
PINCH: Self-Organized Context Neighborhoods for Smart Environments

Chenguang Liu

The University of Texas at Austin
Austin, Texas, USA

Email: liuchg@utexas.edu

Christine Julien

The University of Texas at Austin
Austin, Texas, USA

Email: c.julien@utexas.edu

Amy L. Murphy

Fondazione Bruno Kessler
Trento, Italy

Email: murphy@fbk.eu

Abstract—Today’s “smart” domains are driven by
lightweight battery operated devices carried by people and
embedded in environments. Many applications rely on con-
tinuous neighbor discovery, i.e., the ability to detect other
nearby devices. Application uses for neighbor discovery are
widely varying, but they all rely on a protocol in which
devices exchange periodic beacons containing device identi-
fiers. Many applications also ultimately involve assessing and
adapting to context information sensed about the physical
world and the device’s situation in that world (e.g., its
location or speed, the ambient temperature or sound, etc.).
In this paper, we define Proactive Implicit Neighborhood
Context Heuristics (PINCH), which leverages unused payload
in periodic neighbor discovery beacons to opportunistically
distribute context information in a local area. PINCH’s self-
organizing algorithms use limited local views of the state
of a one-hop network neighborhood to determine the most
useful type of context information for a device to sense and
share. In this paper, we develop the algorithms, integrate
an implementation of PINCH with a smart city simulator,
and benchmark the tradeoffs of self-organized local context
sharing with 2.4GHz neighbor discovery beacons.

Keywords-Context sharing; Device-to-device coordination;

I. INTRODUCTION

In applications for smart cities, smart homes, smart

transportation, etc., mobile and situated devices often need

to discover other devices in the surroundings. A user en-

tering a smart building needs to discover what embedded

devices are available to be accessed or controlled. A tourist

in a smart city may need to connect to other tourist’s

devices [1] or to situated beacons in the city that give

information about interesting sights [2], [3]. Devices in

smart cars may coordinate with other cars, roadside kiosks,

or pedestrians. In smart wildlife applications, devices on

wild animals discover one another to monitor behavior pat-

terns [4]. Enabling these applications requires continuous
neighbor discovery, and protocols for neighbor discovery

have received significant attention, from wireless sensor

networks to smart-* applications [5]–[13].

These neighbor discovery protocols simply exchange

identifiers of one-hop neighbors; how to coordinate

with discovered neighbors is left to applications. Some

application-specific approaches use the beacon payload

to carry additional information, for instance to give a

multi-hop view of a group [1], [14]. However, many

applications that rely on continuous neighbor discovery

also demand a view of local context information that goes

beyond identities of neighboring devices. For instance,

many applications use physical location. Smart building

applications may use ambient temperature or lighting to

adapt behavior; smart wildlife applications may correlate

ambient information to animal contacts; smart tourism

applications may use information about crowds or nearby

available services.

The lightweight devices common in these applications

often lack on-board sensors. Even if these capabilities

are present, leveraging them continuously can be energy

intensive. However, given the presence of other devices in

the surroundings and the fact that context is often corre-

lated to a device’s physical location, the burden of sensing

context could be shared within a network neighborhood.

This can reduce the energy burden of context sensing

for individual devices as well as extend the capabilities

of sensor-limited devices. We explore allowing devices

to use available payload in periodic neighbor discovery

beacons to opportunistically share sensed context in the

local network.

Many approaches support resource-efficient context

sensing by intelligently tasking on-board sensors based on

applications’ high-level needs [15], [16]. Using co-located

devices to extend a device’s sensing capabilities has also

been explored. ChitChat [17] supports lightweight sharing

of complete snapshots of devices’ contextual situations.

Other approaches allow devices to discover and leverage

sensors and I/O capabilities on neighboring devices [18],

[19]. As described in more detail in Section II, these ap-

proaches are all driven explicitly by applications’ requests

for context information. Instead, we take a self-organizing

approach to proactively infer what context information

might be useful to others in the network neighborhood.

We develop PINCH (Proactive Implicit Neighborhood

Context Heuristics), which assumes that devices in smart-*

deployments participate in continuous neighbor discovery.

In these protocols, detailed in Section II, there is often

unused payload in the periodic neighbor discovery bea-

cons, and PINCH packs valuable context information into

this unused payload, constructing a sort of neighborhood-

wide sensor. We build PINCH on the BLEnd protocol,

directly considering how aspects of BLEnd influence our

self-organizing algorithms for context sharing. Section III

describes these algorithms in detail, incrementally con-

structing algorithms that rely on the minimal information

that can be shared in the periodic beacons. As such,

PINCH is: (1) self-organizing, i.e., individual devices

make individual decisions in a heuristic approach that at-

120

2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems

1949-3681/18/$31.00 ©2018 IEEE
DOI 10.1109/SASO.2018.00023

tempts to optimize for the local neighborhood; (2) implicit,
i.e., devices do not explicitly request or respond to requests

for particular sensed values; and (3) inexpensive, i.e., the

approach entails no additional communication overhead

beyond what is already consumed by neighbor discovery.

Our contributions are:

• We describe PINCH, a self-organizing heuristic for

implicitly sharing context using neighbor discovery

beacons.

• We derive algorithms for deciding what context type

a device should share, given the state of the neigh-

borhood.

• We evaluate PINCH using an expressive smart city

simulator in with real-world application scenarios.

Our evaluation demonstrates that PINCH increases the

coverage of context information in the local network

neighborhood when devices have limited sensing capabil-

ities and reduces the overall cost of context sensing in

cases when devices have overlapping redundant sensing

capabilities.

II. BACKGROUND AND RELATED WORK

We begin with a concise survey of related work on local

and collaborative context sensing, showing the gap that

PINCH addresses. We then overview continuous neighbor
discovery, detailing BLEnd, which PINCH relies on.

A. Related Work

Efficiently acquiring context is essential in smart-*

applications that rely on lightweight battery-operated de-

vices. A wealth of approaches solve this problem for a

single device, e.g., leveraging on-device sensors to monitor

high-level context changes rather than blindly sensing

raw values [15], [16], [20]–[22]. While these approaches

consider how best to use on-board resources to determine

the lcoal context state, we broaden the perspective and

ask how wirelessly connected devices can leverage their

resources in aggregate.

Several early works in wireless sensor networks of-

fered the ability to share context information among co-

located devices [23]–[26]. However, these systems ex-

plicitly spread context sensing capabilities to neighboring

devices, then responded to one-time queries or established

persistent queries to receive changes in context values. In

contrast, PINCH incurs no cost above that of continuous

neighbor detection and works seamlessly with changing

neighbor sets.

Work addressing user-facing applications has promoted

the use of device-to-device links to exchange context.

ChitChat [17] packages an application-specified view of

a device’s context in a lightweight data structure to dis-

seminate locally. It focuses on compact data packaging

and does not consider how or when that information is

disseminated, nor what context may be most useful in the

neighborhood. Other approaches allow devices to discover

sensing or actuaion resources on neighboring devices then

to request those discovered resources [18], [19]. Our work

epoch
primary beacons secondary beacon scan/listen

Figure 1: BLEnd Schedule of two devices. Solid rectangles

are scanning (listening) periods; skinny rectangles are bea-

cons. Discovery occurs when one device receives another’s

beacon. Beacons are scheduled in the second half of an

epoch as a result of receiving a primary beacon; these

secondary beacons enable bi-directional discovery.

is complementary; instead of assuming an application-

directed request and response, we opportunistically self-

organize the network neighborhood into an aggregate

context sensor based on presumptions of needed context

information. The key enabler of our approach is that

the communication of the context values comes virtually

for free, under the assumption that devices are already

participating in a local continuous neighbor discovery

protocol.

B. Neighbor Discovery and BLEnd

Neighbor discovery enables devices to discover other

devices within communication range. We focus on an

entirely infrastructureless solution in which each device

plays both sides of the discovery role: announcing its

presence and scanning for the presence of others. Many

neighbor discovery approaches emerged from wireless

sensor network research; early efforts provided detection

probabilities with a long-tailed distribution [10] but did

not guarantee discovery, even in the absence of colli-

sions or other channel-related unreliability. More recent

efforts [5], [6], [8], [11]–[13] provide deterministic de-

tection when communication is perfect. These approaches

rely on communication occurring in fixed-length slots,

but this assumption is incompatible with many off-the-

shelf beacon technologies, which introduce randomness

to mitigate the impact of collisions. As a result, when

considering collisions, discovery is not guaranteed. Recent

protocols provide slotless behavior [9], compatible with

modern technologies e.g., Bluetooth Low Energy (BLE).

BLEnd [7] is a continuous neighbor discovery protocol

designed to work within the constraints of BLE and to

offer a clear service-level agreement for probabilistic dis-

covery latency guarantees with minimal radio active time.

In BLEnd, time is divided into repeating epochs. At the

beginning of each epoch, the device listens for a specified

period. It then sends a sequence of beacons, enabling

other devices to discover it. The BLEnd schedule allows

the radio to remain inactive for a significant period of

time, dramatically reducing energy consumption. Figure 1

shows an example of two devices’ BLEnd schedules.

The optimal BLEnd schedule is based on the desired

service-level agreement, including: (1) desired discovery

latency (Λ); (2) desired probability of discovery (pd);

and (3) beacon technology details (e.g., energy costs of

121

3

26

4 1

5

Device 1’s
neighborhood

Device 4’s
neighborhood

Figure 2: Asymmetric neighborhoods defined by BLEnd

beacon exchange. Device 1 exchanges beacons with 2, 3,

and 4; device 4 exchanges beacons with 1, 5, and 6.; g , ,

Figure 3: Overall PINCH Operation

beaconing and listening, etc.). The generated schedule

includes the length of an epoch, the length of a listen,

and the time between beacons. It minimizes the protocol’s

energy consumption while guaranteeing that a device will

discover any neighbor within Λ time with a probability of

pd.

Devices employing BLEnd receive beacons of neighbor-

ing devices; i.e., devices in one-hop communication range,

identifying the device’s one-hop neighborhood. Figure 2

shows two, asymmetric neighborhoods where devices 1

and 4 are both in each other’s neighborhood but each

neighborhood contains devices that the other’s does not.

III. THE PINCH APPROACH

PINCH supports applications that rely on context infor-

mation sensed about the device’s environment. We assume

each piece of context information has a type and that these

types are generic. Example context types include physical

location, temperature, speed, sound level, crowd levels,

etc.. PINCH is predicated on the assumption that the

sensors on co-located devices commonly have correlated

values for a given sensor type.

PINCH exploits the fact that neighbor discovery must

use fixed-length beacons that are larger than required for

neighbor discovery. It leaverages the unused space to allow

a neighborhood of devices to self-organize into an aggre-

gate context sensor in which each device independently

determines a context sharing task that supplies situational

context to other devices in the neighborhood. Devices

thereby share the burden of context sensing, resulting in

lower aggregate energy usage and higher coverage of hard-

to-sense context types. In PINCH, individual devices make

individual decisions to provide aggregate benefit to the

network neighborhood. These decisions are informed by

limited information shared in neighbor discovery beacons.

Figure 3 shows the overall operation of PINCH.

We assume that the set of all possible context types is

of size k and known a priori to all devices. A device’s

sensing capabilities is a subset of these types represented

as a k-bit vector in which each bit indicates whether

Figure 4: Basic Beacon Payload

the device can provide the context type indicated by that

index. We refer to this as a device’s context capability
vector (cap). We assume that each device is participating

in BLEnd neighbor discovery.

A device stores the most recently received beacon from

each neighboring device in a beacon repository; PINCH

removes a device’s beacon from this repository when the

device moves out of range. Information from received

beacons is combined with a context demand model that

captures neighboring devices’ needs for context. The con-

text demand model is either static and known a priori or

built from information in beacons. Together the beacon

repository and context demand model serve as inputs to

two algorithms. The first determines what type of context

this device should sense and share, while the second

determines the length of time for this sensing and sharing

task, after which the device reevaluates its context sharing

activity. Based on the outputs of these algorithms, the

device constructs the BLEnd beacon.

A. Beacons for Self-Organized Context Sharing

In the BLEnd beacon of Figure 4, gray elements are

used by the BLEnd protocol and treated as header data.

We assume PINCH can access to data but may not modify

it as doing so would change neighbor discovery behavior.

To support self-organized context dissemination in

PINCH, we add four components to each beacon b, stored

in the beacon repository B. The first new component

describes the sending device’s selected context sensing

task (i.e., the result of the algorithms in Figure 3), which

itself has two components: the type of context shared in

this beacon, b.type (an index into the context capability

vector, which requires �log k� bits) and a duration of

this selected task, counted in BLEnd discovery periods

(i.e., increments of Λ), b.tts . The latter indicates how

much longer this device will make this type of con-

text available to its neighborhood, making it a kind of

countdown timer, decreasing each Λ. When the value

reaches 0, the device reevaluates its context sharing task.

The beacon also contains two k-bit vectors: the sending

device’s context capability vector b.cap, and (optionally)

the context needs of the applications on the device, b.a.

The latter, if included, can contribute to the construction

of the neighborhood’s context demand model, described

in Section III-B. The remaining payload (the red portion

in Figure 4) is used for the value of the sensed context.

This can be a simple or composite value, e.g., carrying

additional data such as error or units.

122

B. Neighborhood Context Demand Model

Our algorithms use a neighborhood context demand
model, which expresses the importance of each of the k
context types. We start our investigation with a demand

model that is fixed and known to all devices a priori. We

then build a dynamic model that captures the instantaneous

requirements of neighboring devices by examining the

information that those neighboring devices include in their

beacons. Finally, we specify an egocentric model in which

each device assumes others have needs similar to its own.

In all cases, we assume that the model assigns each

context type c ∈ [1..k] a weight wc. A higher value of wc

indicates a higher (relative) importance of context type

c. For simplicity, we constrain wc to the interval [0, 1],
and require the sum of all k wc values to be one, i.e.:∑k

c=1 wc = 1.

1) A Static Context Demand Model: In the simplest

case, all devices can assume a context model in which

all context types are equally important. To achieve this,

we simply set wc = 1/k for all c. An alternate static

context demand model could use a look-up table shared

a priori among all devices, mapping each context type to

a fixed weight. In any case, sharing the context demand

model with all devices makes neighbor behavior more

predictable.

2) A Dynamic Context Demand Model: Because

PINCH beacons can include the sending device’s applica-

tion needs vector, the context demand model can respond

to the network neighborhood’s changing context demands.

For instance, to express a context demand model in which

the weight of a type is proportional to the number of

neighboring devices that require that type, we use:

wc =
ηc∑k
i=1 ηi

(1)

where ηi is the number of devices in the neighborhood

that require context i. We compute ηc using the application

needs carried in beacons (Figure 4) as b.a. Specifically:

ηc =
n∑

j=1

|j.b.a& 2c| (2)

We use the notation |V| to denote the Hamming weight of

the bit vector V , i.e., the number of bits in V set to one.

Eq. 1 is a general form of the basic static context

demand model in which all types are equally important.

In fact, this context demand model is quite flexible. For

instance, if one wishes to define a more tailored static
model, this can be done simply by assigning integer

importance values to each of the k context types, then

using those values in place of ηc in Eq. 1 to generate

normalized context weights wc.

3) An Egocentric Context Demand Model: An alterna-

tive dynamic model that can be employed even without

sending b.a in the beacons uses a local devices’ context

needs as a proxy for the neighborhood’s needs. This

reserves additional space in the beacon for context data.

More importantly, however, it ensures that a device does

not share context values that its applications’ will not

directly use. This reduces the altruism of the device (i.e.,

it does not perform context sensing that is not also locally

useful) but also decreases the energy burden for the device.

C. Selecting a Context Type to Share

We now turn our attention to the context selection algo-

rithms, which deal with selecting a context type to share

using information received in other devices’ beacons.
1) Basic Greedy Algorithm: To begin, consider an

algorithm that relies on just the first two components of

all of the other devices’ beacon payloads: the sharing task

description and the sensed context value.

This algorithm first looks the sharing tasks selected

by neighbors to determine uncovered context types in

the local neighborhood. By examining the type in each

received beacon, a device determines the aggregate of its

neighborhood’s context tasks using a multi-way bit-wise

OR:

T =
n∨

j=1

2j.b.type (3)

where T is a bit vector, indexed in the same way as

the beacons’ cap vectors. Recall that neighborhoods are

asymmetric; the context neighborhood of a device contains

the devices from which beacons are received. To compute

T , we use each beacon’s type as an index into the

capability types (i.e., 2j.b.type). Intuitively, T represents

the context types that are “covered” within the device’s

local neighborhood.

We start by computing the negation of this aggregate

neighborhood context to generate a bit vector indicating

context types that are not currently shared by any neigh-

boring device. When ANDed with this device’s capability

vector, cap, we are left with types this device could sense

and share that would add to the neighborhood’s covered

types:

S = ¬T & cap (4)

Conceptually, S identifies sensing gaps in the local neigh-

borhood. The device chooses the uncovered type of great-

est importance as indicated by the context demand model,

i.e., s = 〈max c : c ∈ S :: wc〉1. The device then senses

and shares the value of type s for the next Λ time, i.e., for

a period of time equal to the BLEnd discovery latency.

Choosing to sense and share the value for Λ ensures that

all devices within discovery range will receive the context

value with a probability equal to BLEnd’s discovery prob-

ability, i.e., pd. Concretely, in the device’s created beacon,

the sharing task description’s first value will indicate the

index s (the selected type) and a task duration of 1Λ.

As an alternative equivalent definition of s, we specify

a value P (s) for each context type s:

P (s) =

{
1, if 〈max c : c ∈ S :: wc〉 = ws

0, otherwise
(5)

where P (s) indicates the probability that the selected

context sensing task is to share context type s. In this

1We use the shorthand c ∈ S to denote the fact that the index of c
carries a one in the bit vector S; i.e., c ∈ S ↔ (S & 2c = 2c).

123

simple case, only the uncovered context type with the

max weight will have a value P (s) = 1; all other

probabilities will be 0. However, this generic formulation

of the problem enables straightforward extensions of the

selection algorithm.

2) Randomizing the Choice: When all devices are

working from the same (or similar) context demand model,

two devices with the ability to provide the same (impor-

tant) context type may choose to cover the same thing.

This is especially likely for two devices that are not in

each other’s neighborhoods but are connected to a shared

neighbor. Our next refinement adds a small amount of

randomness to the choice of type to share, while still

giving a weighted preference to more important types

according to the context-demand model. In particular, we

use a function for P (s) that assigns a probability of

selecting s proportional to the weight ws from the context

demand model:

P (s) =

{
ws∑

c∈S wc
, if s ∈ S

0, otherwise
(6)

where uncovered types are assigned a non-zero probabil-

ity; context types that are either covered in the neigh-

borhood or that the device cannot sense are assigned a

probability of 0.

This strategy can also be employed when there are no

sensing gaps in the neighborhood (i.e., |S| is 0). Because

the device will send neighbor discovery beacons anyway,

it is productive to include some context information. Such

a device can choose a context type according to the context

demand model, considering all of its capabilities:

P (s) =

{
ws∑

c∈cap wc
, if s ∈ cap

0, otherwise
(7)

3) Rarity-Weighted Algorithms: When devices have

widely varying sensing capabilities, some capabilities

might be much more rare than others. In these situations,

a device with a rare capability should favor it over others

with higher weights in the context demand model, espe-

cially when those more common types can be covered by

other neighbors.

Using the capability vectors in received beacons, each

device can compute how common each of its capabilities

is in the neighborhood. We refer to this as a type’s

prevalence:

prev(c) =

∑n
j=1 |(j.b.cap& 2c)|

n
(8)

The value of prev(c) is between 0 and 1 and captures the

fraction of neighborhood devices capable of sensing type

c. To consider only the rarity of a context type in selecting

the device’s sensing task, we compute P (s) as:

P (s) =

{
1−prev(s)∑

c∈S(1−prev(c)) , if s ∈ S
0, otherwise

(9)

Combining the prevalence and weight from the previous

refinement, P (s) becomes:

P (s) =

⎧⎪⎪⎨
⎪⎪⎩
(1− α)

(
ws∑

c∈S wc

)
+α

(
1−prev(s)∑

c∈S(1−prev(c))

)
, if s ∈ S

0, otherwise

(10)

where α balances the degree to which the algorithm favors

rarity vs. simply selecting an uncovered type. This strategy

can also be employed even when there are no sensing gaps

by replacing S with cap in the definitions of P (s).

D. Selecting a Duration for Sharing

The above selection algorithms assume that a device

selects the type of context to share and then shares that

value for exactly one Λ time, after which the device

reevaluates the situation, potentially selecting a different

context sharing task for the next Λ period. However, Λ
might be relatively short (especially relative to a neigh-

borhood’s contextual dynamics), and it may be reasonable

for a device to choose a context type to share for a

longer duration. Further, reevaluating the context sensing

choice frequently could lead pairs or groups of devices

to swap sensing tasks every Λ time; because context

neighborhoods are asymmetric, these changes then ripple

through the adjacent neighborhoods. Further, initializing a

particular sensor (e.g., a GPS unit) may have overhead, so

this switching may be quite expensive. We therefore allow

devices to select a multiple m of Λ as the duration of a

sharing task.

Intuitively, a device should reevaluate its sensing task

less frequently if the capabilities and needs in the neigh-

borhood change infrequently. To account for this, we make

the selected task duration proportional to the neighbor-

hood’s dynamics. That is, we compare the neighborhood’s

capabilities at time t to those that were available at time

t− Λ.

Similar to the computation of T , we compute the aggre-

gate (unweighted) capabilities of a device’s neighborhood:

C =

n∨
j=1

j.b.cap (11)

where C is a bit vector of length k, indexed in the same

way as T and the devices’ cap vectors. We extend this

notation slightly to account for time; C(t) indicates the

aggregate capabilities in the neighborhood at time t. We

define the distance between C(t) and C(t − Λ) to be the

Hamming weight of C(t)⊕ C(t− Λ):

distance = |(C(t)⊕ C(t− Λ)| (12)

We then use distance to determine the duration multiple

for the selected context task. Because we want smaller

values of distance to result in larger values of m; in

particular, we could, for example define m as: m =
max(2d − distance, 1), where d is the number of bits

allocated to the duration field in each beacon. This is

conservative, favoring m = 1 in cases with any significant

change in the neighborhood’s capabilities. Alternatively,

124

we can more evenly distribute the duration selection

among the possible choices:

m =

{
(2d − 1), if distance = 0⌊
(2d − 1)×

(
1− distance

k

)⌋
+ 1, otherwise

(13)

E. Collision-Aware Context Task Selection

Because BLEnd is probabilistic, devices receive beacons

from neighbors every Λ interval only with a probability

equal to the pd in the BLEnd service-level agreement. Up

to this point, our algorithms have not considered that this

directly implies that a beacon only covers the selected

context task (for a given neighbor) with probability (1 −
pd).

In this section, we examine a final selection algorithm

that accounts for this. We rely on a target probability of
coverage (pc) for each context type c. If pc = pd (i.e.,

the target probability of coverage is the same as BLEnd’s

probability of discovery), then we probabilistically achieve

the target in every Λ interval. However, when pc > pd,

multiple devices in the neighborhood must share the same

context type in order to achieve the target probability.

First, we redefine T . Instead of computing a boolean

coverage for each type, we determine how many neigh-

bors are providing each type. We define Tcoll to be a

vector whose digits are base 2n, where n is the number

of neighbors. This prevents carries when summing bit

vectors representing each beacon’s context type. With this

formulation, we compute:

Tcoll =
n∑

j=1

2j.b.type (14)

and we refer to the count for a particular context type c
as Tcoll [c]. Next, we estimate the neighborhood’s achieved

coverage probability using the counts in Tcoll :
p′c = 1− (1− pd)

Tcoll [c] (15)

where pd is the BLEnd neighbor discovery probability.

We compute the intermediate T ∗
coll as:

T ∗
coll [c] =

{
1, if p′c < pc

0, otherwise
(16)

Finally, Scoll captures the context types that this device

is capable of sensing and whose estimated probability of

coverage (p′c) has not reached the target (pc):

Scoll = ¬T ∗
coll & cap (17)

and used in the algorithms in Section III-C in place of S .

IV. PINCH IMPLEMENTATION

PINCH builds directly on BLEnd, whose existing im-

plementation relies on Bluetooth Low Energy (BLE) for

beacon exchange. We are therefore constrained by the BLE

advertisement PDU for the beacon, which has 31 octets of

application-writeable data [27]. BLEnd [7] uses five octets

for identifying the BLEnd protocol, two octets for carrying

a unique node identifier, and two octets to announce the

time to the start of the node’s next epoch. This leaves 22

octets of writeable data that is unused by BLEnd.

We assume a maximum of 32 context types (i.e., k =
32) and allocate four octets to a beacon’s context capability

vector (and to its application needs vector, when it is in-

cluded). We use another octet for the context sharing task:

five bits as an index into the capability vector and three bits

for the duration countdown, yielding a maximum duration

of 7Λ. Finally, we allocate the remaining space (ten octets

when the application needs vector is included) to the con-

text data. The context data is formatted in a type-specific

way, but this space is sufficient for commonly encountered

context types in smart-* applications. For instance, while

many representations of location (i.e., latitude/longitude

pairs) use 16 octets, more recent lightweight devices use

just six octets, resulting in ∼2m accuracy. In other cases,

some of the space allocated to the context data may be

used to provide meta-data, e.g., sensor precision or data

freshness.

V. EVALUATION

To benchmark PINCH and demonstrate its applicability,

we use a custom smart-city simulator, based on the OM-

NeT++ v.5.2 discrete event simulator2. The wireless phys-

ical and MAC layers are based on the INET Framework

v.3.6.23. We integrated support for geographic coordinates

and 3D graphics using Open Scene Graph4 and Open

Street Map5. The algorithms are implemented using the

Eigen3 library6. We used a map of pedestrian-friendly

areas of Trento, Italy, and modeled devices moving on

streets at walking speeds (i.e., two meters per second) as

if carried by people. To realistically model the impact

of the urban environment on wireless communication,

the simulator computes the influence of building material

properties on radio signals.

We configure the BLEnd parameters in Section II to

target one-hop network neighborhoods with around 10

devices, i.e., n = 10 in BLEnd. We set a target discovery

probability of pd = 0.9 and a target discovery latency of

Λ = 10s. We use the beacon specifications of the TI Sen-

sorTag (www.ti.com/sensortag), an inexpensive sensing

device with a complete BLE radio and networking stack

that is representative of many IoT devices. The resulting

optimal settings for BLEnd dictate an epoch length of

9.995s, with a listen duration of 217ms at the start of

every epoch and a beacon interval of 204ms (Figure 1).

A. Benchmarking the Algorithms

We measure the coverage percentage, i.e., the percent-

age of types a device receives relative to its needs:

coverage percentage(c) =
covered demands for c

total # demands for c
(18)

2https://www.omnetpp.org/
3https://inet.omnetpp.org/
4http://www.openscenegraph.org/
5http://www.openstreetmap.org/
6http://eigen.tuxfamily.org/

125

Because some types have more value in the neighbor-

hood than others, i.e., they have higher wc values, we also

compute a weighted coverage quality:

coverage quality =

k∑
c=1

[(
covered demands for c

total # demands for c

)
wc

]
(19)

We define a baseline scenario that controls the size of

each device’s one-hop neighborhood to isolate the impact

of parameters to our algorithms. A group of (ten) devices

starts together at one side of the city and follows a shared

trajectory through the city streets7. As the devices navigate

the urban space, they can become transiently disconnected,

e.g., because of building obstructions near corners. This

scenario is representative of many smart-city applications,

e.g., those that support groups of tourists [1], school

children, family members, or friends moving together.
1) Context Sharing for Improved Context Coverage:

Figure 5 shows the coverage percentage for each context

type with various parameters. Figures 5(a) and (b) use

relatively few possible context types (i.e., k = 10). All

devices demanded values for all types (i.e., a demand ratio
(DR) of 100), and every device could sense a randomly

selected 20% of the types (i.e., a capability ratio (CR)

of 20). We show the coverage percentage for both greedy

(Eq. 5) and randomized selection (Eq. 6). Figure 5(a) em-

ploys the static context demand model in which all context

types are equally important (Eq. 1); Figure 5(b) employs

a static demand model in which weights decay linearly

for higher indexed types (i.e., w1 = 0.22, w2 = 0.19,

... w8 = 0.03). The results are nearly identical because

a device’s neighborhood almost always has ten devices

(including the device itself), and each device can choose

a different one of the ten sensing tasks; PINCH implicitly

fosters this diversity since a device uses the neighbors’

sensing tasks to inform its own selection.

In Figures 5(c) and (d), we increase k to 20. In

Figure 5(c), all context types are equally important. The

greedy algorithm favors lower indexed types (it chooses

greedily), while the randomized algorithm spreads cov-

erage more evenly. In Figure 5(d), where we employ a

linearly decaying demand, the demand model is apparent

in the trend for the randomized algorithm, whose selection

of types to share follows the weights in the model.

In Figures 5(e) and (f), we employ a dynamic context

demand model. In Figure 5(e), every device selects a

random subset of 20% of the context types it needs (i.e.,

DR = 20); in Figure 5(f), we increase this demand to

60% of the types. In both cases, CR = 20. In Figure 5(e),

the simple greedy algorithm is unable to adjust when the

capabilities are constrained; this is further highlighted in

Figure 5(f), where the context demands are even higher,

and the greedy algorithm favors lower indexed context

types, while the randomized selection algorithm provides

more uniform coverage.
2) Increasing Context Types: We next evaluated

PINCH’s ability to handle a growing number of context

7https://youtu.be/TOVtlOpgbNg

types, since smart environments may have many types

of sensors or high-level context abstractions. Using the

same set of ten devices moving together and the same

demand and capability models as in Figure 5(f), we varied

the number of context types (k) from 8 to 32. Figure 6

shows the average coverage quality for the greedy and

randomized algorithms. PINCH maintains high coverage

quality, even with many more context types than sensing-

capable neighbors. The randomized algorithm performs

better because it chooses from across all possible types

instead of focusing greedily on (only) the most important.

3) Adapting to Dynamic Needs: PINCH is designed

to adapt to the neighborhood’s changing needs and ca-

pabilities. To assess this adaptation, we used our group

mobility model with ten devices, with k = 16, and with

capability and demand ratios both of 20%, where the

demanded types were not necessarily the same as the

capabilities. Periodically, in this case, every 30 seconds,

every device randomly re-selects its needed context types.

We also statically set the duration of the context to either

the minimum possible (1Λ) or the maximum possible

(7Λ). Figure 7 shows the coverage percentage in both

cases. With a shorter duration, PINCH is able to achieve

a slightly higher coverage, but, as evidenced by the sharp

peaks, the devices are switching context sensing tasks

more frequently. This figure demonstrates the tradeoff

between sensing stability and sensing coverage; while

a higher coverage is obviously preferred, as described

previously, there is overhead to activating a context sensor

that also increases the energy cost of sensing.8

4) Benefits and Costs: PINCH uses the neighborhood’s

sensing capabilities to fulfill sensing tasks a device is

incapable of or simply to leverage energy used for sensing

on nearby devices. We measured the benefit and cost of

sharing the sensing task. For the benefit, we compute the

percentage of a device’s needed types that were covered

by some other device. For the cost, we compute the

percentage of the time that the context value a device was

sharing was something the node itself did not need.

Figure 8 shows the benefit devices received from par-

ticipating in PINCH as we varied the capability ratio from

100% down to 10%. Even when the device can sense all

of the context types on its own, it still garners a significant

benefit from PINCH. With higher values of CR, the benefit

to the device is a reduced context sensing and therefore

energy burden. Instead, when the device’s context sensing

capabilities decrease (lower values of CR), the device

gains access to context values that it cannot sense itself.

Figure 9 shows the additional cost incurred by devices

as their own demands for context types increase from

10% to 100%. When a device is capable of sensing all of

8The coverage transiently rises when devices change their sensing task
as a result of a device receiving different beacons (with different context
types) from the same neighbor in a given epoch. This is an artifact of our
measurement approach, but it indicates a potential avenue of exploration:
if devices change their sensing task within an epoch, it is possible that
BLEnd can be manipulated to achieve even higher levels of context
coverage. This investigation is left for future work.

126

(a) k = 10, CR = 20, all wc equal

.
(b) k = 10, CR = 20, wc decreases linearly

(c) k = 20, CR = 20, all wc equal (d) k = 20, CR = 20, wc decreases linearly

(e) k = 20, CR = 20, DR = 20 (f) k = 20, CR = 20, DR = 60

Figure 5: Benchmarking coverage of greedy and randomized selection.

Figure 6: The pressure of increasing numbers of context

types (CR = 20, DR = 60)

Figure 7: Adapting to changing context demands (k = 16,

CR = 20, DR = 20)

the context types but only needs a random 10% of those

types, the device is often contributing something to the

neighborhood that is not useful to itself. However, as the

device’s needs grow, the context type that PINCH chooses

Figure 8: Benefits of PINCH (k = 10, DR = 100)

Figure 9: Costs of PINCH (k = 10, CR = 100)

for the device to sense and share is more likely to be useful

to the device.

5) Considering the Rarity of Context Types: The rarity-

weighted algorithm in Eq. 10 allows a device to favor

selecting a context type that it alone in the neighborhood

127

Figure 10: Rarity Weighting

can provide, even if it is not the most important according

to the context demand model. We evaluate this with the

group mobility scenario and assume every device needs

every type. We vary the distribution of capabilities: for

k = 16, we make every device capable of sensing the first

eight context types plus, randomly, one of the remaining

types. Figure 10 shows the coverage percentage of the

rare (colored bars) and common (gray bars) types while

varying α. We consider only the coverage contributed to

by other devices (and not the device itself). Coverage of

the rare context types increases with increasing α; this

does come at some cost–devices that are sharing rare

types cannot also share common types. Because all devices

were outfitted with all eight of the common sensors, the

rarity weighted algorithm allows the device to use the

neighborhood’s sensing resources to fill in the types that it

cannot sense on its own. Some of the remaining common

types are filled in by neighborhood sharing (e.g., because

a second device in the neighborhood can provide the same

rare type as another), and the device can use its own

sensors to complete its coverage.

6) Collision Awareness: The prior experiments sim-

ply use BLEnd off-the-shelf without considering the im-

plications of its probabilistic discovery guarantees. To

evaluate the collision-aware algorithm of Section III-E

we use the same core settings as those in Figure 5(d)

but with increased capabilities (CR=60) and an increased

number of nodes (20) to make collisions even more

likely. Instead of assuming that the probability of coverage

is the same as BLEnd’s discovery probability, we set

pc = {0.93, 0.99, 0.999}9. Figure 11 shows that PINCH

achieves the higher target pc for the more important

context types (i.e., those with lower indices); this comes

at a cost of lower coverage for the less important types. In

especially dense networks or when BLEnd is parameter-

ized with a low target discovery probability, applications

can use this collision-aware protocol as another option for

achieving high coverage of important context types.

B. Realistic Smart-City Scenarios

While the previous evaluations attempted to bench-

mark the various parameters and settings for PINCH,

the remainder of our evaluation explores more dynamic

9Though we used a target discovery probability pd = 0.9, the
optimal settings actually have a theoretical discovery rate of 0.92; in
the simulator, we achieved a BLEnd beacon reception rate of 0.93.

Figure 11: Collision Awareness (CR = 60, n = 20)

Figure 12: Trace of coverage percentage for congregating

devices (CR = 20, DR = 100, k = 10).

scenarios, both in terms of application mobility setting

and device capabilities.

1) A Central Meeting Point: PINCH is most useful

when devices are co-located for a sufficiently long period

of time to share sensed context information. To assess

how this benefit might fluctuate for realistic behaviors, we

defined a model in which devices periodically transition

between (1) randomly moving in a space and experiencing

only transient encounters and (2) spending a longer time

in a central meeting point (e.g., a market, store, restaurant,

etc.). In particular, we selected a central point in the city

as a meeting place; devices travel from random starting

positions toward this meeting point, remain close together

for a period of time, then move away before repeating the

process. Figure 12 shows the average coverage percentage

for all of the devices. The figure shows three “meeting

times”; when the devices have congregated, their coverage

is high; when the devices are isolated, their coverage drops

to only what they can individually sense.

2) Leveraging Situated Beacons: PINCH can also en-

able mobile devices to collect context from fixed devices.

To demonstrate this potential, we present a scenario in

which a single mobile device connects opportunistically to

stationary beacons in a city. In this scenario, the situated

sensors can provide all context types. The mobile device

has no sensing capabilities, yet, as Figure 13 shows, the

device is able to achieve some coverage of context as

it moves. Figure 13 shows the randomized algorithm’s

context coverage quality at the mobile device as we vary a,

the number of context types the mobile device demands.

The x-axis plots the average number of neighbors in a

run (i.e., density of 1 indicates that the mobile device is

connected to, on average, a single beacon at any given

time). Note that, although the number of situated beacons

the device can contact is determined by the density,

because the device is connected to a beacon for multiple

epochs as it passes by, the beacon can change its contents

over time, improving the coverage for the mobile device.

128

Figure 13: PINCH with situated beacons

VI. CONCLUSIONS

This paper introduces PINCH, a system that embodies

a suite of heuristics for devices to opportunistically share

sensed context within their local network neighborhoods.

Such sharing has significant potential when context values

are physically correlated. PINCH’s heuristics leverage

empty space in the periodic beacons of the BLEnd neigh-

bor discovery protocol. As such, PINCH entails no addi-

tional energy costs beyond context sensing itself. We show

that devices participating in PINCH can self-organize to

provide very high degrees of coverage of context types.

This sharing has multiple benefits in smart-* applications,

e.g., allowing a device to collect context information it

cannot sense on its own, or sharing the energy burden of

context sensing across a neighborhood.

This initial work opens several avenues of exploration.

We can change the beacon contents, for instance, to in-

clude more than just a single context type (if the data types

themselves can be represented compactly). We could also

explore exposing additional information about devices’

needs, e.g., explicitly exposing uncovered types or sharing

the needs of neighboring devices. The latter would allow

PINCH to extend beyond a one-hop network neighborhood

to provide larger coverage. Importantly, the algorithms

we derived so far do not explicitly account for the cost

of context sensing itself. Incorporating this information

into the selection algorithm might change the decisions

made. In summary, PINCH enables distributed cooperative

context sensing without explicit collaboration between

devices; such an approach has wide potential applicability

as smart-* applications become commonplace.

REFERENCES

[1] M. Saloni, C. Julien, A. Murphy, and G. Picco, “LASSO: A
device-to-device group monitoring service for smart cities,”
in Proc. of ISC2, 2017.

[2] U. Gretzel, M. Sigala, Z. Xiang, and C. Koo, “Smart
tourism: foundations and developments,” Electronic Mar-
kets, vol. 25, no. 3, pp. 179–188, 2015.

[3] C. Martella, A. Miraglia, M. Cattani, and M. van Steen,
“Leveraging proximity sensing to mine the behavior of
museum visitors,” in Proc. of PerCom, 2016.

[4] G. Picco, D. Molteni, A. Murphy, F. Ossi, F. Cagnacci,
M. Corra, and S. Nicoloso, “Geo-referenced proximity
detection of wildlife with WildScope: Design and charac-
terization,” in Proc. of IPSN, 2015.

[5] M. Bakht and R. Kravets, “Searchlight: Won’t you be my
neighbor?” in Proc. of Mobicom, 2012.

[6] P. Dutta and D. Culler, “Practical asynchronous neighbor
discovery and rendezvous for mobile sensing applications,”
in Proc. of SenSys, 2008.

[7] C. Julien, C. Liu, A. Murphy, and G. Picco, “Blend:
practical continuous neighbor discovery for bluetooth low
energy,” in Proc. of IPSN, 2017.

[8] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-
Connect: A low-latency energy-efficient asynchronous
neighbor discovery protocol,” in Proc. of IPSN, 2010.

[9] P. Kindt, D. Yunge, G. Reinerth, and S. Chakraborty,
“Griassdi: Mutually assisted slotless neighbor discovery,”
in Proc. of IPSN, 2017.

[10] M. McGlynn and S. Borbash, “Birthday protocols for low
energy deployment and flexible neighbor discovery in ad
hoc wireless networks,” in Proc. of MobiHoc, 2001.

[11] Y. Qiu, S. Li, X. Xu, and Z. Li, “Talk more listen less:
Energy efficient neighbor discovery in wireless sensor
networks,” in Proc. of Infocom, 2016.

[12] K. Wang, X. Mao, and Y. Liu, “BlindDate: A neighbor dis-
covery protocol,” IEEE Trans. on Parallel and Distributed
Systems, vol. 26, no. 4, pp. 949–959, 2015.

[13] L. Wei, B. Zhou, X. Ma, D. Chen, J. Zhang, J. Peng,
Q. Luo, L. Sun, D. Li, and L. Chen, “Lightning: A high-
efficient neighbor discovery protocol for low duty cycle
wsns,” IEEE Communications Letters, vol. 20, no. 5, pp.
966–969, 2016.

[14] D. Zhang, T. He, Y. Liu, Y. Gu, F. Ye, R. G. H., and
Lei, “ACC: generic on-demand accelerations for neighbor
discovery in mobile applications,” in Proc. of SenSys, 2012.

[15] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park,
and J. Song, “Seemon: scalable and energy-efficient con-
text monitoring framework for sensor-rich mobile environ-
ments,” in Proc. of MobiSys, 2008.

[16] S. Nath, “Ace: exploiting correlation for energy-efficient
and continuous context sensing,” in Proc. of MobiSys, 2012.

[17] S. Cho and C. Julien, “Chitchat: Navigating tradeoffs in
device-to-device context sharing,” in Proc. of PerCom,
2016.

[18] A. Amiri Sani, K. Boos, M. Yun, and L. Zhong, “Rio: a
system solution for sharing i/o between mobile systems,”
in Proc. of MobiSys, 2014.

[19] X. Zheng, D. Perry, and C. Julien, “Braceforce: A middle-
ware to enable sensing integration in mobile applications
for novice programmers,” in Proc. of MobileSoft, 2014.

[20] A. Kansal, S. Saponas, A. Brush, T. Mytkiwocz, and R. Zi-
ola, “The latency, accuracy, and battery (LAB) abstraction:
Programmer productivity and energy efficiency for mobile
context sensing,” in Proc. of OOPSLA, 2013.

[21] K. Rachuri, M. Musolesi, and C. Mascolo, “Energy-
accuracy tradeoffs of sensor sampling in smart phone based
sensing systems,” in Mobile Context Awareness, 2012.

[22] Z. Zhuang, K.-H. Kim, and J. Singh, “Improving energy
efficiency of location sensing on smartphones,” in Proc. of
MobiSys, 2010.

[23] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco,
“Programming wireless sensor networks with the teenylime
middleware,” in Proc. of Middleware, 2007.

[24] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood:
A neighborhood abstraction for sensor networks,” in Proc.
of MobiSys, 2004.

[25] M. Jonsson, “Supporting Context Awareness with the
Context Shadow Infrastructure,” in Wkshp. on Affordable
Wireless Services and Infrastructure, June 2003.

[26] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid development
and flexible deployment of adaptive wireless sensor net-
work applications,” in Proc. of ICDCS, 2005.

[27] Texas Instruments, “Bluetooth low energy beacons
(application report),” http://www.ti.com/lit/an/swra475a/
swra475a.pdf, October 2016.

129

