data mobility
(as opposed to human or device mobility), data mobility
occurs over and is constrained by the connections in a (highly
dynamic) network of devices carried by mobile users. Our
model’s trajectories are therefore not representations of a static
network but instead provide knowledge about how the network
neighborhood has evolved, historically, over the ephemeral
links among the mobile nodes. This knowledge can be ac-
cessed both in conjunction with specific application messages,
e.g., to reason about the “coverage” of some application-level
knowledge in the dynamic network, or in a data agnostic way,
e.g., to reason about the changing communication network
itself. A trajectory represents how a piece of data moved in
the past; it is not a path that a subsequent piece of data could
explicitly follow in the future. As our use cases will show,
however, a trajectory or union of trajectories offer knowledge

about data and connections in space and time that applications
can use to influence future data dissemination actions.

III. BENCHMARKING

This section benchmarks the performance of our trajectory
update strategies using two real world data sets of human
proximity. Though not practically obtainable, a system’s global
TVG may be represented by the union of all nodes’ local
TVGs; this analysis examines the effectiveness of using our
spatiotemporal trajectories as a tool for estimating characteris-
tics of a complete transmission network (i.e., the global TVG).

A spatiotemporal trajectory T (m) captures a view of the
spatial and temporal history of m. A message’s complete spa-
tiotemporal history is given by its global transmission network
J ∗G (m), of which T (m) is a subset. A node u that receives m
initially has a local view of the global transmission network
J ∗Gu(m) = T (m). This local view may expand to include more
of J ∗G (m) if more copies of m are received (via different causal
paths). Our trajectory update strategies produce trajectories
with varying degrees of coverage of the transmission network;
this benchmarking quantifies that coverage.

Experimental Setup. For these benchmarks, we employ
two real world contact trace data sets of human proximity
collected by the SocioPatterns project2. The SocioPatterns
platform captures human proximity through the exchange of
radio packets between RFID devices embedded in badges
worn by humans. We use proximity data collected from two
deployments, both of which are described and analyzed in [16]
and [22]. The first deployment took place at the Science
Gallery (SG) in Dublin and lasted almost three months (we
use data from one day having 188 visitors). The second
deployment tracked human proximity of about 100 volunteers
at the Hypertext 2009 (HT09) conference in Turin. These
deployments represent very different kinds of human behavior.
In a museum, visitors spend a limited time on-site and gen-
erally follow a pre-defined path. At a conference, attendees
stay on-site for most of the day and move at will between
different parts of the conference venue. We chose these data
sets because of their density, scale, and focus on human
interactions. While these SocioPatterns data sets collect face-
to-face human proximity, we use them as representations of
more general human contact patterns. The networks we target
are not limited to face-to-face proximity; existing device-to-
device communication technologies can support connections
across tens of meters. However, the fine-grained level of
human behavior and interactions captured by the SocioPatterns
deployments, which is the key driver of our evaluations, would
be present in a network of human-carried devices connected
by any wireless protocol.

We simulate device-to-device propagation of messages and
their spatiotemporal trajectories using epidemic routing. We
assume that each node in a contact trace represents a wireless
device carried by a human and have each node maintain its
own local TVG. For each simulation, we select a random

2http://www.sociopatterns.org/



subset of the nodes to be seeds, which periodically inject data
into the network. Every 60 seconds a seed transmits both
a message and the message’s initial spatiotemporal history
(whose contents depend on the update strategy employed) to
all other nodes in contact at transmit time. Any node that
receives a message first stores the contextual history in the
local TVG then performs the same steps as the seed: it updates
the trajectory and propagates the message to all of its current
contacts. Intermediate receivers do not buffer messages; if a
receiving node does not have any active contacts at receive
time, then it does not propagate the message. For the sake
of these benchmarks and because our goal is not to evaluate
epidemic routing but instead the capabilities of spatiotemporal
trajectories, we do not impose any limit on the number of
hops a message can take—device-to-device diffusion continues
until all receivers of a message have already forwarded it (or
attempted to). For simplicity, we assume the latency of all
transmissions to be one second (ζ = 1 s)3.

Trajectories as an Estimation Tool. Our benchmark
measurements investigate how well a node’s partial (local)
knowledge embedded in the local TVG functions as a tool for
estimating global spreading dynamics and network characteris-
tics (i.e., the global transmission network). We use five metrics
to measure message propagation characteristics: receivers per
broadcast, transmission network depth, transmissions per sec-
ond, hops per second, and inter-transmission delay. When u
receives m at time t, we compute the error between each metric
as measured on J ∗Gu(m, t) (u’s local view of m’s transmission
network at t) and J ∗G (m, t) (m’s global transmission network
at t). We also measure coverage, or how well u’s local view
of m’s transmission network covers the global transmission
network, using the Jaccard similarity coefficient:

coverage(m,u, t) =
|J ∗Gu(m, t) ∩ J

∗
G (m, t)|

|J ∗Gu(m, t) ∪ J
∗
G (m, t)|

We first investigate how well our update strategies support
local estimation of global network characteristics. Fig. 5 shows
the mean per-message average of the coverage and estima-
tion accuracy (1 − error, relative to the global transmission
network) achieved by each update strategy measured on one
day of each SocioPatterns deployment. We use the mean per-
message averages to account for varying network size. In all
cases, half of the nodes act as seeds.

Not surprisingly, the Neighbors strategy achieves the poorest
coverage of the global transmission network since it only
captures one-hop contextual history. Journey and Journey+
achieve much better coverage and more accurate estimations,
since they both capture an entire causal chain of propagation
from seed to destination. Interestingly, spatiotemporal trajec-
tories generally produced more accurate estimations within
the SG deployment (Fig. 5b) than in the HT09 deployment
(Fig. 5a). We attribute this performance difference to the nature

3In a real world deployment, transmission time depends on payload size,
the wireless protocol, available network bandwidth, etc. Our focus here is
on the utility of spatiotemporal trajectories at the application layer. We leave
investigations of the impacts of trajectory and data size as future work.
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Fig. 5. Mean accuracy of per-message transmission network coverage and
estimation metrics measured on nodes’ partial transmission networks.

of the deployments. Nodes in the SG deployment (museum
visitors) typically move through the venue within 35 minutes
and rarely interact with other visitors entering the venue
more than an hour after them [16]. Moreover, SG visitors
generally spend more time in contact with few people. Message
propagation is therefore restricted to groups of nodes that enter
around the same time, which gives nodes in these cohesive
groups more chances to acquire a message’s spatiotemporal
history. Contact activity in the HT09 deployment, on the
other hand, is extremely bursty [22], with spikes of activity
occurring during the lunch and coffee breaks. HT09 attendees
do not follow a pre-defined path but rather move around freely,
spending less time interacting with more people [16]. This
diversity of interaction means that messages do not have the
opportunity to propagate many hops and therefore possess less
contextual history than in the SG deployment.

Though not shown due to space limitations, we also ex-
plored the coverage of each update strategy as a function of
the topological distance a message traveled, and the results
corroborate our conclusions. Because of contact diversity and
burstiness, messages in HT09 generally do not propagate more
than one or two hops from a seed and on average achieve a
lower coverage of the global transmission network than in the
SG deployment where nodes travel along similar spatiotempo-
ral paths in cohesive groups. In our model, a message’s spatial
context is based on a perception of the surroundings—if that
perception does not change, the message’s “space” does not
change. The spatiotemporal cohesiveness of the SG network
means that, while nodes may be moving in physical space,
their context changes slowly, which is why we observe better
estimation accuracy in SG than in HT09.

In addition to capturing how well spatiotemporal trajectories
capture the global transmission network, these benchmarks
highlight potential uses of the trajectory information, for in-
stance in helping applications determine what the connectivity
and message propagation (and coverage) patterns are on a
dynamic network. In the next section, we give two concrete
examples of how applications can leverage this information.



IV. USE CASES

This section demonstrates how spatiotemporal trajectories
may be leveraged to draw concrete higher level inferences that
improve the performance of opportunistic data dissemination.
These use cases serve as examples of what can be done given
knowledge of the contextual history of message propagation.
They are by no means intended to indicate limits on the
possibilities. The first use case takes a data agnostic view
and attempts to use received spatiotemporal trajectories to
build a (probabilistic) view of historical connectivity. Using
this view, we show that an application can make inferences
about to which other devices a message has likely already
been delivered; the application can rely on these inferences
to reduce the overhead of a simple message dissemination
protocol without a substantial impact on the delivery ratio.
In our second use case, we show how applications can form
data-dependent views, inferring the likely co-location of two
pieces of data and using that information to direct the search
for one type towards known locations of the other.

Knowledge Inference. In this first use case, we assume a
forwarding protocol that propagates messages to neighboring
nodes based on some probabilistic parameter4. We demonstrate
how such a protocol can use knowledge about the spatiotempo-
ral history of message propagation to infer by which neighbors
a message has likely already been received, thereby further
reducing forwarding events. This case study relies on the
observation that, in addition to indicating where and when
data is spatiotemporally “about,” trajectories provide a view
into the network-wide state of knowledge of message trans-
missions. Given that an application knows something about the
routing protocol responsible for disseminating data, a partially-
complete trajectory can be supplemented with second-hand
knowledge in the TVG to infer delivery likelihoods.

As a simple example, consider the scenario in Fig. 6 in
which two trajectories, T1 and T2 (shorthand for T (m1) and
T (m2)) are received at u via different causal paths. Ignoring
the temporal domain, from u’s perspective T1 (solid gray
arrows) traverses the upper walk (a, b, u), and T2 (solid black
arrows) traverses the lower walk (a, c, u). Node b receives both
m1 and m2 from a. However, because of the probabilistic
nature of forwarding, b only propagates m1 to u, so the
walk (a, b, u) is not included in T1. Assuming u knows the
underlying protocol’s probability of forwarding (Pp), it can
infer the likelihood that b is in trajectory T2 (i.e., that b has
received m2) by using the spatiotemporal information in T1.
Since node a is in the intersection of T1 and T2, u knows
that both m1 and m2 “passed through” a. If m2 arrived at a
before m1 (or if a has no predecessor in T1 or T2), which
u can directly infer by comparing the temporal entries of T1
and T2 containing a, then u knows there was a chance that a
propagated m2 to b. Under these circumstances the likelihood
that a propagated m2 to b is Pp times the topological length
of the shortest known journey between a and b in u’s TVG.

4Such a situation is also representative of an unreliable wireless channel
that may drop some relatively predictable proportion of transmitted packets.
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Fig. 6. Knowledge inference. Solid gray and black arrows indicate, respec-
tively, trajectories T1 and T2 as known by node u (i.e., in u’s local TVG). The
dashed black arrow is an element of T2 that is not known by u, but which u
can probabilistically infer by “stitching” together T1 and T2.

In implementing this use case, we demonstrate how such
inferences of remote nodes’ knowledge can be exploited to
eliminate redundant overhead in opportunistic data dissemina-
tion. Through this use case, we seek to demonstrate how our
trajectories can be used to impact network metrics. Similar
network metrics have been addressed using other methods, for
instance using node-to-node negotiation [13] or local machine
learning over received data [31]. Our goal here is not to
optimize redundancy reduction but to demonstrate potential
uses of our spatiotemporal trajectories. We simulate device-to-
device message propagation as in the previous section, with
the addition of a probabilistic threshold, PP associated with
each forwarding event. In addition, before transmitting m, a
node u uses local knowledge from its TVG to compute its
confidence c that the destination v has already received m.
If c exceeds a confidence threshold cthresh, then u infers v
has likely already received m and does not transmit m to
v. Otherwise, u transmits m to v (subject to Pp), and m’s
propagation continues at v. We measure the proportion of
redundant transmissions ( |redundant||total| ) produced by the proba-
bilistic forwarding protocol with and without knowledge infer-
ence. Additionally, for knowledge inference, we measure the
achieved false positive rate (i.e., the proportion of incorrectly
eliminated messages, |incorrectly eliminated||total| ). We vary both
the global propagation probability (Pp) and the knowledge
inference confidence threshold (cthresh).

Fig. 7a illustrates the impact of varying Pp from 0.25 to
1 while keeping cthresh fixed at 0.5. Knowledge inference
supported by our update strategies eliminates on average 96%
of redundant transmissions relative to the epidemic protocol.
However, as Pp increases, the false positive rate (the propor-
tion of non-redundant transmissions eliminated) also increases.
In these cases, cthresh is too low, resulting in overly-aggressive
inference. This could be a problem for applications that require
high delivery fidelity. However, for applications that can stand
to sacrifice some portion of message deliveries or that operate
in networks with limited bandwidth, a lower cthresh setting
could be a boon to performance.

Fig. 7b shows the effects of varying cthresh with Pp of
0.5 (i.e., at each hop a message is propagated to half of the
neighboring receivers). Since Pp is fixed, the redundancy of
the protocol without inferences is the same (44%) for each
cthresh. As suspected, increasing cthresh nearly eliminates
false positives, but at the expense of additional redundancy
when cthresh > 0.5. Not much variation exists between the
three update strategies, though the more expressive Journey
and Journey+ do provide some small reductions over the



Neighbor strategy. However, the drastic difference in false
positive rates between cthresh ≤ 0.5 and cthresh > 0.5 stands
out. In fact, this jump occurs precisely when cthresh exceeds
Pp. This is an incredibly important feature of our knowledge
inference—given that an application knows the global Pp, it
can pick an appropriate cthresh setting depending on how
many false positives the application can tolerate.

Routing Substitute Inference. Our second case study relies
on the semantics of the data with which context histories
are associated. We demonstrate how applications can discover
relationships between data items (e.g., that certain types of
data tend to be co-located with one another) and then use these
relationships to find related data. Many mobile social network
routing mechanisms [17] leverage the heuristic that socially-
related people tend to be regularly co-located [5]. Similarly, as
a byproduct of regular co-location or of user interest, particular
data may commonly occur at particular nodes. Assuming
that data generated in similar spatiotemporal contexts will
propagate along similar trajectories, we can detect data that are
commonly co-located by measuring the degree to which their
(known) trajectories overlap. For instance, in Fig. 1, g could
infer the degree of co-location of m1 and m2 by overlaying the
spatiotemporal trajectories received for each. Based on these
observations, g can identify that the two messages were co-
located (in both space and time) at a, b, c, d, and e. We refer
to such related pieces of data as data substitutes based on the
premise that finding one of the pieces of data is likely to lead
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(a) Percentage routing redundancy under varying propagation
probabilities (cthresh = 0.5).
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(b) Percentage routing redundancy under varying confidence
thresholds (Pp = 0.5). Epidemic redundancy is 44%.

Fig. 7. Reduction of routing redundancies using knowledge inference in HT09
June 30. The same trends exist in the SG deployment.

to the other, related, piece. We can also detect the case that
particular types of data tend to occur at particular nodes in the
network, which we refer to as node substitutes.

In a distributed environment where global knowledge is not
available, predictable regularities like these can be extremely
valuable. Here, we demonstrate how such regularities may
logically extend an opportunistic dissemination protocol by
functioning as substitutable routing targets. A targeted data
diffusion or query protocol may wish to deliver a message m
to nodes possessing a particular type of target data dtarget.
For example, at the music festival a mobile beverage vendor
may wish to deliver a digital coupon to attendees who have
purchased salty snacks. Conversely, a thirsty attendee may
want to query for digital data about nearby vendors selling
cold drinks. Before propagating m, we can compute data and
nodes that are frequently co-located with dtarget (i.e., its data
and node substitutes, respectively). During m’s diffusion, if
m reaches a node where sufficient knowledge about dtarget
is lacking, we can instead use one or more of its substitutes
to direct m’s continued propagation. Continuing the example,
given knowledge that information about beer and salty snacks
tend to be co-located, a search for a vendor selling cold
drinks may alter its routing path based on contextual history
associated with data about salty snacks.

To evaluate this use of our spatiotemporal trajectories, we
implemented a routing algorithm that evaluates the effective-
ness of using such routing substitutes to accomplish targeted
data diffusion. We use four target data selection policies:
most and least recently learned (M/LR) and most and least
frequently learned (M/LF). The first two selection policies
(recentness) target data that are different spatiotemporal dis-
tances from the diffusing node; the last two selection policies
(frequency) target data that differ in availability. We defined
a greedy data diffusion protocol that uses only substitutes to
direct propagation. Initially, a seed is responsible for choosing
the target data dtarget per one of the selection policies. The
goal is to deliver a message m to as many nodes possessing
dtarget as possible while minimizing the number of trans-
missions. Given dtarget, a source node u uses only its local
knowlege from its own TVG to compute dtarget’s data and
node substitutes (Dsub and Nsub, respectively) and their co-
location frequencies. Node u then propagates m using only the
substitutes with co-location frequencies exceeding a threshold
fthresh as routing targets (D′sub ⊆ Dsub and N ′sub ⊆ Nsub).
When data substitutes are used, u only transmits m to a node v
if u’s confidence that v has received at least one dsub ∈ D′sub
exceeds a threshold cthresh (confidence is computed using
knowledge inference). Likewise, for node substitutes, u only
transmits m to v if u’s confidence that v has received any
message from at least one nsub ∈ N ′sub exceeds cthresh.

We simulate our greedy substitute-guided diffusion along-
side an un-guided epidemic protocol with Pp and cthresh both
fixed at 0.5 and report results for data substitutes supported by
the Journey+ update strategy on a single day of the HT09 de-
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(a) Delivery “recall” measures the proportion of deliveries made
to nodes possessing dtarget out of all nodes possessing dtarget.
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(b) Delivery “precision” captures the proportion of deliveries to
nodes possessing dtarget out of all diffusion deliveries made.

Fig. 8. Mean per-message average delivery “recall” and “precision” for tar-
geted data diffusion using strictly data substitutes supported by the Journey+
update strategy within the HT09 June 30 deployment.

ployment5. We compute two metrics: delivery recall measures
the proportion of nodes possessing dtarget that successfully
received m; delivery precision captures the proportion of nodes
possessing dtarget that received m out of all the nodes that
received m. We vary fthresh from 0.25 to 1, interpreted
as a percentile. For example, using data substitutes and an
fthresh = 0.5, only the top 50% most commonly co-located
data are used as routing substitutes for dtarget. An fthresh = 1
is equivalent to our previous knowledge inference use case
(i.e., no substitutes). Fig. 8 shows our results. Again we report
the mean per-message average to weight our computed metrics
by transmission network size.

Fig. 8a illustrates the delivery recall for varying values of
fthresh. Here, the un-guided epidemic protocol is a baseline,
which is less than 1 simply because not all target nodes
(i.e., nodes possessing dtarget) are reachable. Impressively,
substitutes achieve nearly the same delivery recall, which
means that using strictly substitutes, we can deliver a message
to almost as many target nodes as are physically possible.
Delivery recall is unaffected by fthresh under all dtarget
selection policies except for the most frequent policy, which
decreases as fthresh increases. This means that, for these
settings, regardless of the quality of substitutes used, the same
proportion of the target nodes is reached.

We next examine the delivery precision of our substitute-
guided routing (Fig. 8b). Under all values of fthresh,
substitute-guided routing achieves better precision than un-
guided epidemic routing, meaning it is more accurate per-

5Performance results between data and node substitutes differed by no
more than 5%. Trends were similar for the other update strategies and were
consistent between the HT09 and the SG deployments.

transmission than epidemic routing. This is a byproduct of
our knowledge inference, which is very effective at inferring
whether an encountered node has received a piece of data or
not. Intuitively, delivery precision increases with fthresh; when
inferential decisions are based on higher quality substitutes,
more accurate inferences can be made. This case study demon-
strates that detailed contextual history information carried by
messages can improve the effectiveness of routing, specifically
reducing the number of transmissions (i.e., overhead) while
maintaining the overall performance (i.e., recall).

V. RELATED WORK

Numerous approaches support disseminating data in a
device-to-device fashion within networks of mobile nodes.
Epidemic routing [6] mimics the spread of infectious agents
(data packets) to susceptible hosts (mobile nodes). Many
publish/subscribe mechanisms have been proposed and eval-
uated [5] and some are even “content aware” [7]. Other
dissemination strategies provide high availability of data where
it is spatiotemporally relevant [21]. TOTA [19] gives an ap-
plication great flexibility by providing adaptive context-aware
programming constructs that can be used to define reactive
rules that govern how data diffuses. Still other methods attempt
to exploit interplays between social networks, data diffusion,
and mobility patterns by routing messages to nodes with high
social centrality or regularity [15]. Despite this wide spectrum
of device-to-device communication mechanisms, none directly
capitalize on the contextual history (i.e., the causal structure)
of transmitted data to distribute additional data.

Information diffusion [11] focuses on understanding and
modeling causality in online social networks in order to antic-
ipate popular topics, identify influential information spreaders,
or optimize social marketing. Explanatory approaches [10]
infer the underlying tree of influence representing who trans-
mitted a piece of information to whom given only a set of
nodes ordered by the times at which those nodes “learned”
the information. On the other hand, predictive approaches [9]
anticipate how a specific diffusion process will unfold on a
given network by learning from past traces. Valuable lessons
can be learned from these models. However, many of the
techniques developed assume the underlying social network
is globally accessible and either static or only minimally
dynamic. These assumptions do not hold in the highly mobile
and intermittently connected environments that we target.

Epidemiological models that capture how diseases spread
through networks of humans (e.g., [14]) also relate to data
movement in device-to-device communication networks. Dis-
ease spreading models have been used to probe the causal
structure of data dissemination in networks of human prox-
imity to uncover human behavioral patterns that aid in defin-
ing better routing strategies for device-to-device communica-
tion [16], [22]. The motivation of these works is very similar
to ours; however, their focus is on post-hoc analysis over a
global view of data’s spreading history. We instead introduce
a distributed model in which local information alone may be
used to make in situ inferences about data’s causal history.



T-CLOCKS [1] is a distributed tool that provides devices in
delay tolerant networks with temporal views of other devices
(i.e., a measure of the temporal and topological distance
between nodes). Our trajectory data type may be thought of as
a topological enrichment of the T-CLOCKS temporal view—a
spatiotemporal trajectory provides a data-dependent temporal
view in addition to the causal device-to-device propagation
path of a piece of data. Similarly, change awareness [12]
quantifies how much the latest information received from a
node differs (in time) from the most up-to-date information
being propagated by that node. Computing change awareness
requires global knowledge of the network topology. Our model
operates in a distributed fashion and captures time-dependent
paths pieces of information take through the network, pro-
viding greater local insight into the contextual history of that
information and the characteristics of the network.

VI. CONCLUSION AND FUTURE WORK

Users and applications in emerging mobile networked en-
vironments require access to hyper-localized digital informa-
tion. Device-to-device communications will play a crucial
role in connecting devices with this proximately-available
data. This paper introduced a distributed model that captures
the contextual history of shared data across its lifetime of
propagation and provides two complementary views: a data-
dependent view, which reveals what data is about, and a
data-agnostic view, which expresses how data moves. We
benchmarked the performance of our model’s constructs under
varying network conditions using two real world data sets
of human proximity. Finally, we showcased the practical
utility of our model and its constructs for making distributed
inference-based routing decisions. Future work will explore
using our models to support deployed applications, such as
the Gander search engine for the IoT [20], enabling further
performance and overhead analyses. The privacy implications
of collecting and sharing trajectories at varying granularities
should also be explored and can potentially be leveraged to
provided enhanced semantics. However, the use cases in this
paper demonstrate that spatiotemporal contextual history can
supplement an existing routing protocol to significantly reduce
redundant transmissions and to precisely direct data towards
target nodes. Future work could also explore whether our spa-
tiotemporal trajectories could complement existing techniques
to, for example, reduce network communication redundancy.
However, the general purpose nature of our spatiotemporal
trajectories allows them to be used by applications for mul-
tiple different purposes at the same time. Further, these use
cases showcased that an entire historical trajectory (instead of
just a source and destination) can provide additional useful
information to applications to help them reduce the overhead
or increase the quality of future communications.
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