
Efficient Decentralized Context Sharing
via Smart Aggregation

Sungmin Cho and Christine Julien
Center for Advanced Research in Software Engineering

The University of Texas at Austin
Email: smcho@utexas.edu, c.julien@utexas.edu

Abstract—Sensing applications often require participants to
share context information about the physical social, or network
environment in which they operate. Building shared views of
context requires exchanging sensed information, often via peer-
to-peer links. In-network aggregation enables efficient distributed
data collection, but the goal has been almost exclusively collect
a single aggregate value at a single sink node. In contrast, we
design and implement a simple protocol for exchanging context
information in aggregate in a peer-to-peer fashion, where every
node needs to acquire a shared view of the aggregate context.
In our protocol, when a node receives new context information
from a neighboring node, it aggregates the new information into
its local view of the shared state of the world which it then
subsequently shares with its neighbors. We demonstrate (both
theoretically and empirically) the situations in which participants’
raw context information is fully or partially recoverable by
other participants from an aggregate and quantify the tradeoff
in communication overhead for the quality of shared context
knowledge. Compared with non-aggregation communication for
sharing context values among 100 nodes in a simulated network,
we show an overhead savings of at least 78.0%, and an overhead
savings of 66.0% with 99.8% average accuracy in a 54 node
emulated network driven by real world data.

I. INTRODUCTION

With the increasing popularity of pervasive computing, it
is common for networked devices to be connected each other
to share locally sensed information. Each node is assumed to
be equipped with sensing, computing, storage, and commu-
nication capabilities. Sensed or computed information from
environments can be processed to create local views of regional
context measures, and these local views can be transferred
via peer-to-peer network links to other nearby nodes. These
exchanges are application dependent, but in many cases the
individual nodes work together to create shared views of some
context measure; for example each node may disseminate its
locally sensed temperature to construct an average temperature
over some area. Compared to each node’s local context, which
represents an egocentric view, aggregate context views that
are shared among participants can play a meaningful role in
decision making and actuation, as each node can compare
its local value(s) to aggregate ones. For example, actuator
nodes may used aggregate temperatures to determine how to
adjust a building’s heating and cooling systems. We propose
an efficient protocol for decentralized information sharing via
smart aggregation among nodes in a pervasive system.

In many applications a node may function as both a source
of individual context information and a consumer of some
shared (aggregate) view of that context. For example, shared
global contexts can enable evaluating global invariants to iden-

tify abnormal environmental conditions or to enforce constraint
variations in quality [15]. A building’s Heating, Ventilation,
and Air-conditioning Controller (HVAC) system may require
a uniform pressure distribution in the building to prevent wind;
in other cases, e.g., when a volatile organic compound is
detected, the HVAC system may need to create a pressure
differential to protect air quality [16]. These conditions can
be detected by creating spatial aggregates of air pressures in
different areas of the building and comparing these aggregates
against local measures. As another example, sensor nodes
deployed in building structures can monitor stress and strain
generate warnings when the difference between the locally
measured strain and an aggregate view of the overall strain
is above the threshold [5]. In a wild fire detection system
deployed in a forest [20], sensing and reporting in response to
heightened temperatures may lead to false alarms. Comparing
a locally sensed value against a shared spatial aggregate before
triggering an alarm can help better identify true deviations
from normal temperature changes [14].

In-network aggregation has been widely used to reduce the
cost of sharing context information [4]. Multiple distinct pieces
of context information are collected into a single representa-
tive measure so that the total amount of data exchanged is
reduced to benefit both communication bandwidth and power
consumption. Existing approaches largely target collecting an
aggregate value at a single node (usually a base station); that is,
the focus has traditionally been on a centralized many-to-one
aggregation, and not the distributed many-to-many aggregation
that the examples above motivate. There are limited approaches
to many-to-many aggregation, which we review in the next
section. In addition to enabling new applications, this style of
many-to-many aggregation has another advantage over many-
to-one aggregation in terms of reliability; each node receives
aggregated information form multiple sources to compensate
for missing information from lost packets or noise caused by
communication or sensing errors.

In Section IV, we present a protocol for decentralized
context sharing that is capable of both smart aggregation
and disaggregation. Our approach shares aggregate contexts
among nodes; each node only redistributes context that pro-
vides unique information to its neighbors. To achieve this
goal, each node disaggregates received aggregate contexts to
maximize the unique values it knows and can combine into a
new, information-rich aggregate. This scheme enables efficient
dissemination of aggregated contexts so that all participating
nodes can recover the individual or aggregated contexts to
build a shared view with lower communication burden.

We demonstrate our approach over two types of networks:

tree networks guaranteed to not contain cycles, and mesh
networks that do have cycles. In trees, we can recover average
values without error, as there is no duplication of any individ-
ual nodes’ sensed values. In mesh networks, a node’s received
aggregates may contain data that overlaps the nodes’ existing
knowledge. In these cases, the node cannot simply merge
the two pieces of information to create a larger aggregate.
These challenges motivate our design for more sophisticated
algorithms for disaggregating information to recover maximal
aggregates without duplicating individual nodes; information.
Heuristic approaches to this disaggregation and reaggregation
can naturally introduce error in the final aggregate calculation,
and one of our primary goals is to reduce that error.

In Section V, we analytically examine our protocol’s com-
munication overhead (the total amount of context information
exchanged), the speed (how quickly the nodes’ view of the
shared context reaches a steady state), the identification rate
(the degree with which each individual node was able to
recover the correct aggregate values or individual values for
the other participants), and the accuracy (the difference be-
tween calculated aggregate and and the correct aggregate). Our
analysis shows that our approaches reduce the communication
overhead by up to 86.63% while retaining the same speed,
identification rates, and accuracies as compared to broadcasting
nodes’ individual contexts throughout the entire network. In
simulations using sample data from 54 deployed sensor nodes,
we achieved a 66.0% reduction in communication overhead
with 99.84% accuracy and 94.9% identification rate. We report
these simulation results in Section VI.

II. RELATED WORK

In this paper, we propose a many-to-many dissemination
protocol that achieves intelligent aggregation and disaggrega-
tion. We focus on decentralized communication in which all
nodes function as a data source and a data sink.

Logical neighborhoods [12], Hood [9] and Abstract Re-
gions [18] support many-to-many communication in sensor
networks using various neighborhood abstractions. These ab-
stractions allow sensor nodes to share state with other nearby
nodes and to identify a set of nodes in the neighborhood
based on network cohesion or logical properties. Our research
resembles these approaches in attempting to enable many-to-
many communication by providing programming interfaces for
communicating with neighbor nodes, but our approach targets
a higher-level of abstraction, using the context information that
nodes share in their neighborhoods to drive the interactions and
reduce communication overhead.

This context is any information that is used to characterize
the situation of an entity [2]. Traditional approaches to context
are largely egocentric. Our own work on Grapevine [3], [8]
attempts to rethink this approach by enabling shared local
views of various context metrics. The work in this paper builds
on the Grapevine approach to focus explicitly on aggregation
and how knowledge about the contents of aggregates can
positively influence the nature of communication to make the
communication more accurate and result in lower overhead.

Autonomous monitoring of physical processes, such as
collecting and aggregating samples from sensors, are often
deficient in one or more aspects of network communication or
computation (e.g., aggregation) [17]. The inherent capabilities
of WSANs make them ideal for detecting physical phenom-

ena [11]. Using WSANs, applications can monitor the behavior
of physical systems to determine whether given behaviors are
safe or of high quality by writing global invariants that capture
these properties [15]. Our approach targets these WSANs, and
shares many goals with these distributed invariant monitoring
systems. However, we focus on efficiently sharing information
using aggregation and dissemination of contexts among all
participating nodes; further, we also focus on expressive disag-
gregation, allowing the recovery of some fine-grained context
information of individual nodes, even when only aggregate
information is shared.

Aggregation has been a popular research topic in WSANs
for enabling higher throughput with lower energy consump-
tion. We do not exhaustively review these approaches here;
[4] provides a detailed review. Tree-based (or hierarchical)
structures are based on routing algorithms with a tree rooted at
a sink where the aggregation is targeted. Directed diffusion [6]
is a reactive data-centric protocol whose routing scheme is
directed by a sink (or multiple sinks). Our approach is similar
in the use of aggregation, but we focus on generating this
aggregate view at every node in the network instead of simply
at the designated sink(s).

III. PRELIMINARIES

Before we address the challenges described above, we first
define some terms we will use throughout the paper and the
notations we will use to explain our algorithms.

Single value: any kind of data: sensed and processed physi-
cal, environmental or situational data from a node.

Aggregate value: aggregation of values from multiple nodes.
Context: a tuple of four elements: a single value, cohort, hop-

count, sample time.
Cohort: (of an aggregated value) the set of nodes that con-

tribute the single values that comprise an aggregate value.
Member: (of a cohort) a node that belongs to a cohort.
Prime cohort: (defined relative to another cohort or cohorts)

a cohort in which none of its members is a member of any
of a set of other cohorts

Prime context: an aggregate context whose cohort is prime.
Subcontext: a context whose cohort is a subset of another

context’s cohort.

Notations. Throughout the remainder of this paper, we will
use in-text graphics to demonstrate how our algorithms and
protocols function. In those graphics, we use the following
conventions. We represent a single value as a circled number.
We use the node id as a stand-in for the actual (sensed) value a
node contributes to the aggregate. For example, 5 represents
the value sensed by node with id 5. We represent a cohort (and
the cohort’s aggregated value) with a circled set of node ids.
For example, 1, 2, 3, 4, 5 represents the aggregate value that
results from combining the sensed values from nodes 1, 2, 3,
4, and 5. We represent a context value (whether it is a single
context value or an aggregated context value) using lower case
letters and a set of context values using capital letters.

Assumptions. We assume context dynamics change more
slowly than the timescale of aggregation, i.e., we assume that
the speeds of computation and communication are much faster
than the change of the context values we sample. We assume
that the nodes’ mobility dynamics are slower than the timescale

of aggregation, that is, we assume a single “snapshot” of the
network over which we attempt to generate an aggregate value.

Cohort and context operations. Finally, in the latter
sections of this paper, we take for granted the ability to perform
some relatively standard operations over contexts and cohorts.
We use + to represent the merging (i.e., aggregation) of two
contexts, e.g., c = a+ b indicates aggregating contexts a and
b, to create a new aggregated context c. The cohort of context
c is the union of the cohorts of a and b. The nature of this
merge is defined by the nature of the aggregation itself; some
aggregate measures (e.g., min/max) are duplicate insensitive
and will not lose information if the cohorts of a and b are not
prime relative to each other. On the other hand, some aggregate
measures (e.g., mean) are duplicate sensitive; averaging two
averages that are not prime relative to each other will impact
the ultimate accuracy of the computation. We use − to indicate
a disaggregation of aggregate context, i.e., c = c1− c2 creates
a context c by removing the cohort of c2 from the cohort of
c1. It is required that c2 ⊂ c1. For example, 1, 2, 3, 4 - 1, 2
= 3, 4 . With enough available cohorts, it is often possible to
regenerate a single context from a set of aggregates, allowing
nodes to completely recover other nodes’ individual contexts.
The | · | operator returns the size of a context’s cohort; e.g.,
for a context c with cohort 1, 2, 3 , |c| = 3.

IV. APPROACH

We aim to (1) disseminate aggregate information in a
wirelessly connected environment that allows each node in the
network to achieve a shared view of some aggregate measure
of the global context and (2) enable individual nodes to recover
the individual context measures for other nodes in the network
by exchanging only aggregate information. In our previous
work, we showed that nodes must carefully control which
aggregate information is disseminated in order to protect their
own private information [19]. In this work, we turn that on its
head and look at how the diversity present in opportunistically
created aggregates can enable very fine-grained data recovery.

Aggregation can support assessing rules written about some
shared spatiotemporal state or for measuring the distance of
some local value from the aggregate. Aggregation is also useful
from a networking perspective in that it can drastically reduce
the amount of raw data shared on resource-constrained wireless
links. On the other hand, disaggregation, or the recovery of
individual values from a set of aggregate values, can be just
as useful in many applications, for example, in identifying the
locations of anomalous sensed conditions.

We only aggregate prime contexts, i.e., contexts that do
not contain overlapping cohorts. Imagine that, at some point
during execution, node with id 1 has received two aggregate
contexts from its neighbors: 2, 3, 4 and 4, 5 . Considering
these and the node’s own individual context, 1 , the node can
generate two distinct views of the aggregate context: 1, 2, 3, 4
or 1, 4, 5 . Naı̈vely, 1, 2, 3, 4 is “better” simply because its
cohort is larger. This may not be universally true, and oc-
casionally opting to share aggregate contexts with smaller
cohorts may provide a measure of information diversity in the
aggregate computation [19]. In disaggregation, on the other
hand, multiple aggregates enable the identification of smaller
subcontexts, potentially enabling the resolution of individual
context values, even when those values are shared only within
aggregate contexts. Consider a case where a node has, at some

point received aggregated contexts 1, 3 , 1, 2 , and 1, 2, 3 .
From 1, 2, 3 - 1, 2 , the node can easily recover the exact
value of the single context 3 . In turn, from 1, 3 - 3 , the
node can recover 1 ; 1, 2 - 1 gives 2 .

Single Contexts

Aggregated Contexts

Contexts DB

disaggregator

filter

aggregator/
selector

Input Buffer
id Contexts
id Contexts
id Contexts

Output Buffer
id Contexts
id Contexts
id Contexts

Neighbor
nodeNeighbor

nodeNeighbor
node

Single Contexts

Prime Contexts

Candidate Outputs

Nonprime Contexts

Output History

id Contexts
id Contexts
id Contexts

Computation Communication

Fig. 1: Data Structures
Fig. 1 shows an architectural view of our approach. Each

node places received context information in an Input Buffer.
Periodically, the Input Buffer is processed, generating a new
local view of the aggregate context and possibly a set of
output context information that the node will share with its
neighbors. When the node begins processing received context,
it is sent to the DISAGGREGATOR to retrieve the cohorts
of smallest possible size (ideally single contexts); the node
stores the recovered contexts in the Contexts DB. A FILTER
is applied to the ContextDB to generate a set of Candidate
Outputs, potentially based on application-provided constraints.
An AGGREGATOR and a SELECTOR then choose a set of
contexts to share with neighboring nodes. For each neigh-
bor, a node chooses the aggregate context that provides the
particular neighbor the most additional information based on
the known history of context shared with that neighbor. This
is computed by comparing the available aggregates from the
Contexts Database to the previously shared contexts stored in
the Contexts History; the latter maps a neighbor node’s id to
the contexts that this node has previously shared with it. By
consulting this mapping before sending new aggregates, this
node can determine the degree of information that is added by
sharing the newly constructed aggregate.

Because we assume that context information changes more
slowly than the network’s ability to communicate it and
compute a shared global aggregate, we assume that each node
eventually reaches a steady state with respect to its knowledge
about the aggregate value before computing another aggregate.
Each node periodically samples some contextual value, which
it then attempts to share and aggregate alongside the values
sampled by the other nodes in the network. A node has
reached a steady state when no additional context exchanges
will improve its knowledge about the aggregate; practically,
we say a node has reached steady state when either a specified
amount of time t has passed without the node’s view of the
shared state changing or the last k received pieces of context
have not changed the node’s view of the aggregate.

Algorithm 1 shows a macroscopic view of a single node’s
execution; this codifies the process depicted in Fig. 1. As long

as the node has not achieved a steady state view of the target
aggregate context measure, the node continues processing in
three steps: (1) the node transmits available context informa-
tion (lines 2-4); (2) the node collects context from neighboring
nodes (lines 5-8); (3) the node processes received context and
updates the local state of the aggregate (lines 9-12).

Algorithm 1: Overall algorithm
1 while ¬steadystate do
2 for (n, c) ∈ OutputBuffer do
3 send(n, c)
4 OutputHistory.insert(n, c)

5 while ¬timeout and ¬isFilled(InputBuffer) do
6 if receive(n, c) then
7 c.η ← c.η + 1
8 InputBuffer.insert(c)

9 DISAGGREGATE(ContextDB, InputBuffer)
10 FILTER(ContextDB, applicationFilterConstraints)
11 aggContext← AGGREGATE(CandidateOutputs)
12 SELECT(OutputHistory, aggContext)

Initially, the Output Buffer contains only the node’s single
context, i.e., its own sampled value, and the first time through
the outer loop in Algorithm 1, the node simply sends its own
sampled value to each neighbor. In lines 5-8, the node collects
context shared by its neighbors. This process is controlled
by a pair of parameters: a timeout value and the size of
the Input Buffer. When the node receives a piece of context,
it increments the context packet’s hop count (η) and then
inserts the context into the InputBuffer. Once the node either
collects enough context information from neighboring nodes
to fill the Input Buffer or it has waited timeout time to receive
context information, the node proceeds to the computation
phase (lines 9-12). The computation phase strings together four
sub-algorithms: DISAGGREGATE, FILTER, AGGREGATE, and
SELECT, which in turn generate the set of (aggregate) contexts
to send to the neighbors in the next iteration of the outer loop.

Algorithm 2: DISAGGREGATE

1 C ← ContextDB ∪ InputBuffer
2 while ∃c, c′ ∈ C such that members(c) ⊂ members(c′) do
3 C ← sortByIncreasingSize(C)
4 c← C.first
5 while ¬(∃c′ ∈ C such that members(c) ⊂ members(c′))

do
6 c← C.next

7 super← {c′ : members(c) ⊂ members(c′)}
8 C← (C ∪ split(c, super))− super
9 singles← {c ∈ C : isSingle(c)}

10 aggregates← {c ∈ C : ¬isSingle(c)}
11 ContextDB← (singles, aggregates)

When new context information is processed, the first step
is to attempt to disaggregate the known context information
into the smallest cohorts possible. Ideally the node eventually
receives enough information to completely recover the indi-
vidual context values for every other node in the network.
Algorithm 2 starts by using the context with the smallest
cohort (c), finds all possible cohorts that are larger than c, and
attempts to use c to SPLIT the larger cohorts into smaller ones.
The DISAGGREGATE algorithm continues this process until it
has examined all possible combinations of c and c′ such that

members(c) ⊂ members(c′). It relies on the SPLIT algorithm in
Algorithm 3. At the end, DISAGGREGATE separates the single
contexts from the aggregate ones and updates the contexts
stored in the ContextDB. Many optimizations can speed up the
execution of DISAGGREGATE; in the Algorithm 2 listing, we
omit these to focus purely on the function. Our implementation
described later takes copious advantage of these optimizations.

Algorithm 3: SPLIT

Input: A context c, and a set of contexts C
Output: A set of contexts results

1 results = {}
2 for c′ in C do
3 results← results ∪ {(c′ − c)}
4 return results

While in the default case, the goal of sharing aggregate
information may be simply to generate the largest amount
of representative information at each node, applications can
influence which specific contexts are shared between nodes
by applying a filter. For example, an application may impose
a condition that selects single contexts to share based on
their content or a special tag (e.g., “alarm”). Applications
can also limit the size of a node’s Output Buffer to reduce
communication overhead. As a simple example, one might
restrict individual context information to not propagate further
than a specified hop limit, while aggregate information can
propagate indefinitely. Algorithm 4 shows the implementation
of such a filter. This filter relies on a check isPrime (lines 4
and 5), which takes a context c and a set of context C. The
isPrime check returns true if and only if either (1) c is a single
context or (2) for all c′ ∈ C, members(c) ∩ members(c′) = ∅.

Algorithm 4: Hop Count Based FILTER

Input: hop limit max
1 singles← ContextDB.SingleContexts
2 aggregates← ContextDB.AggregateContexts
3 selectedSingles← {c ∈ singles : c.η < max}
4 primes← {c ∈ aggregates : isPrime(c, aggregates)}
5 nonPrimes← {c ∈ aggregates : ¬isPrime(c, aggregates)}
6 CandidateOutputs← (selectedSingles, primes, nonPrimes)

Given the filtered set of contexts, the aggregate algorithm
finds the maximum aggregate context this node can create from
its aggregate context information. When the filtered aggregates
contain only single contexts and prime contexts, the algorithm
is simple: we just combine the singles and prime contexts.
When non-prime contexts are available, we may want to select
from them to increase the available information. Algorithm 5
shows the aggregate algorithm.

Computing the maximum cover (line 4 in Algorithm 5)
is NP hard [13]; using a brute force search takes hours when
the number of input non-prime contexts exceeds 25. Therefore,
we introduce heuristic approaches to bypass this complexity.
We execute two different heuristics, compare the results of
the two, and accept the result with higher coverage. The first
heuristic takes a greedy approach, selecting the largest cohort
member from the given set of non-prime context inputs. It
then removes all overlapping contexts from the set and repeats
the greedy choice. The second heuristic selects the non-prime
context inputs that result in the largest disjoint set. Specifically,
this heuristic scores each non-prime context by computing the
difference in the size of the cohorts that it overlaps and the

size of the cohorts that it does not overlap. Consider a set
of three non-prime contexts: c1: 1, 2, 3 , c2: 4, 5, 6 , and c3:
1, 2, 3, 4 . The first heuristic will choose c3 and then will be
unable to choose either c1 or c2 and will simply return. On the
other hand, the second heuristic will compute a score for c1 as
|c2|−|c3| = −1 since the c2 is disjoint with respect to c1 but c3
is not. Similarly, the heuristic will compute a score of −1 for
c2 and −6 for c3. As a result, the heuristic selects contexts c1
and c2. Neither heuristic always results in the optimal solution,
hence we execute both and select the best option.

Algorithm 5: AGGREGATE

Output: Aggregate Context aggContext
1 singles← CandidateOutputs.singleContexts
2 primes← CandidateOutputs.primeContexts
3 nonPrimes← CandidateOutputs.nonPrimeContexts
4 selectedNonPrimes← maximumCover(nonPrimes)
5 aggregateContext← singles ∪ primes ∪ selectedNonPrimes
6 return aggregatedContext

The final stage in Algorithm 1 is to select the specific
subcontext of the aggregate to send to each neighbor. Once
the contexts to send are selected, the Output Buffer stores
the context to send to each neighbor, which is picked up on
the subsequent iteration of the outer loop in Algorithm 1.
SELECT, shown in Algorithm 6, compares the aggregate
context computed in the previous step to the OutputHistory for
each node to determine whether the computed aggregate offers
new information to the neighbor. SELECT compares the cohort
of the newly computed aggregate context against the cohort of
the aggregate contexts previously sent to the neighbor. If the
new aggregate adds information, it is sent.

Algorithm 6: SELECT

Input: Aggregate Context aggContext
1 for n in neighbors do
2 history← OutputHistory.get(n)
3 receivedContexts← InputBuffer.get(n)
4 knownSingles← getSingles(history ∪ receivedContexts)
5 newSingles←
6 CandidateOutputs.SingleContexts− knownSingles
7 knownAggs← getAggregates(history ∪ receivedContexts)
8 novelCohortMembers←
9 cohort(aggContext)− cohort(knownAggregates)

10 if |novelCohortMembers| > 0 then
11 newAggregates← aggContext

12 else
13 newAggregates← {}
14 OutputBuffer.put(n, newSingles ∪ newAggregates)

V. ANALYSIS

We perform both an analysis and a set of simulations over
networks modeled on real-world scenarios. We start with the
analysis, targeted at two styles of networks: trees that are guar-
anteed to not contain cycles and mesh networks where cycles
are possible. We compare the use of the algorithms described in
the previous case to a context sharing approach in which nodes
exchange only single context information. We assume perfect
networks in which packets are never lost or delayed, and we
assume that the nodes operate in a synchronized manner (i.e.,
we assume that all of the nodes completes an iteration of the

Algorithm 1 before any continue to the next iteration); we
weaken these assumptions when reporting simulation results
in the next section. We quantify the following metrics:
communication overhead: the total amount of context in-

formation exchanged. We also compute the reduction in
communication overhead as 100 × (s − a)/s, where a and
s are the communication overheads for the aggregate and
single approaches, respectively.

speed: the average number of iterations of the loop in Algo-
rithm 1 required to reach steady state.

identification rate: the average ability of an individual node
to account for other individual values in its computed
aggregate. As an example, in a network of ten nodes, when
node 1 recovers the context values 2 , 3 , and 4, 5, 6 ,
the identification rate for node 1 is 60% since node 1’s
maximum aggregate is 1, 2, 3, 4, 5, 6 .

accuracy: the difference between calculated aggregate value
and the correct aggregate value. It is calculated as 100 ×
(a − e)/a, where a is the correct aggregate value and e is
the calculated aggregate value.

2

3

4

1

5

6

7

8

Fig. 2: Tree network

Fig. 2 shows an ex-
ample of a tree network.
For our analysis, we con-
sider a value of τ = 1,
where τ is the max hop
count applied in the FILTER
algorithm shown in Algo-
rithm 4. When τ = 1,
single context values are
shared only with neighbors;
any other recovery of a
node’s individual context is
done through disaggrega-
tion. The ovals with dashed
borders shows the nodes
that receive single contexts
for node 3 and node 7.

Table I shows the contexts stored, sent, and received by
nodes 3 and 7. Each entry contains a row showing the nodes’
ContextDB, its Input Buffer at the beginning of the iteration,
and its Output Buffer at the end of the iteration. Numbers
circled in black are newly processed context information in
the given iteration, while white circles indicate information
known in the previous iteration. For example, in the final
iteration shown, node 7 knows the individual context values for
nodes 3, 6, 7, and 8; it knows the aggregate value combining
nodes 2 and 4; and it has just learned the aggregate value for
nodes 1 and 5. The small square labels indicate the node from
which the indicated information was received or to which the
information will be sent. For example, 2 1, 2, 3 indicates that
aggregate 1, 2, 3 should be sent to node 2.

By working the packet transmissions by hand as shown in
Table I, we achieve a communication overhead reduction of
25%: with 100% accuracy and 100% identification rate in this
specific network. We provide detailed analytical results below,
but we first examine our algorithms’ behavior. We first prove
that single contexts can be recovered from aggregated contexts
in a network with nodes connected in series.

Lemma 1: Consider a line network in which τ = 1 (i.e.,
nodes communicate single context information only to their

Node 3 Node 7

i1
DB 12 3 45678 123456 7 8
In 2 2 4 4 6 6 6 6 8 8

Out 2,4,6 3 6,8 7

i2
DB 1 2 3 4 5 6 78 12345 6 7 8
In 2 1, 2, 3 4 3, 4, 5 6 3, 6, 7 6 3, 6, 7

Out 2,4,6 2, 3, 4, 6 6,8 6, 7, 8

i3
DB 1 2 3 4 5 6 7 8 12 3 45 6 7 8
In 6 2, 3, 4, 6, 7, 8 6 2, 3, 4, 6, 7, 8

Out 2,4,6 1, 2, 3, 4, 5, 6, 7 8 3, 6, 7, 8

i4
DB 1 2 3 4 5 6 7 8 1 2, 4 3 5 6 7 8

In 6 1, 2, 3, 4, 5, 6, 7, 8

Out 2,4 1, 2, 3, 4, 5, 6, 7, 8 8 2, 3, 4, 6, 7, 8

i5
DB 1 2 3 4 5 6 7 8 1, 5 2, 4 3 6 7 8
In

Out 8 1, 2, 3, 4, 5, 6, 7, 8

TABLE I: Recovered contexts in tree network

12

3 4

hopcount 1 hopcount 2 hopcount 3

6 7

5

8

(a)

2

3

4

1

5

6

7

8

3 2,4 1,56

7

8

hopcount 1 hopcount 2 hopcount 3 hopcount 4

(b)

Fig. 3: Topological re-arrangements. (a) From the perspective
of node 3. (b) From the perspective of node 7.

two immediate neighbors). When all other context sharing
is done via aggregate information, a terminal node (i.e., one
located at one of the two ends of the line) can successfully
disaggregate the single contexts of all nodes located at k hop
distance after k iterations of Algorithm 1.

Proof: Let node a be a terminal node, and let a+ k be a
node located at k hops from node a. At iteration 1, the single
context from node a+ 1 is received. In iteration 2, a receives
the aggregated value from node a+ 1, which is an aggregate
of the values of nodes a, a + 1, and a + 2. Because a has
the single values of a and a+ 1, it can recover the individual
value of a + 2 via disaggregation. Likewise, at iteration step
k, a can compute the single values from nodes a up to a+ k.

We can extend this to arbitrary trees by considering a tree to
be made up of multiple line networks. For example consider
node 3 as a terminal network of three such line networks,
as shown in Fig. 3(a). Contexts from nodes 2, 4, and 6 are
recovered individually in the first iteration. Single contexts
from nodes 1, 5, and 7 are similarly recovered in the next
iteration, and so on. Fig. 3(b) shows the network from the
perspective of node 7. Notice that contexts from nodes 2 and
4 are in a sub-branch of node 3, and they are not recovered as
single contexts but as an aggregated context. The right most
column of Table I shows the recovered values from node 7.
After the second iteration, single contexts from nodes 6 and 8
are recovered. A single context 3 is recovered at the subsequent

(a) (b)

Fig. 4: (a) Comm. overhead. (b) Average number of cohorts
iteration, followed by the aggregate contexts 2, 4 and 1, 5 .

In a tree network, the recovered aggregates are always
prime. Because all of the contexts are prime, we always
achieve a 100% identification rate and 100% accuracy. Further,
tree networks achieve a significant reduction in communication
overhead, since this overhead depends on the sum of the max-
imum hop counts for each context delivery path. Specifically,
we can prove that with a tree network with n elements, the
communication overhead is bounded by n× (n− 1).

Lemma 2: In a tree network of n nodes, the communica-
tion overhead required to achieve 100% identification rate and
accuracy in all of the nodes is bounded by n× (n− 1).

Proof: (By induction.) Base case: when n = 2, the
communication overhead is 1 × 2: there is one edge and
two nodes’ (single) context information is communicated.
Induction step: assume that, when n = k, the lemma holds,
i.e., that for k nodes, the communication burden is bounded by
k(k− 1) = k2−k. When we add one more node (n = k+1),
the added communication burden from the newly added node
to the existing node is bounded by the number of edges, which
is k in a tree of k+1 nodes. The added communication burden
to the newly added node is also k The total communication
burden is therefore bounded by k2−k+2k = (k+1)(k+1−1).
Thus the lemma holds for n = k + 1.

Using this lemma, and from the communication overhead
as the sum of maximum hop count from each path, we can
compute the communication overhead reduction rate (relative
to simply communicating single contexts) when τ = 1 as:

Gain = 1−
∑n

i=1 h(i)

n× (n− 1)

where h(i) is the sum of the lengths of all disjoint branches
when the tree is rooted at node i. For example, considering
node 3 in Fig. 3(a), h(3) = 2 + 2 + 3 = 7, while h(7) =
4 + 1 = 5. Computing this for all n nodes in our tree in
Fig. 2, we can compute a gain of 100× (1− 42/56) = 25%,
which matches our computation reported earlier.

The example tree network we have used is just that: an
example. We next provide a set of numerical analyses that
examine these and similar properties for tree networks more
generally. We randomly generated trees ranging in size from
10 to 100 nodes. For each network size, we created 100
different random topologies with varying depths and widths.
We executed our algorithms and computed the reduction in
communication overhead, the identification rate, the speed, and
the average number of cohorts. Fig. 4 shows the results for
three of these metrics against increasing network size.

Fig. 4(a) shows, on a logarithmic scale, the growth of
the singles only communication overhead and the aggregate
context communication. The reduction rate increases with

hopcount 1 hopcount 2 hopcount 3

12

3 4

6 7

5,8

8

12

3 4

6 7

5

8

8 7

7

(a)

2

3

4

1

5

6

7

8

3 2,4 1,56

7

8

hopcount 1 hopcount 2 hopcount 3 hopcount 4

4 3,5

4

5

3 2

2

(b)

Fig. 5: Topological re-arrangements. (a) From the perspective
of node 3. (b) From the perspective of node 7.

Node 3 Node 7

i1
DB 12 3 45678 123456 7 8
In 2 2 4 4 6 6 6 6 8 8

Out 2,4,6 3 6,8 7

i2
DB 1 2 3 4 5 6 78 12345 6 7 8
In 2 1, 2, 3 4 3, 4, 5 6 3, 6, 7 6 3, 6, 7 8 4, 7, 8

Out 2,4,6 2, 3, 4, 6 6,8 6, 7, 8

i3

DB 1 2 3 4 5, 8 6 7 12 3 4 5 6 7 8

In 4 2, 3, 4, 5, 6, 7, 8 6 2, 3, 4, 6, 7, 8

6 2, 3, 4, 6, 7, 8 8 3, 4, 5, 6, 7, 8

Out 2,4,6 1, 2, 3, 4, 5, 6, 7, 8 6,8 3, 4, 6, 7, 8

i4

DB 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
In 6 1, 2, 3, 4, 5, 6, 7, 8 6 1, 2, 3, 4, 5, 6, 7, 8

8 2, 3, 4, 5, 6, 7, 8

Out 6,8 2, 3, 4, 5, 6, 7, 8

i5
DB 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
In

Out 8 1, 2, 3, 4, 5, 6, 7, 8

TABLE II: Recovered contexts in mesh network

increasing network size, from a 37.77% reduction, on average,
to an 86.63% reduction, on average. We do not plot the
identification rate, as it is 100% for all networks for both
single and aggregate scenarios. The speed for both single and
aggregated scenarios are the same: between 5.01 to 11.73
iterations of Algorithm 1. Finally, Fig. 4(b) shows the average
size of a cohort as the network size increases. As expected,
both the number of cohorts (not plotted) and the average size
of a cohort grow linearly with the network size.

Mesh networks contain cycles; consider for example the
same tree network as in Fig. 2 with one additional edge, the
edge between nodes 4 and 8. Fig. 5 shows rearrangements
of this network from the perspectives of nodes 3 and 7. The
cycles in the mesh network cause redundant distribution of
context information because there are now potentially multiple
paths connecting any two given nodes. For example, in our
example mesh network, node 3 receives context information
from node 8 in aggregate form via paths through node 4 and
node 6. Table II shows the iterations of context receptions
when Algorithm 1 executes on our example network.

In many cases, these extra connections also produce non-
prime contexts, which was not the case in tree networks.
Consider the segment of a mesh network shown in Fig. 6.
Via nodes 2 and 4, respectively, node 1 will receive the
aggregate contexts 1, 2, 3, 5 and 1, 4, 5, 6 . The single contexts
2 and 4 that node 1 has received previously enable it to split
these contexts into smaller, non-prime contexts 3, 5 and 5, 6 .
When the maximum cover algorithm is executed during the
AGGREGATE algorithm, one of the two non-primes is selected
as they have the same member size.

2

3
5

1

4

6

Fig. 6: Non-prime contexts
generated in mesh network

The DISAGGREGATE
algorithm’s use of
sortByIncreasingSize
causes deterministic
consideration of the
contexts that have the
same size. For example,
in a deterministic
implementation, when
we have two non-prime
contexts 1, 2, 3 and 3, 4, 5
that we use to split 1, 2, 3, 4, 5, 6, 7 , we always use subcontext
1, 2, 3 before 3, 4, 5 to get 4, 5, 6, 7 . This deterministic
strategy often leads to early detection of steady state, as
nodes cannot find new information to send even when they
have the contexts with the information that neighbor nodes
do not have. This is often the case in a dense mesh network
or a mesh network with a large number of nodes. We can
modify our previous algorithms to remove this determinism.
More specifically, we use information about the contexts
already sent (i.e., the Output History) to inform the order
of context consideration in DISAGGREGATE. In addition, we
can modify the SELECT algorithm to, instead of sending the
largest possible aggregate to the neighbor node (as in lines
8-9 in Algorithm 6) send one of the non-prime contexts that
contains information that has not been sent previously.

Starting with the tree networks that had an average of 1.94
neighbors per node, we generated in the previous subsection,
we connected 5% and 20% of the nodes in the trees randomly
to generate both light mesh networks that had an average of
2.05 neighbors per node and dense mesh networks with an
average of 2.34 neighbors per nodes.

Fig. 7: Light mesh networks
communication overhead

Fig. 7 shows the com-
munication overhead re-
duction for light mesh
networks where the num-
ber of nodes in the net-
work ranges from 10 to
100. The reduction rate
shows a similar pattern
as in the tree networks,
with a 39.0% reduction in
networks with 10 nodes
and a 81.71% reduction in
100 node networks. Fig. 8(a) shows that the identification rate
is between 77.58% (100 nodes) and 98.97% (10 nodes). Out of
the 77.58% identification, we get 4.8% identification rate from
single contexts. Finally, Fig. 8(b) shows the average speed with
which the protocols reach the steady state; we also computed
the average speed decrease as 100 × (sa − ss)/ss when sa
is the speed for aggregated communication, and ss is the

(a) (b)

Fig. 8: Analytical results for light mesh networks. (a) Identi-
fication rate. (b) Speed

(a) (b)

Fig. 10: Analytical results for dense mesh networks. (a) Iden-
tification rate. (b) Speed

speed for singles only communication. The calculated speed
decrease is between 1.7% and 78.8% for the aggregate context
communication relative to exchanging only single contexts.
The larger gap with node size increase is caused by the sending
of non-prime contexts.

Fig. 9: Light mesh networks
communication overhead

Fig. 9 shows the com-
munication overhead for
the dense mesh networks,
while the identification
rate and speed are shown
in Fig. 10. The identi-
fication rate and speed
are poorer than in the
light networks; this is due
to the even more cre-
ation of the non-prime
contexts from the non-
disjoint communication paths.

VI. SIMULATION

We next describe our simulations, which were driven by
real world data and network topologies. We used the ONE
network simulator [10]. We used two sets of data; one is
sampled data from a wireless sensor network in the Intel
Berkeley Research lab [1]. This data set contains physical
sensor information such as temperature, humidity, light, and
voltage from 54 sensor nodes deployed in an office building.
We extracted periodic temperature data from all of the 54
sensors to drive our simulation. We used the sensors’ location
data to create two network topologies: one in which nodes
were assigned a 6m communication radius (termed i54l, for
“Intel 54 light mesh”), and another in which the nodes were
assigned a 10m communication radius (termed i54d, for “Intel
54 dense mesh”). We also created an artificial tree network
from i54l by randomly removing the cycles (termed i54t for

“Intel 54 tree”). From the first mesh network, we removed the
cycles to have a tree network: i54t (intel 54 nodes tree). The
three resulting network topologies are shown in Fig. 11.

1

2
34

5
6

78

9
10

54

1112131415
18

16
19 1720212223

2728 2425
26

29
30

313234

38 33353640

373943

41
45

42
46

44

4748

5253

495051

(a)

1

2

3

3335

4

3436

37

5

6

7

8

10

953

54

11

12

1314

15
18

16
19

17

2021

22

23

27

28

29

242526

30

31

32

38

39

40

43
41

44

45

42

46

474849

52

5051

(b)

1

2

3

4

29

31

32

33

34

35

36

37

39

5

6

7

30

38

40

4143

42

45

8

10

52

53

11

13

9

54

12

14

15

18

16

17

1920

21

22

23

27

24

25

26

284446

47

4849

50

51

(c)

Fig. 11: Intel testbed networks. (a) i54t. (b) i54l. (c) i54d.

As a second set of data, we used a tool to create spatially
correlated data [7]1. We created spatially correlated data for
randomly generated networks of 49 and 100 nodes, with
densities ranging from 2 to 4.5 neighbors per node. We refer
to these simulated networks as p49t, p49l, p49d, p100l, p100t:
a tree, light mesh, and dense mesh of 49 nodes each, and a
light mesh and dense mesh of 100 nodes each.

Table III shows the complete results. For size reduction
and speed decrease, the numbers are relative to disseminating
only single context values.

TABLE III: Simulation results

Name Size reduction Id rate Avg accuracy Speed decrease

i54t 45.1% 100% 100% 0%
i54l 66.0% 94.9% 99.84% 18.6%
i54d 87.2% 90.7% 99.66% 25.5%
p49t 54.71% 100% 100% 0%
p49l 52.64% 92.79% 99.83% 42.52%
p49d 59.57% 84.83% 99.61% 32.78%
p100l 61.98% 82.78% 99.70% 55.23%
p100d 76.94% 72.90% 99.64% 69.76%

The results correspond to our analysis in the previous
section. This is expected, because these initial simulations used
“perfect” network links. We also simulated under increasingly
adverse network conditions, which we quantify as the likeli-
hood of a packet being dropped. Fig. 12 shows the impact of
these network conditions in the identification rate and accuracy
in tree networks. Our smart aggregation and disaggregation
was more resilient to these faults than communicating single
context information alone.

1To control the spatial correlations, we used the authors’ suggested α = 0.5
and β = 0.001 to ensure a very high degree of spatial correlation since our
motivating examples are likely to exhibit such high spatial correlations.

(a) (b)

Fig. 12: Impact of dropped packets in tree networks. (a) Iden-
tification rate. (b) Accuracy.

(a) (b)

Fig. 13: Impact of dropped packets in mesh networks. (a) Iden-
tification rate. (b) Accuracy.

Fig. 14: Comm. overhead

Fig. 13 shows the
same metrics in the (light)
mesh case. We omit the
remaining plots (for dense
mesh and for the spatially
correlated networks) for
brevity; the results show
the same trends. Espe-
cially in the case of mesh
networks, the gains are
due to the fact that there is some redundancy in the delivery
of aggregates that end up being non-prime relative to each
other. This redundancy provides inherent fault-tolerance to our
smart aggregation and disaggregation protocols. In addition,
in all cases, we achieved these gains in identification rate
and accuracy while also achieving modest improvements in
communication overhead, as shown, for one exemplar (the tree
network) in Fig. 14.

VII. CONCLUSION

Decentralized context sharing applications open new op-
portunities by sharing individual information through many-to-
many communication. The shared information can help build
a shared global view so that each node can make autonomous
decisions and initiate necessary actions. However, sharing
individual contexts among all the participants can increase the
communication burden dramatically. In this paper, we showed
that smart approaches to aggregation and disaggregation can
garner expressive representations of both aggregate and indi-
vidual contexts, at a reduced overhead in comparison to simply
sharing single context information directly. We benchmarked
the detailed differences between the performance of these
smart aggregation and disaggregation schemes on both tree
networks such as those that arise because of sophisticated
underlying routing structures and on mesh networks that do not
enjoy such support. We also showed that our smart aggregation

approaches are more resilient to the common network faults
that occur in these highly distributed and difficult to maintain
and control networks.

ACKNOWLEDGMENTS

This work was funded, in part, by the National Science
Foundation (NSF), Grant #CNS-1218232. The views and con-
clusions herein are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

REFERENCES
[1] Intel Lab Data. http://db.csail.mit.edu/labdata/labdata.html. Accessed:

2014-04-30.
[2] G. Abowd, A. Dey, P. Brown, N. Davies, M. Smith, and P. Steggles.

Towards a Better Understanding of Context and Context-Awareness. In
Handheld and Ubiquitous Computing, volume 1707 of Lecture Notes
in Computer Science. 1999.

[3] E. Grim, C.-L. Fok, and C. Julien. Grapevine: Efficient Situational
Awareness in Pervasive Computing Environments. In Proc. of PerCom
WiP, 2012.

[4] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network Aggregation
Techniques for Wireless Sensor Networks: a Survey. IEEE Wireless
Communications, 14(2), 2007.

[5] K. Hong, J. Lee, S. W. Choi, Y. Kim, and H. S. Park. A Strain-Based
Load Identification Model for Beams in Building Structures. Sensors,
13(8), 2013.

[6] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.
Directed Diffusion for Wireless Sensor Networking. IEEE/ACM Trans.
on Networking, 11(1), 2003.

[7] A. Jindal and K. Psounis. Modeling Spatially Correlated Data in Sensor
Networks. ACM Trans. on Sensor Networks, 2(4), 2006.

[8] C. Julien, A. Petz, and E. Grim. Rethinking Context for Pervasive
Computing: Adaptive Shared Perspectives. In Proc. of ISPAN, 2012.

[9] K. Whitehouse, C. Sharp, and E. Brewer, and D. Culler. Hood: A
Neighborhood Abstraction for Sensor Networks. In Proc. of MobiSys,
2004.

[10] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE Simulator for DTN
Protocol Evaluation. In Proc. of SIMUTools, 2009.

[11] P. Levis, D. Gay, and D. Culler. Active Sensor Networks. In Proc. of
NSDI, 2005.

[12] L. Mottola and G. Picco. Logical Neighborhoods: A Programming
Abstraction for Wireless Sensor Networks. In Distributed Computing
in Sensor Systems, volume 4026 of Lecture Notes in Computer Science.
2006.

[13] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An Analysis of
Approximations for Maximizing Submodular Set Functions-I. Mathe-
matical Programming, 14(1), 1978.

[14] C. Ramachandran, S. Misra, and M. Obaidat. A probabilistic zonal
approach for swarm-inspired wildfire detection using sensor networks.
Int’l. J. of Communication Systems, 21(10):1047–1073, 2008.

[15] Ş. Gună, L. Mottola, and G.-P. Picco. DICE: Monitoring Global
Invariants with Wireless Sensor Networks. (To appear) ACM Trans.
on Sensor Networks, 2014.

[16] D. Shea, C. Lund, and B. Green. HVAC influence on vapor intrusion
in commercial and industrial buildings. In Proc. of the Air and Waste
Management Associations Vapor Intrusion Conference, 2010.

[17] J. Stankovic, I. Lee, A. Mok, and R. Rajkumar. Opportunities and
Obligations for Physical Computing Systems. Computer, 38(11), 2005.

[18] M. Welsh and G. Mainland. Programming sensor networks using
abstract regions. In Proc. of NSDI, 2004.

[19] M. Xing and C. Julien. Trust-Based, Privacy-Preserving Context
Aggregation and Sharing in Mobile Ubiquitous Computing. In Proc. of
Mobiquitous, 2013.

[20] I. Yoon, D. K. Noh, D. Lee, R. Teguh, T. Honma, and H. Shin. Reliable
Wildfire Monitoring with Sparsely Deployed Wireless Sensor Networks.
In Proc. of AINA, 2012.

