
Cross-Layer Discovery and Routing in
Reconfigurable Wireless Networks

Christine Julien and Meenakshi Venkataraman
The Center for Excellence in Distributed Global Environments

The Department of Electrical and Computer Engineering
The University of Texas at Austin

c.julien@mail.utexas.edu,meens@ece.utexas.edu

Abstract— This work addresses the need for
application-aware adaptive communication in mobile
ad hoc networks that creates network routes based on
applications’ dynamic resource requests. We introduce
an intuitive generalization to source routing which
facilitates discovery of a resource in a mobile ad hoc
network and the creation and maintenance of a route
from the requesting host to the discovered destination.
We thus eliminate the requirement that existing routing
protocols be coupled with a name or resource resolution
protocol, instead favoring an entirely reactive approach
to accommodate significant degrees of mobility and
uncertainty. We also present a performance evaluation
and a comparison to existing alternatives.

I. INTRODUCTION

Mobile ad hoc networks are created when mo-
bile devices communicate directly without using an
infrastructure. Applications for such networks are
common when an infrastructure is unavailable (e.g.,
in disaster recovery situations when the infrastructure
has been destroyed) or unusable (e.g., in military
applications where the infrastructure belongs to the
enemy). Mobile ad hoc networks form opportunisti-
cally and change rapidly in response to the movement
of the connected devices, or mobile hosts. Such an
environment presents a network topology that is both
dynamic and unpredictable in which mobile hosts’
interactions are inherently transient.

Such scenarios abound in a wide variety of applica-
tion domains. In military scenarios, troops and their
vehicles are becoming increasingly capable of both
sophisticated data collection and dynamic wireless
communication. In the field, a soldier may wish to
locate mapping information, mine locations, or other
data collected by his fellow soldiers. First responder
applications require people with differing tasks, e.g.,
emergency medical technicians (EMTs), firemen, po-
licemen, search and rescue officers, etc., to converge
on a confined area and perform concurrent tasks. They

collect information about the site (e.g., hot spots,
smoke density, location of survivors, etc.) and benefit
from accessing data collected by others’ devices.

Much work on supporting applications in mobile
networks builds routing protocols that maintain com-
munication between senders and receivers. As the
topology of the network changes, the protocols adjust
routes to maintain end-to-end connectivity. These
protocols are motivated by the desire to support the
end-to-end communication common in Internet appli-
cations. These protocols require significant a priori
knowledge. A host must know in advance the unique
addresses of the other hosts with which it desires
to communicate, which assumes the existence of
well-known and available servers that cache resource
availability. A host wishing to communicate with
another host must first contact the server to resolve
the host’s name, following which the node must
employ a routing algorithm to discover and maintain a
communication path to the desired destination. These
two-phase approaches have several drawbacks:

• Electing and maintaining a stable server set in
an ad hoc network incurs a significant overhead
in the highly dynamic scenarios we are target-
ing [19].

• The cost of advertisement becomes prohibitive
as the number and variance of data sources
increases.

• When resources are highly dynamic, maintaining
a consistent registry requires significant numbers
of control messages [10].

• In a purely ad hoc network, the servers may
themselves be mobile and dynamic, requiring an
initial discovery protocol targeted at finding the
resolvers.

The novel contributions of this work are as follows.
We identify a set of assumptions made by existing
communication mechanisms that are limiting to the



protocols’ applicability to supporting real mobile ap-
plications. Second, we present a protocol for commu-
nication that overcomes these assumptions, and we
include an abstract model of the protocol’s behavior.
Finally, we present a performance evaluation that
serves to not only compare our protocol to alternatives
but to demonstrate the feasibility of incorporating
non-fixed length addressing into a reactive mobile ad
hoc routing protocol.

This paper is organized as follows. Section II
presents our motivation. Section III describes our
protocol in detail. Section IV analyzes our proto-
col’s performance through simulation and compares
it to a generalization of alternatives. In Section VI,
we compare our approach to similar research, and
Section V takes a critical look at the expressiveness
and flexibility of our protocol. Finally, Section VII
concludes.

II. MOTIVATION AND GENERAL APPROACH

In our evaluation of existing communication mech-
anisms and our examination of the needs of appli-
cations in mobile ad hoc networks, we identified a
mismatch between existing protocols and the needs
of emerging applications. Specifically, to successfully
use existing mechanisms, applications must resolve
names, intentions, or service descriptions into node
addresses.

Fig. 1. Node A is the requester; node B is the destination
that can provide the requested resource. Node L provides the
lookup service. Solid black arrows indicate requests, dashed
arrows represent replies, and double-lined arrows indicate service
registrations.

Network overhead and message delivery latency
must be of the utmost concern because hosts must

take advantage of communication partners while they
are connected. For this reason, we are motivated to
avoid an approach which requires multiple phases
of communication over the network. The alternatives
are pictorially compared in Fig. 1 which shows the
network traffic generated by a combined discovery
and routing protocol on the left and a two-phase
approach on the right. In highly dynamic networks,
multi-phased interactions are more likely to cause
failures as the services discovered may not actually
be available when communication commences (e.g.,
as shown in Fig. 2).

Fig. 2. The lookup service L returns both nodes C and B as
resource providers. A cannot tell the difference between the two,
so attempts to contact C, but C may have disappeared from the
network. A must wait for the route discovery attempt to time out
before attempting to contact B.

Our approach directly addresses the assumptions
of existing approaches and constantly concerns it-
self with the performance implications of our de-
sign decisions. In the next section, we provide the
details of a communication protocol that functions
without a source having to know the unique address
of the destination. Instead, route discovery is based
solely on properties of the destination. To achieve
this behavior, we introduce a level of indirection
into a source routing protocol (e.g., Dynamic Source
Routing (DSR) [17]). We selected source routing
as a foundation because performance comparisons
of DSR (a source routing protocol) and AODV (a
distance vector routing protocol) have shown that,
although the distance vector protocol achieves better
performance on application level metrics like de-
lay and throughput, source routing achieves a lower
overhead in highly dynamic situations [3], [8]. The



Resource Discovery (RD): 〈seq num, source id , spec, route record〉
contains a sequence number, the source id, the resource specification, and the route record

Route Reply (RR): 〈seq num, source id , route record〉
contains the same sequence number and source id, but contains the complete path.

Route Error (RE): 〈link end1, link end2, reverse route〉
contains the two hosts where the error occurred and the reverse of the original route.

Application Packet (P): 〈packet num, source id , spec, route record , application data〉
contains the data, a unique packet number, the source id, the specification, and the route.

Fig. 3. CDR Packet Types

goal of this work is not to provide a highly-tuned
protocol but to evaluate the feasibility and desirability
of incorporating application-level information directly
into a routing protocol.

III. A PROTOCOL FOR CROSS-LAYER DISCOVERY

The novelty of our approach lies in the fact that
we achieve support for realistic applications, while
having an acceptable impact on system performance,
especially when compared with viable alternatives.

A. Request Specification Language
Our protocol’s routing packets carry an application

level specification of the destination instead of its
fixed length address. A host may provide a number
of capabilities, store different types of data, or satisfy
varying requirements (e.g., it may be connected to
a printer, it may function as an FTP server, or it
may collect local traffic information). In the first
responders application, a vital sign monitoring device
provides information about an injured individual. In
general, a mobile host that wishes to communicate
with others does not know a priori which other
host(s) will satisfy its needs.

Many possible solutions for providing resource
descriptions and specifications exist [2], [13], [26]. In
general, most approaches use semi-structured data [1]
where attributes are related hierarchically. We assume
that not only are the capabilities (i.e., resources, data,
services, etc.) a host provides described in such a
manner, but that application data is also structured so
that it can be matched by similarly structured queries.
The determination of such structures, especially in
the case of data items, is likely to be application
dependent and this is one of the major motivations
for a cross-layer design, i.e., a design that performs
actions not only at the network layer but also at
the application layer. The specific description scheme
used is not important, and a particular application
may choose to swap out one specification language
for another (we use a simple example scheme in
Section IV).

B. CDR Protocol Fundamentals

Our protocol, Cross-layer Discovery and Routing
(CDR) enables route discovery between two hosts
based solely on attributes of the destination host,
its resources, or its data. As part of discovery, a
source route is generated that contains a list of
the hosts connecting the source to each potential
provider. Throughout our protocol description, we
provide an abstract model of its behavior, an aspect
often overlooked in communication protocol design.
We view the elucidation of this model as essential
to clearly stating the behavior of a protocol and the
assumptions on which it relies. This makes explicit
the state maintenance needs at each host and guides
the careful design of our implementation.

CDR utilizes four packet types, described in Fig. 3.
Each host also stores some state information, shown
in Fig. 4, relating to its previous and pending requests,
existing routes, and requests made by other sources.

C. Application Interaction

Fig. 5 shows the send action triggered by the appli-
cation in I/O Automaton notation [20]. We show the
behaviors only of host A, indicated by the subscript A.
Each action (e.g., SENDAPPLICATIONPACKETA) has
an effect guarded by a precondition. Actions without
preconditions are input actions triggered by another
host. In the model, each action executes as one atomic
step.

To abbreviate the formal description, we make two
assumptions. We assume each host only attempts to
send one application packet at a time and that a
satisfactory destination exists and will be discovered.
Both assumptions are removed in our implementation.
We abuse I/O Automata notation slightly by using,
for example “send ResourceDiscovery(RD) to Neigh-
bors” to indicate a sequence of actions that triggers
RESOURCEDISCOVERYRECEIVED (Fig. 7) on each
neighbor.

When an application triggers SENDAPPLICATION-
PACKET, the data and resource description are en-



Neighbors the set of neighboring hosts (i.e., hosts to which this host is directly connected);
Our implementation uses broadcast instead.

KnownRequests a record of the (RD) packets this host has seen. This enables controlled flooding.
RouteCache(spec) the routes that satisfy spec, sorted from lowest to highest latency.
PendingPacket the packet waiting for a route discovery
seq num the sequence number for this host’s resource discoveries; also enables controlled flooding.
packet num numbers packets sent by this host; used in resending packets that experience errors.
SentPackets(packet num) application packets sent by this host; used in resending packets that experience errors.
ResourceTable semi-structured descriptions of this host’s resources, matched against requests
Resends application packets queued to be resent due to transmission failures.

Fig. 4. CDR State Information

SENDAPPLICATIONPACKETA(P)
Precondition:

PendingPacket = NULL
Effect:

PendingPacket := P
if RouteCache(P.spec) = ∅ then

RD := 〈 seq num++, A, P.spec, {A} 〉
send ResourceDiscovery(RD) to Neighbors

TRANSMITAPPLICATIONPACKETA(P)
Precondition:

PendingPacket = P
RouteCache(P.spec) 6= ∅

Effect:
route := RouteCache(PendingPacket.spec).head
P.route record := route
P.packet num := ++packet num
send ApplicationPacket(P)

to P.route record.successor(A)
SentPackets(packet num) := P
PendingPacket := NULL

Fig. 5. Sending an Application Packet

capsulated in P. If no satisfactory route exists, the
action creates a Resource Discovery (RD) and sends
it to each neighbor. When discovery completes, the
RouteCache will contain at least one satisfactory
route. This enables the second action in Fig. 5,
in which the host sends the packet on the best
available route. The “send ApplicationPacket(P) to
P.route record.successor(A)” clause triggers APPLI-
CATIONPACKETRECEIVED(P) on the the second host
in the route record. The host also stores a copy of the
packet in SentPackets in case of a failure.

Fig. 6 shows APPLICATIONPACKETRECEIVED. If
the host is the intended destination, the packet is
passed to the application. Otherwise, the packet is
propagated by selecting the next host in the route
record and triggering that host’s APPLICATIONPACK-
ETRECEIVED(P) action. If the next link referred to in
P’s route record no longer exists, an error message is

APPLICATIONPACKETRECEIVEDA(P)
Effect:

if P.route record.tail = A then
deliver application packet

else
if P.route record.successor(A) ∈ neighbors then

send ApplicationPacket(P)
to P.route record.successor(A)

else
reverse route := reverse(P.route record)
RE := 〈 A, P.route record.successor(A),

P.packet num, reverse route 〉
send RouteError(RE)

to RE.route record.successor(A)

Fig. 6. Propagating an Application Packet

generated. It uses the reverse of P’s route record to
target the source host.

RESOURCEDISCOVERYRECEIVEDA(RD)
Effect:

if A /∈ RD.route record then
if ResourceTable satisfies RD.spec then

RR := RD
RR.route record := RD.route record + A
send RouteReply(RR)

to RR.route record.predecessor(A)
else if 〈 RD.source, RD.seq num 〉 /∈

KnownRequests then
KnownRequests :=

KnownRequests ∪ {〈 RD.source, RD.seq num 〉}
RD′ := RD
RD′.route record := RD.route record + A
send RouteRequest(RD′) to Neighbors

Fig. 7. Propagating a Resource Discovery Packet

D. Resource Discovery

The above process triggers RESOURCEDISCOV-
ERYRECEIVED, shown in Fig. 7. A receiver ensures
there are no loops in the route and then determines
whether or not it can act as a destination. While a



single line performs this check in our model, it uses
application specific information, thus necessitating
the protocol’s cross-layer design, as application-level
information must be accounted for in the resource
discovery process. If this host does not satisfy the
specification, it continues to propagate the resource
discovery.

If this host can serve as a destination, the host
generates a Route Reply (RR) that it returns to the
source. The RR propagates using the reverse of the
discovered route, triggering ROUTEREPLYRECEIVED

on hosts in the route record (shown in Fig. 8).

ROUTEREPLYRECEIVEDA(RR)
Effect:

if RR.source = A then
RouteCache(RR.spec) :=

RouteCache(RR.spec) + RR.route record
else

send RouteReply(RR)
to RR.route record.predecessor(A)

Fig. 8. Propagating a Route Reply Packet

Unless the host is the source, ROUTEREPLYRE-
CEIVED simply triggers the same action on its prede-
cessor. If this host is the source, the route carried by
the reply is stored in the RouteCache and associated
with the appropriate application-level specification
(RR.spec). For an initial route discovery, this insertion
triggers TRANSMITAPPLICATIONPACKET shown in
Fig. 5.

This description assumes that the network has sym-
metric links and that it is therefore possible for the
packet to traverse the reverse route. If this is not the
case, the destination must perform a reverse discovery
using the source’s unique network address. In CDR
it is possible that multiple destinations will satisfy a
request. A source simply selects the first host from
which it receives a route reply. Section V discusses
using context properties and context-sensitive appli-
cation requirements to select the best path according
to different metrics.

E. Route Error Propagation

When links break, transmissions encounter errors.
The host detecting the broken link sends a Route
Error (RE) to the source. On receiving an RE, if the
host’s route cache contains no additional routes for
the desired specification, the source reinitiates route
discovery.

Fig. 6 showed how the RE is generated by a
host that detects a broken link. This host triggers

ROUTEERRORRECEIVED on the previous host in the
source route. Fig. 9 shows how this packet is propa-
gated. The propagation of an RE does not guarantee
that it reaches the original source; it may encounter
link failures itself, and we do not attempt to recover
from these. In such cases, the original source may
not learn that its packet was not properly delivered.
A host receiving an RE deletes any routes it stores that

ROUTEERRORRECEIVEDA(RE)
Effect:

for each route ∈ RouteCache do
if RE.link end1 ∈ route and

RE.link end2 = route.successor(link end1) then
RouteCache := RouteCache - route

if RE.route record.tail = A then
Resends := Resends ∪ SentPackets(RE.packet num)

else
send RouteError(RE) to RE.route record.successor(A)

Fig. 9. Propagating a Route Error Packet

also use the broken link. When the packet reaches the
source, it pulls a copy of the packet that experienced
the transmission error from SentPackets and queues
it for retransmission.

To complete our protocol’s specification, we must
also ensure that these packets are retransmitted. To
this purpose, we add a RETRANSMITPACKET action
which is the same as SENDAPPLICATIONPACKET in
Fig. 5 except that the packet comes from Resends in-
stead of directly from the application. This new action
does not guarantee fairness between application sends
and resends due to route errors; if the application
continues to send packets, packets that need to be
resent may never get the chance.

IV. ANALYSIS AND EVALUATION

In this section we provide a first step in demonstrat-
ing the feasibility of incorporating resource directed
routing into highly dynamic mobile applications. We
used the ns-2 network simulator to generate these
results.

A. Simulation Settings

Our simulations utilized node mobility patterns
based on random waypoint mobility [3] with 51 nodes
in a rectangular field of size 1500m × 300m. Nodes’
speeds were uniformly distributed between 0.01 and
20m/s, with the exception of one node, which was
stationary in the center of the field. We varied the
nodes’ pause times from 0 seconds (for high mobility)
to 900 seconds (for static networks). Our simulations



Fig. 10. Route discovery latency for one provider

used the 802.11 MAC. Each simulation is run for 900
simulation seconds, and each plotted point indicates
an average over 200 samples. Traffic between sources
and destinations was generated at the rate of 20
packets per second. All data packets were of size 512
bytes. Finally, we used resource descriptions of three
different lengths: the basic description (17 bytes),
“len-2” (45 bytes), and “len-3” (107 bytes). The
descriptions searched for printers using increasingly
specific descriptions.

B. Performance Metrics

Two important factors in CDR’s design are the use
of non-fixed length addressing and the incorporation
of discovery into routing. We have chosen perfor-
mance metrics specifically to measure the impact of
these decisions on various aspects of the system’s
performance:

• application packet delivery ratio: the percentage
of data packets successfully delivered.

• discovery latency: the amount of time it takes a
source to know a satisfactory route.

• data delivery latency: the total time to deliver a
data packet to a satisfactory destination.

• normalized byte overhead: the number of bytes
of control data for each data packet delivered.

• average route length: the number of hops from
the source to the selected destination.

For each metric, we report 95% confidence intervals.

C. Protocols

To gauge CDR’s improvement over current ap-
proaches, we compared it to a protocol we call
DWD (DSR with Discovery). Such a protocol is

Fig. 11. Data delivery latency for one provider

representative of those that utilize a lookup service
to resolve the name or type of a service before
subsequently contacting the node based on its id.
We placed a lookup server on the center (stationary)
node. Before creating a route, a source in DWD
must contact the lookup server with the description
of its desired resource. The lookup server responds
with the node (or nodes) in the network that provide
that service. We assumed that the lookup node had
complete knowledge of the service providers in the
system and therefore do not require service providers
to register with the lookup service. As such, our
measurements do not include the overhead associated
with registrations and their renewals. We also assume
that a source already knows the id of the lookup
server and does not need to discover it. The ns-2
implementation of DSR was used to create routes
between sources and the lookup server and between
sources and destinations.

D. Results

We first compare CDR to DWD given a single
available matching resource. This first set of figures
shows results for each of the three description lengths
for each protocol. We first compare the protocols’
discovery latencies. Fig. 10 shows that, when it is
necessary to discover a new route, it takes DWD
(on average) much more time. This is due in part
to the fact that in CDR, the route discovery time is
correlated to the resource’s proximity to the requestor,
which is not the case in DWD. The wide confidence
intervals on these measurements also indicate the
wide variance of the results. Sometimes, DWD could
return a route quite quickly; other times, however,



Fig. 12. Packet delivery ratio for one provider

Fig. 13. Normalized byte overhead for one provider

the discovery server was out of range (as shown in
Fig. 2) or took a long time to contact, even when the
potential destination was quite close.

The discovery latency shown in Fig. 10 is only a
portion of the total data latency applications perceive.
The latter is shown in Fig. 11. When averaged over all
application data packets (not just those that generated
a discovery), the latency of DWD is still greater than
for CDR. The difference is approximately a constant
and represents the difference shown in Fig. 10 amor-
tized over all successfully delivered application data
packets.

Fig. 12 compares the application packet delivery
ratio for CDR and DWD. The figure shows that,
especially in situations of high mobility (low pause
times), the CDR’s delivery ratio is much higher than
DWD’s. This can be attributed to the fact that, in
some situations in DWD, the discovery service was

Fig. 14. Packet delivery ratio for multiple providers

Fig. 15. Path length for multiple providers

not contactable even though the potential destination
was, but DWD was unable to deliver the application’s
message. In other cases, the destination was initially
reachable, but the mobility that occurred during the
time it took to discover the identity of the destination
made it unreachable.

Finally, we compared the protocols’ network over-
head. We expected that, especially for larger descrip-
tions, the overhead for CDR would be larger because
the flooding portion of the protocol carries this larger
description. In DWD, the flooding portion of the pro-
tocol carries only the fixed-length address of the des-
tination. As Fig. 13 shows, for the shorter descriptions
(len-1 and len-2), CDR’s overhead is comparable to
DWD’s. As the description length increases, CDR’s
overhead also increases, while DWD’s stays relatively
unchanged. For the very expressive description (len-



3), the overhead of CDR is only marginally greater
than for the other cases, and the previous results
demonstrate that this increased overhead comes with
a significant improvement to other application-level
metrics like latency and delivery ratio.

The second set of experiments we performed
placed multiple providers for the same resource
within the network. We ran tests for 2, 4, 8, 16,
and 32 potential providers. These scenarios are more
likely representative of emerging mobile applications
where multiple nodes can provide the same or similar
functionality. Fig. 14 shows how the packet delivery
ratio for the two protocols compares in this situation.
CDR again outperforms DWD on this metric. The
increase in success for CDR in comparison to DWD
reflects the fact that CDR’s single phase of commu-
nication quickly targets locally available resources.
This argument is bolstered further by the results
depicted in Fig. 15 which show the average path
length for the routes selected by each of the protocols.
CDR consistently selects a path of much shorter cost
than DWD, indicating CDR’s inherent preference for
closer resources. DWD on the other hand, cannot tell
from the list it receives from the lookup service which
particular resource would be the optimal choice. In
addition to benefiting our stated performance metrics,
this also benefits applications in pervasive mobile
environments that are often likely to prefer resources
that are more “local,” and, in wireless environments,
the number of hops is often a decent measure of
locality.

V. DISCUSSION AND FUTURE WORK

We have presented a novel model of communica-
tion that holds promise in supporting future mobile
applications. This section examines the subsequent
steps that must be taken to build on these results to
create a deployable, usable, and expressive resource-
directed discovery and routing protocol in highly
dynamic environments.

1) Reactive versus Proactive Approaches: Sec-
tion II outlined our rationale for an entirely reactive
protocol. Briefly, our decision is motivated by the
fact that our target applications operate in highly
dynamic and data rich environments where adver-
tising all of the available data proves too costly
in terms of communication overhead. This is in
stark contrast to service provision, which operates
under the assumption that a widely-used set of ser-
vices will be desired by multiple applications which
therefore benefit from distributed advertisement of

the services. Given the potential for success of our
resource-directed protocol described in this paper,
further extensions may include a limited proactive
behavior based not on the nature of the data or
resource but on the nature of the requests for it.
That is, once the frequency of requests or number
of requesters reaches a certain (adaptive) threshold,
it may make sense to proactively distribute data in a
limited local region (depending on the extensiveness
of the dynamics of the environment). Future work
will investigate the feasibility of such modifications
with respect to metrics for measuring when to adapt
and the degree to which proactive behavior should
be used. This type of adaptive protocol differs from
the Zone Routing Protocol (ZRP)’s [14] use of hybrid
proactive/reactive behavior in that their scheme uses
only network topology information to adapt, while we
promote using network and application context.

2) Multiple Route Caching and Updating: A re-
source request can generate multiple routes to the
same destination. In addition, because we do not use
a unique identifier to specify the destination, multiple
distinct destinations may satisfy the request. For now,
we simply choose the one with the lowest latency.
Additional metrics can be easily incorporated, e.g.,
relative location or load. New issues arise, however,
because some interactions between a source and a
destination, once initiated, may have long-lived state
that impacts future interactions. This state may have
to be maintained as the connection switches from
one destination to another. For the moment, this
concern is ignored in our protocol, and there are
many cases when this is acceptable or even desirable.
For example, if the data resource is local temperature
information, it is desirable, that, as the device moves,
a more local resource is selected in preference to an
old connection to a more distant resource. On the
other hand, if the interaction is a bidding negotiation
between a buyer and a seller, automatically switching
to a new seller would disrupt any ongoing trans-
actions. Additional protocols can be integrated with
CDR for transparently migrating existing state infor-
mation from one resource to another when acceptable
or, in the worst case, ensuring clean and announced
disconnection from disappearing resources [15].

VI. RELATED WORK

Routing protocols for mobile ad hoc networks can
generally be divided into two categories: proactive
and reactive. Proactive protocols (e.g., DSDV [23])
maintain routes between each pair of hosts in the



network. Reactive, or on-demand protocols (e.g.,
AODV [24] and DSR [17]) create routes only when
requested by a particular source and maintain them
only until they are no longer used. The Zone Routing
Protocol [14] is a hybrid that leverages proactive
behavior within a local “zone” surrounding a node
and switches to reactive behavior outside of that zone.
These routing protocols require the application to
provide the unique address of the destination to create
a route instead of specifying properties of a desired
resource.

Service discovery approaches, e.g., [19], [9], [12],
[7], allow applications to query resource resolvers
based on descriptions instead of names. It is this style
of approach that the DWD protocol in the previous
section mimics. Publish-subscribe systems provide
a service similar to our goals, and the concept has
been applied successfully in infrastructure mobile net-
works [4] and even in mobile ad hoc networks [29].
The philosophical bases of name resolution, service
discovery, and publish-subscribe approaches assume
that multiple subscribers will be simultaneously in-
terested in the same publication. As a result, the ar-
chitectures use varying degrees of proactive behavior
for resources or data to announce or advertise their
presence. In highly dynamic networks, this generates
significant overhead that is often not necessary given
the expected behavior of applications.

Our work is not the first to propose application-
level or content-directed communication. Content
Based Multicast (CBM) [30] pushes messages to
receivers based on the message’s content. This is
complementary to our approach in that it supports
push interactions. Network Abstractions [25] uses a
multicast to collect and maintain a set of the identities
of hosts that satisfy an application level property.
Messages are subsequently sent only to the collected
set of nodes. Application-oriented routing [21] ex-
tends TORA [22] and uses a combination of proactive
and reactive behavior, requiring hosts to perform
topologically limited advertisements of their services.
Such an approach is targeted towards scenarios in
which applications share common interests and are
therefore often looking for similar things.

Work more closely aligned with our goals inte-
grates resource discovery and route construction in
mobile ad hoc networks [10], providing an implemen-
tation of the architecture requirements first elucidated
in [18]. This work enhances AODV [24] to simul-
taneously discover services and routes to them, but
the approach assumes a predefined and well-known

mapping of service descriptions to fixed length inte-
gers. This significantly limits the protocol’s flexibility.
Similarly, EDSR, part of the MPP protocol suite for
providing peer-to-peer interactions in mobile ad hoc
networks [11], [27] extends the DSR protocol [17] to
allow route requests to allow hosts to be addressed
by content instead of unique address. However, the
approach uses a rigid naming scheme based on hash
functions and no evaluations are provided that directly
measure the impact of the new naming scheme on
routing performance. The Group-based Service Rout-
ing Protocol (GSR) [6] does incorporate an expressive
naming scheme for describing resources but relies on
the cooperation of an advertisement scheme [5] to aid
in the resource discovery process. In a similar vein
to our work, [28] augments both DSR and DSDV
with service discovery capabilities and demonstrates
that the service selection algorithm has a significant
impact on the network’s throughput.

Directed diffusion [16] is an attribute based rout-
ing scheme targeted directly for sensor networks.
The communication occurs in two “phases;” the ex-
ploratory phase creates a network of gradients (and
floods responses back to the requester). The “best”
gradients are subsequently selected through reinforce-
ment. This protocol operates in environments where
nodes commonly coordinate to perform a specific
sensing task and can take advantage of this coop-
eration to aggregate messages destined for a sink
node. We target a drastically different communica-
tion environment, where the traffic flows are neither
predictable, persistent, nor deterministic and many
nodes serve as “sinks.” In addition, we focus on the
feasibility of non-fixed length addressing in a dy-
namic scheme, where the presented directed diffusion
implementation makes strong assumptions regarding
an agreed-upon naming representation. None of these
existing pieces of work combines a flexible naming
scheme with a completely distributed discovery envi-
ronment or evaluates the impact of routing with non-
fixed length addressing on the overhead of communi-
cation in highly mobile environments, the two most
significant contributions of the presented work.

VII. CONCLUSION

This paper has presented a novel communication
protocol, Cross-layer Discovery and Routing (CDR)
that alleviates the need for applications in a mobile
ad hoc network to contact a well-known repository
to create routes among mobile hosts. As we set out
to bridge the gap between existing communications



approaches and applications’ requirements, we started
with the motivation that the combination of a reactive
protocol with the source routing paradigm holds the
most promise for a responsive and flexible mechanism
(Section II). We presented CDR, providing a formal
abstract characterization of the protocol (Section III).
To examine the feasibility of incorporating non-fixed
length data and resource descriptions into a reactive
routing protocol, we performed a simulation analysis
of our protocol and compared it with alternatives
(Section IV). Finally, we examined the implications
of the most fundamentally unique aspects of our
protocol and identified areas for enhancements (Sec-
tion V). The work presented in this paper provides a
necessary and significant first step in supporting real-
world dynamic and adaptive applications for emerg-
ing mobile ad hoc network scenarios.

ACKNOWLEDGEMENTS

The authors would like to thank the Center for Excel-
lence in Distributed Global Environments for providing
research facilities and the collaborative environment. This
research was funded, in part, by the National Science
Foundation (NSF), Grant # CNS-0620245. The conclusions
herein are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

REFERENCES

[1] S. Abiteboul. Querying semi-structured data. In Proc. of
the 6th Int’l. Conf. on Database Theory, pages 1–18, 1997.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, 284(5):34–43, 2001.

[3] J. Broch, D. Maltz, D. Jounson, Y.-C. Hy, and J. Jetcheva.
A performance comparison of multi-hop wireless ad hoc
network routing protocols. In Proc. of Mobicom, pages 85–
97, 1998.

[4] M. Caparuscio, A. Carzaniga, and A. Wolf. Design and
evaluation of a support service for mobile, wireless pub-
lish/subscribe applications. IEEE Trans. on Software Engg.,
29(12):1059–1071, 2003.

[5] D. Chakraborty and A. Joshi. GSD: A novel group-
based service discovery protocol for MANETs. In Proc.
of MWCN, 2002.

[6] D. Chakraborty, A. Joshi, and Y. Yesha. Integrating service
discovery with routing and session management for ad hoc
networks. Ad Hoc Networks Journal, 2004.

[7] S. Czerwinski, B. Zhao, T. Hodes, A. Joseh, and R. Katz.
An architecture for a secure service discovery service. In
Proc. of Mobicom, pages 24–35, 1999.

[8] S. Das, C. Perkins, and E. Royer. Performance comparison
of two on-demand routing protocols for ad hoc networks.
In Proc. of INFOCOM, pages 3–12, 2000.

[9] P. Engelstad, Y. Zheng, T. Jonvik, and D. V. Thanh. Service
discovery and name resolution architectures for on-demand
MANETs. In Proc. of the Int’l. Wkshp. on Mobile and
Wireless Networks, pages 736–742, 2003.

[10] C. Frank and H. Karl. Consistency challenges of service
discovery in mobile ad hoc networks. In Proc. of the
7th Int’l. Symp. on Modeling, Analysis and Simulation of
Wireless and Mobile Sys., pages 105–114, 2004.

[11] I. Gruber, R. Schollmeier, and W. Kellerer. Performance
evaluation of the mobile peer-to-peer service. In Proc. of
the 4th IEEE Int’l. Symp. on Cluster Comput. and the Grid,
pages 363–371, 2004.

[12] E. Guttman. Service location protocol: Automatic discovery
of IP network services. IEEE Internet Comput., pages 71–
80, July-August 1999.

[13] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service
location protocol, version 2. IETF, RFC 2608, June 1999.

[14] Z. Haas, M. Pearlman, and P. Samar. The zone routing
(ZRP) for ad hoc networks. IETF MANET Working Group
Internet Draft, July 2002.

[15] Q. Huang, C. Julien, and G.-C. Roman. Relying on safe
distance to achieve strong partitionable group membership
in ad hoc networks. IEEE Trans. on Mobile Comput.,
3(2):192–205, 2004.

[16] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heideman,
and F. Silva. Directed diffusion for wireless sensor net-
working. IEEE/ACM Trans. on Networking, 11(1):2–16,
February 2003.

[17] D. Johnson, D. Maltz, and J. Broch. DSR: The dynamic
source routing protocol for multi-hop wireless ad hoc net-
works. Ad Hoc Networking, pages 139–172, 2001.

[18] R. Koodli and C. Perkins. Service discovery in on-demand
ad hoc networks. Internet Draft, October 2002.

[19] U. Kozat and L. Tassiulas. Service discovery in ad hoc
networks: An overall perspective on architectural choices
and network layer support issues. Ad Hoc Mobile Networks,
2:23–44, 2004.

[20] N. Lynch and M. Tuttle. An introduction to input/output
automata. CWI-Quarterly, 2(3):219–246, 1989.

[21] M. Matthes, F. Apitzsch, M. Lauer, and O. Drobnik.
Application-oriented routing for mobile ad hoc networks.
In Proc. of the European Wireless Conf., 2004.

[22] V. Park and M. Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In Proc.
of INFOCOM, pages 1405–1413, 1997.

[23] C. Perkins and P. Bhagwat. Highly dynamic destination-
sequenced distance vector routing (DSDV) for mobile com-
puters. In Proc. of SIGCOMM, pages 234–244, 1994.

[24] C. Perkins and E. Royer. Ad hoc on-demand distance vector
routing. In Proc. of WMCSA, pages 90–100, 1999.

[25] G.-C. Roman, C. Julien, and Q. Huang. Network abstrac-
tions for context-aware mobile computing. In Proc. of the
24th Int’l. Conf. on Software Engg., pages 363–373, 2002.

[26] Salutation Consortium. The salutation webpage, 2004.
[27] R. Schollmeier, I. Gruber, and F. Niethammer. Protocol for

peer-to-peer networking in mobile environments. In Proc.
of ICCCN, pages 121–127, 2003.

[28] A. Varshavsky, B. Reid, and E. de Lara. A cross-layer
approach to service discovery and selection in manets. In
Proc. of MASS, pages 459–466, 2005.

[29] E. Yoneki and J. Bacon. An adaptive approach to content-
based subscription in mobile ad hoc networks. In Proc.
of the 1st Int’l. Wkshp. on Mobile Peer-to-Peer Comput.,
pages 92–97, 2004.

[30] H. Zhou and S. Singh. Content based multicast (CBM) in
ad hoc networks. In Proc. of Mobihoc, pages 51–60, 2000.


