Gander: Mobile, Pervasive Search of the Here and
Now in the Here and Now

Jonas Michel, Member, IEEE, Christine Julien, Senior Member, IEEE and Jamie Payton, Member, IEEE

Abstract—The vision of the Internet of Things will enable
networked environments populated with vast amounts of data
that can be exploited by humans. The volume of digitally
available data in such emerging computing spaces presents an
imminent need for search mechanisms that enable humans and
applications to find relevant information within their digitally
accessible physical surroundings. This paper presents Gander, a
search engine for these pervasive computing spaces enabled by
the Internet of Things and characterized by large volumes of
highly transient data. Gander is founded on a novel conceptual
model of search that resolves queries about a user’s here and
now by leveraging proximally-available resources irn the here
and now. We formally describe the model underlying Gander,
describe the networking protocols that enable Gander’s search,
and provide a realization of Gander via an extensible framework.
Employing this Gander framework, we describe a concrete mid-
dleware implementation for wirelessly networked environments.
We evaluate this implementation of Gander through a user
study that examines the perceived utility of myGander, a real-
world mobile application enabled by the Gander middleware,
and we benchmark the performance of Gander in large pervasive
computing spaces through network simulation.

I. INTRODUCTION

HE same fundamental need to share and discover infor-

mation that fuels the widespread use of existing Internet
search engines is also an essential requirement for in the
emerging Internet of Things (IoT). Visions of the IoT include
massive numbers of distributed and digitally accessible objects
that represent the state of the world and its inhabitants.
In these settings, wireless connections support opportunistic
interactions between humans, the devices they wear and carry,
and intelligent sensors embedded in everyday objects and
natural landscapes. This tight integration of sensing, com-
putation, and communication with the physical and social
environment results in large volumes of spatiotemporal data
generated at rapid rates. These pervasive computing spaces
are an essential component of the Internet of Things; as these
spaces increasingly become a reality, it becomes essential to
provide approaches to help users find the information they
need—in a way that reflects what is around them, right here

J. Michel and C. Julien are with the Department of Electrical and Computer
Engineering at the University of Texas at Austin, e-mail: {jonasrmichel,
c.julien} @mail.utexas.edu

J. Payton is with the University of North Carolina at Charlotte, e-mail:
payton@uncc.edu

A previous version of this paper appeared in Proceedings of the 8" Inter-
national ICST Conference on Mobile and Ubiquitous Systems (MobiQuitous),
2011

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.

and now—as they move through a densely populated and
rapidly changing information space.

Consider the following situation, which contrasts the infor-
mation needs in using traditional Internet-based information
retrieval versus searching for information about the here
and now in rapidly changing pervasive computing spaces. A
traditional Internet search engine may be used to follow news
updates and social feeds about a popular parade. While at the
parade, a user might wish to know which areas are the least
crowded and provide the best views for children right now,
or what are the best foot traffic patterns for navigating to see
a particular parade attraction. A police officer may want to
monitor patterns of movement or nearby unruly crowds. In this
situation, data is generated and shared by spectators, parade
participants (e.g., marching bands), objects in the environment
(e.g., parade floats or city infrastructure) or police or other
officials. Other examples similarly highlight the contrast in
Internet search needs versus those found in spaces that contain
spatiotemporally relevant data. Using the Internet, one may
find available train routes and timetables, whereas a traveler
hurrying to board a crowded train may need to search for
the closest available second class seat. The traveler’s search
may be supported by devices in the station, embedded in the
train, or carried by other passengers. When planning a trip
to an amusement park, one may find directions and hours of
operations using the Internet; visitors at the park may wish
to know which rides have the shortest wait right now, where
their friends are, or which nearby vendor is currently making
a fresh batch of funnel cakes.

Problem statement: A key challenge to realizing our
vision of search is that the information available in these
spaces is subject to high levels of dynamics; time passes,
devices and users are constantly in motion, social patterns
evolve, data is moved, and information expires. In addition,
the ratio of data used to data generated is quite low. Existing
systems that have enabled access to localized data provide
only capabilities for searching relatively static data instead
of the inherently ephemeral data that will characterize the
Internet of Things; much of this data cannot be easily indexed
outside of the here and now. Supporting the execution of
queries over data that represents the here and now requires
a new perspective on the search engine architecture that relies
on search execution capabilities that take advantage of both
opportunistic interactions between peer computing devices and
the emerging availability of localized infrastructure in the form
of cloudlets [1]. Enabling expressive search over dynamic
data also requires understanding and efficiently collecting and
representing the context of that data in a pervasive computing

space. That context has a significant impact on the relevance
of a particular data item to a particular search, which must
be able to be captured in the search engine. This relevance
is further influenced by intrinsic characteristics of data that
arises when one speaks of an Internet of Things; elements
of this data are inherently correlated with each other across
space and time, and those correlations (and their dynamics)
can impact the ability to resolve queries for that data.
Contributions: As a starting point to address these
needs, we have previously introduced the Gander conceptual
model [2] for expressive search in the here and now. This prior
work formalized the Gander model and the search algorithms
that underpin the Gander search engine. In this paper, we
extend the Gander conceptual model with an expressive graph-
based model of the data that is searchable by a Gander query
(Section IV-B). Specifically, through the definition of two
graph-based data structures, the Gander middleware provides
an abstraction of the globally available datums in a pervasive
computing space and expressively captures the context of
those data items, including the relationships of data items
to their environments and to other data items in the space.
This paper also introduces a REST-ful implementation of the
Gander search engine middleware that simplifies application
development (Section IV-A) and demonstrates the use of the
interface to build a case study application (Section V). Finally,
we provide an evaluation of Gander through both a user
study on our real world application and through performance
benchmarks in a large scale simulation (Section VI).

II. RELATED WORK

Search has become one of the most popular services on the
Web and, in many cases, defines how users interact with the
World Wide Web on a daily basis. Just as users today rely on
Web search to find documents online, users in the future will
demand on-demand access to real world information generated
by their surroundings as objects in those surroundings become
increasingly digitally accessible. The Gander search engine
aims to provide the necessary support for IoT applications
requiring relevant information in rapidly changing, data-rich,
networked spaces. Discovery, acquisition, and administration
of dynamic information produced in these environments is by
no means a novel goal. Indeed, managing and coordinating
access to transiently available data and resources will inher-
ently characterize most, if not all, IoT applications. Gander,
however, targets a specific type of scenario, where many com-
mon assumptions about the network, data, and node behavior
simply do not hold. In this section, we overview prominent
systems that, either explicitly or implicitly, support the search
for real-world information (i.e., information generated by
mobile devices, sensors, human users, etc.). Some have been
designed with search as a first class citizen; however, others
provide mechanisms that could facilitate search.

A large body of work of is concerned with efficient data ac-
quisition in wireless sensor networks (WSNs), where severely
resource-constrained sensors deployed for environmental mon-
itoring, surveillance, phenomena tracking, etc. generate huge
volumes of data. Data stream systems treat the sensory data

collected by a WSN as a set of continuous streams and provide
distributed query processing mechanisms to resolve queries in
an energy-aware fashion. TinyDB [3] supplies a toolbox of
data stream-based query processing techniques that provide
programmers with on-demand access to the WSN through a
SQL-like interface. Each TinyDB query processing technique
is characterized by power- and bandwidth-aware heuristics that
dictate where, when, and how data is physically acquired from
sensors. The Regiment macroprogramming system [4] enables
developers to program a WSN at the global level by specifying
region streams, or representations of spatiotemporally varying
collections of node state, at compile time to access collective
groups of data from groups of sensors sharing geographic,
topological, or logical relationships. Similarly, logical neigh-
borhoods [5] provide access to dynamically formed groups
of sensor nodes satisfying a set of logical constraints (e.g.,
communication costs and node characteristics) as a single
virtual node. These and similar stream-based systems provide
the style of resource-aware data access we desire, but they
presuppose a relatively static network of nodes formed by a
known set of sensors affixed in a physical space and “rooted”
at a base station (the network sink). In our target environments,
networks are formed opportunistically and comprise both
stationary (e.g., objects embedded in the environment) and
mobile (e.g., smartphones carried by human users) devices. In
other words, neither the participating devices nor their network
topology may be known ahead of time.

In both the Internet of Things (IoT) [6] and Web of
Things (WoT) [7], ordinary objects are imbued with sens-
ing, networking, and otherwise “smart” capabilities enabling
their access via a network connection. Given such a world
of digitally accessible “things,” many recent systems have
attempted to address entity discovery'. Unlike data stream
query processing where queries are resolved over a given
set of devices, entity discovery is concerned with searching
for real-world entities (i.e., people, places, things) and their
representative sensors, potentially in a desired state. Generally
speaking, these systems support keyword search over static or
pseudo-static sensor metadata (e.g., Snoogle/Microsearch [9],
[10], MAX [11], SenseWeb [12]) or additionally over dynamic
sensor states and location (e.g., Dyser [13], IoT-SVK [14],
CASSARAM [15]). Entity discovery shares the same funda-
mental motivation as Gander, but each of these approaches
presume searchable sensor resources are accessible via a
reliable Internet connection and therefore employ centralized
resources to intelligently index sensors’ metadata, location,
and changing state (e.g., using prediction models [13]). No
such assumptions can be made about device-to-device connec-
tivity in our target environments—Internet connectivity may
be impractical, infeasible, or simply undesirable. Therefore,
Gander must operate in a purely distributed fashion without
assuming complete reliance on centralized resources.

Decentralization offers an inherent scalability and robust-
ness to failures, making it a natural design foundation
for large-scale applications that target dynamic and unreli-

'We refer the reader to [8] for an excellent survey of entity discovery
systems.

able networks. Data space and coordination models target-
ing distributed systems (e.g., tuple spaces [16], distributed
databases [17], and distributed hash tables [18]) attempt
to abstract away the distributed and disconnected nature
of resources (e.g., mobile devices) by providing access to
them as if they were a holistic global virtual data struc-
ture [19]. Similarly, distributed routing and location systems
(e.g., Tapestry [20], Pastry [21], and CAN [22]) emerged to
tackle the challenge of routing requests to pertinent content
within large scale networks where failures and periods of
heavy loads are the norm. Members of this family of systems
typically employ statistical- or hash-based data replication to
mitigate failures and facilitate low latency interactions. These
abstractions enable convenient and simplified interfaces for an
otherwise complex system but often require significant over-
head to accurately maintain distributed data structures, routing
tables, roles, and schemas. The high degrees of network churn
induced by real-world dynamics and the sheer rate and volume
of generated data in our target environments renders such ap-
proaches ineffective. Nevertheless, a key commonality among
these approaches is the implicit or explicit parameterization of
interaction based on locality (e.g., logical or physical).

In many pervasive computing systems, interaction is param-
eterized by some notion of context in an effort to facilitate low
latency data access, coordination, communication, etc. Such
context-aware systems may impose application-level overlays
to, for example, keep data about events close to where it will
likely be spatiotemporally relevant [23]. Alternatively, some
systems enable developers to specify application-specific pat-
terns that dictate how and when data is moved and shared (e.g.,
TOTA [24]), relieving applications from decisions regarding
the physical transport of data. The publish/subscribe paradigm
has received much attention within the context-aware domain
due to its high degrees of decoupling and flexibility. Existing
publish/subscribe frameworks parameterize event distribution
by social metrics [25], physical proximity [26], contextual
relations [27], temporal properties [28], degree of interest
matching [29], and even complex formulations of context [30],
[31]. The ability to represent, infer, then leverage some notion
of context has proved to be extremely beneficial in real-
world applications and remains an active area of research.
While not always the case, a critical assumption made by
existing context-aware systems is that generated events and
data will, in general, be consumed by “interested” parties. In
our targeted environments, no such assumption can be made;
there is no guarantee that data generated by a human user or
some smart object or embedded device will be “of interest”
to an application or another user. Indeed, the amount of data
potentially produced by real-world events vastly outweighs the
amount of data consumed.

In summary, our target environments represent some of
the most challenging conditions found in computing today—
large scale heterogeneous networks, high degrees of mobility
and network churn, large volumes of information generated
at rapid rates, and a small ratio of data consumed to data
generated. We position Gander as a first cut search engine
specifically designed to operate within in this emerging cyber-
physical space.

III. BACKGROUND: THE GANDER CONCEPTUAL MODEL

Gander performs queries about the here and now in the
here and now, using locally available capabilities without
reliance on a globally accessible index. In this section, we
review the Gander conceptual model [2] and introduce a
structural data model for pervasive computing spaces, which
defines the substrate over which queries execute. We give brief
examples of datums and queries over them; our examples are
taken from a pervasive computing application that enables
a user carrying a mobile device at a parade to search for
information related to his experience. The model is essential to
a rigorous understanding of the quality with which protocols
resolve users’ searches, and we use it to develop the Gander
search engine; Section IV describes how Gander’s design
and implementation reifies the conceptual model presented
in this section. This implementation relies on sampling as a
fundamental component of search; this sampling is formalized
in our conceptual model and driven by the modes of query
processing described in this section.

A. A Model of Queries in Pervasive Computing Spaces

We assume that nodes (e.g., mobile devices carried by
human users or smart objects embedded in the environment)
issue queries that are evaluated using information provided by
other nodes. As an example, a parade-goer may issue a query
to discover nearby shady benches that are close to funnel cake
vendors. A datum provides information about the here and now
(e.g., a measure of some condition of the environment) and is
associated with meta-data that describes its context (e.g., the
device(s) that generated it, the location, a timestamp, or even
the data’s volatility or freshness). Continuing our example,
a pervasive computing space may include datums generated
by food vendors indicating their menus, prices, and locations;
datums may be generated by “things” such as park benches,
providing static information such as location and dynamic
information such as the current shade conditions. We have
formalized the Gander query model previously [2]; here we
provide a comprehensive summary of that model. Our model
relies on partial functions, which are not required to be defined
for every element of their domains. Partial functions naturally
lend themselves to incremental query processing, which can
consider additional datums as they are discovered.

Gander Queries. A Gander query is a partial function
Gp : D — ®; D contains all datums in the entire pervasive
computing space, ¢ is the domain of relevance, and h is the
node issuing the query. A datum is a pair, (v, d); v is the data
value, and d is the value’s meta-data. The meta-data captures
the context of the datum (e.g., its relationship to the space and
potentially to other datums that inhabit that space).

Abstractly (and from a global perspective), the Gander
query function applies a sequence of filters to all of the avail-
able datums and returns a list of datums, sorted by increasing
relevance. Every returned datum must be reachable (from a
networking perspective), either because the peer device owning
the datum is connected via a mobile ad hoc network or because
the datum is stored in a locally available cloudlet. Every valid
result must “match” the search, which we refer to as query

/o @\ @ . @ O
[@ > - > _ Q,

= e ~ ~
| — L ey La [
[o @ &} @ Q
| @ | _
\ S > S

> > >

@—— > Q O

O > > >

D R, SeR,, CoSoR,,

Fig. 1. Query processing functions

resolution. A query can also include one or more constraints.
While query resolution focuses on the content of the datum
(i.e.,), evaluating constraints may rely on context captured in
the meta-data, d. For example, query resolution may identify
datums indicating nearby park benches; constraints ensure
that benches discovered are in the shade. A relevance metric
compares valid results to each other, using information from
both v and d. A search for a shady bench could favor closer
benches or benches close to funnel cake vendors. A query
can use multiple relevance metrics evaluated independently or
using weighted statistics.

Practically, a gander query is implemented using a multihop
query processing protocol, QP , that distributes a query across
the network. Informally, QP ((v,d)) = (v,d) if (v,d) € D
is a “valid” result; otherwise QP},((v,d)) is undefined. More
concretely, QP,, is a filter on D with three pieces:

Reachability. The partial function Ry, : D — D expresses
whether (v,d) is reachable from h; if not, Ry ((v,d)) is
not defined. We focus on query reachability, the ability of
node h to send a query to some other node h' and receive
a response [32]; R depends on actual communication capa-
bilities and the protocols used.

Query Resolution. The partial function S : D — D is defined
for each (v,d) € D that matches the search.

Query Constraint. The partial function C : D — D is defined
for each (v,d) € D that satisfies the query constraints; C’s
resolution may rely on the datum’s meta-data (d).

These functions filter D to the subset of reachable datums
that satisfy the search string and constraints; Fig. 1 shows
the composition, QP, = C o § o Ry, assuming a snapshot
of all available datums. Conceptually, a Gander query should
return all matching datums that are reachable. Practically, of
course, many aspects of real IoT environments limit these
capabilities. One possibility, in Internet connected scenarios,
is to use a centralized monitor (as is done in systems like
Snoogle [10] and MAX [11]) to verify that all reachable
datums are returned. We do not include such a monitor in
the Gander conceptual model, as we focus on a device-to-
device style of query processing. The cloudlet-based query
resolution process we describe as part of the realization of the
Gander search engine in Section IV-C does, however, lend
itself naturally to the integration of a centralized monitor,
which we use in our implementation to evaluate the Gander
search engine’s ability to achieve the ideal (i.e., returning all
matching reachable datums) when using a device-to-device
approach to query processing.

Relevance. A relevance metric, M; : D — ¢; gives the
distance of a datum (v,d) from an ideal. A Gander query

may entail more than one relevance metric; a Gander query,
Gh = Kimy Ma,.. .M,y ©C 0 S 0 Ry, is therefore a partial
function maps valid results on to the multidimensional space
® = ¢1 X o X -+ X ¢n. Gp((v,d)) is not defined if
(v,d) is not reachable or does not satisfy the search string
or constraints; otherwise G, ((v, d)) is an n-tuple, where field
i has the value M;((v,d)). We can plot each valid result in
a multidimensional space, where each axis represents one of
the n metrics®>. We can apply different distance measures from
a point in this space to the origin. For example, datums can
be ranked using a primary metric, and later relevance metrics
can break ties. We can also map each n-tuple to a single value
(e.g., m : ® — R) using different weights for different metrics.

B. A Model of Data in Pervasive Computing Spaces

From a query’s perspective, D is a global virtual data
structure (GVDS) [19]; resolving a concrete Gander query
requires accessing components of this global structure that are
distributed in a dynamic and unpredictable network. Practi-
cally, D is not constructed centrally; instead datums in D are
generated by and stored at devices distributed in the pervasive
computing space. In a most basic sense, these storage location
are simply peer devices; Gander can also support cloudlet-style
storage locations [33], which allow lightweight, highly local-
ized pieces of infrastructure to support pervasive computing
applications in the here and now.

Gander assumes that each node (both peers and local
cloudlet storage providers) implements a local tuple space
containing semi-structured data [34]. A datum’s v is a tuple
that consists of an unordered set of name/value pairs. Meta-
data, d, is treated similarly, but the tuple is constructed on-
the-fly by assessing the instantaneous context. Queries, con-
straints, and relevance are represented as patterns that restrict a
matching tuple’s fields and values or compute across multiple
fields or tuples. Data can be generated, destroyed, changed,
and moved arbitrarily; Gander’s query model is independent
of these processes, however, we assume data is generated and
stored close in space and time to the phenomena it describes.

C. Processing Gander Queries

Acquiring a global view is infeasible in pervasive computing
spaces; protocols must instead operate only over locally avail-
able data. We relate query processing to formal definitions of
sampling the available data, which enables reasoning about re-
sults’ quality. We resolve constraints and relevance metrics by
inspecting a result’s context, accessible through the metadata.
We describe the concrete data structures we use to achieve
this in Section IV. Gander’s partial functions lend themselves
to incremental protocols, which gradually fill in the various
filters defining G,. These protocols sample the information
space to incrementally build a query result () that represents
the desired result Gj. A Gander query processing protocol
distributes a query to other nodes in the space, including both
peer devices and cloudlet-based storage locations. Gander can

2The origin could itself be relative to the results; this causes a translation
of the axes of the multidimensional space; the same distance functions apply.

use the query’s contents to direct how and to which other
nodes a query is distributed; ultimately the goal is to efficiently
collect and present only data that is most relevant.

Gander exploits the relationship between query process-
ing protocols and their spatiotemporal sampling for search
processing. Gander query protocols must provide temporally-
sensitive sampling, by processing queries on-demand, and
spatially-sensitive sampling, determined by the protocol that
selects the space to sample. A query is distributed to any
node (peer or cloudlet device) located in or responsible for
the selected space at the time the query is issued. We quantify
spatial quality through coverage, which measures how much
of the target space the query sampled, and distribution, which
measures how evenly the query sampled the space. Gander
provides four sampling styles, which trade quality for cost,
measured in terms of latency and network overhead. Fig. 2
shows the styles and their relationships to spatial sampling.

Flooding. These protocols attempt to reach every node and
examine every datum belonging to the space, i.e., they at-
tempt to resolve the function G}, exactly. However, because
of the potential scale of pervasive computing spaces, Gan-
der employs constrained flooding, in which propagation is
limited by network hops (Fig. 2(a)). Flooding attempts high
coverage and reflects the actual evenness (or unevenness)
of the nodes’ distribution.

Random. Random sampling protocols propagate queries sim-
ilarly to flooding but reduce responses. In random sampling
(Fig. 2(b)), the likelihood of responding is parameterizable;
the goal is for @) (the query result) to approximate G, with
an even distribution across the pervasive computing space
but a reduced coverage (i.e., @Q is smaller is total size than
G, but covers the same overall space).

Probabilistic. In probabilistic sampling (Fig. 2(c)), each node
that receives a query probabilistically forwards it to peers;
this reduces the overhead, but nodes closer to the issuer
are more likely to receive queries [35]. These protocols
trade cost for coverage at the edges of the target area,
while maintaining even distribution near the query issuer.
This style is similar to approaches used for sampling in
geographic information systems [36].

Greedy Gossip. In greedy gossip (Fig. 2(d)), nodes receiving
a query first evaluate it then retransmit it with a probability
dependent on the local result. The intuition is that real-world
events are tied to space and time [23], and therefore effort
should be spent “accelerating” a query towards spaces with
more relevant data and “decelerating” it when little relevant
data is present. As such, this strategy seeks to provide good
coverage and distribution only where necessary. In relation
to the formal Gander query G}, greedy gossip attempts to
intentionally avoid collecting the pieces of G}, that would
be rated lower with respect to the query’s relevance metric.

Section VI valuates these protocols’ costs, the quality of their
results, and their relation to end user satisfaction.

IV. THE GANDER SEARCH ENGINE

We have developed the Gander framework as a Java library
that embodies the Gander conceptual model described in

Section III. Our framework makes no assumptions about the
underlying network(s) and transport mechanisms responsible
for connecting Gander devices as they move through digitally
accessible environments. Instead, the framework provides in-
terfaces and abstract implementations as cues for developers
to create concrete network-specific implementations where
necessary. In this paper, we present a concrete middleware im-
plementation of the Gander framework for mobile computing
environments that offer a wired/wireless Internet connection
via a wired or wireless Internet connection (e.g., a university
campus, corporate office, conference venue) and use this
middleware implementation to study the utility of Gander’s
spatiotemporal sampling in a real-world scenario. To facilitate
Gander’s query processing amongst proximal devices, our
distributed Gander middleware is supplemented by a cloudlet-
based Proximal Discovery Service (PDS) [33], which enables
the formation of virfual opportunistic networks.

Ultimately, Gander is intended to operate in heterogeneous
environments where physically proximal devices (e.g., mo-
bile devices, smart objects, environmental sensors) interact
locally using ad hoc network connections. These peer-to-
peer connections may be augmented by localized cloudlets,
which are responsible for maintaining knowledge about the
digital resources (e.g., peer devices and datums) available in a
specific region of space [1]. Our implementation of the Gander
framework relies entirely on Internet-connected environments
for two reasons. First, for pragmatic reasons—current off-the-
shelf mobile operating systems’ support for localized device-
to-device interaction is weak, often requiring a dedicated radio
interface (e.g., Bluetooth) or administrative device privileges to
establish ad hoc networks, which is unreasonable for average
users. Second, for evaluation purposes—though not as scalable
as purely ad hoc communication, leveraging a centralized
resource (i.e., the cloudlet-based PDS) to administer virtual
ad hoc communication enables us to log queries, responses,
and the use of the application over time to better measure
system performance. From the application’s perspective, this
middleware-level implementation detail is transparent; the
application is unchanged whether the networking capabilities
are filled in by this cloudlet-supported infrastructure or by a
pure peer-to-peer networking implementation.

A. System Architecture

Fig. 3 shows the Gander system architecture. The Gander
Middleware, our implementation of the Gander framework, is
responsible for the creation and storage of data and the dis-
tributed resolution and propagation of queries and their results.
An instance of the Gander Middleware runs on each node
and exposes a minimal REST API to enable other proximal
devices to query it. Remotely initiated queries, received by the
Query Server, and locally created queries are managed by the
Query Processor, which delegates the query to a dedicated
Query Handler Thread. Each thread attempts to resolve its
designated query using locally-available knowledge about the
hosting node’s current context (available within the Context
Attribute Graph) or previously acquired information (stored in
the Tuple Space). Once a query has been locally resolved, it

- ,"Q", - vQ"Q
y Q <d"Aq”. © Q (,,«d'*nq“..o
‘. -

o L 1 > 5 &

()

(c) ()

Fig. 2. Query processing styles and sampling. Dashed lines are sent messages. Darkened nodes respond to a given query. (a) Flooding. Every node in a given
range (3 hops) retransmits the query; the target area is the shaded region. (b) Random. A receiving node responds to the query with a given probability; a high
quality search evenly samples the shaded space. (c) Probabilistic. Every node that receives the query retransmits it with a given probability; the likelihood of
reception drops with distance from the query issuer. (d) Greedy Gossip. Every node that receives the query retransmits it with a probability dependent on the
quality of its own local resolution of the query; a high quality local resolution of the query results in a higher probability of its retransmission.

is propagated to other nearby (i.e., reachable) devices hosting
their own instances of the Gander Middleware; this forwarding
is accomplished via a Network Handle provided by the PDS.
In a purely ad hoc networked environment, detecting proximal
devices and acquiring network handles would be handled by
the traditional network stack. Later in this section, we discuss
how an instance of the Gander Middleware uses the PDS
to acquire “reachable” devices’ Network Handles to fulfill a
distributed query processing protocol. First, we discuss the
implementation of the Gander data model.

Proximal Discovery
Cloudlet

Service g

Nearby
Gander
Devices

"
l Internet [
Gander Device
REST API
Gander Middleware
Query Processor Network | Network
Handles | Manager

| Query Server |—>

/

N\

I Query ! Context
=1 Handler H Attribute
: Thread) 1% Graph
LIGHTS L X 4 J
Tuple Space)
Data
DAQ <=>| Attribute ‘v
Graph

Fig. 3. The Gander system architecture.

B. Data Model

The foundation of the Gander data model implementation
is provided by the LIGHTS tuple space framework [34]; this
tuple space holds the concrete versions of the datums, i.e.,
(v,d) from the conceptual model presented in Section III
LIGHTS not only provides a flexible means of storing both
the application data (v) and the contextual meta-data (d), but
also the expressive matching semantics necessary for Gander’s
query resolution (the function S in Section III).

A common design task in pervasive computing applica-
tions requires composing raw sensor data into higher-level
semantic abstractions of context values. For example, the

occupancy of a room (a high-level context value) may be
inferred from infrared snapshots and noise level readings (raw
sensor data). The Gander framework aids in the generation
of such structured semantic data by providing mechanisms to
configure reusable and composable application-specific data
hooks. These mechanisms act as datum marshalers, taking
unstructured raw data, potentially from multiple sources, and
fusing that data into a structured datum, possibly composing
the raw data into higher level information in the process.
Essentially, these mechanisms act as datum marshalers; rather
than requiring a developer to parcel raw data into datums,
she can configure and connect these mechanisms to incoming
sensory data streams so that a datum is automatically generated
with the appropriate structure and contextual meta-data each
time that a new piece of raw data arrives.

Concretely, the Gander framework provides two
semantically-related tuple graphs, one for representing
an application’s contextual hooks (the Context Attribute
Graph) and another for application data hooks (the Data
Attribute Graph), each potentially capturing different relational
semantics. The vertices of each graph are Attributes,
an extension of a LIGHTS tuple that also specifies how the
attribute tuple is composed, potentially using sub-attributes.
A directed edge from attribute a; to as means that aq is
a sub-attribute of as, or that that a;’s fields may be used
to compose as’s tuple. An attribute representing a room’s
noise level, for example, may possess multiple sub-attributes
representing ambient noise level sensor readings, which may
be composed (e.g., aggregated) and mapped to a semantic
value (e.g., “quiet” or “low hum”). These constructs are
useful for defining reusable contextual and application data
building blocks, which may be combined to form larger
representations of information (e.g., a floor attribute may
comprise its rooms’ attributes; a building attribute could be
composed from its floors’ attributes). It may also be desirable
to associate particular contextual information with application
data to describe the data’s situation. Developers may also
define inter-graph relations to attach contextual attributes to
application data attributes, effectively connecting a Gander
data value (v) with its associated meta-data (d).

Fig. 4 illustrates how the Context and Data Attribute Graphs
manage the generation of structured datums. An attribute’s

o

@) 3.
N compose ()

Context
Attribute
Graph

2.
getContext()

Data
Attribute

Graph Tuple Space

Fig. 4. The Gander data model.

state is modified when the associated underlying sensory data
changes, triggering the attribute’s input (V) method. In a
Context Attribute Graph, when an attribute value changes,
the graph’s local state is simply updated. In a Data Attribute
Graph, a change in a data attribute triggers the generation of
a new datum formed by (i) composition actions on the Data
Attribute Graph to generate a new value, v, and (ii) the acquisi-
tion of the associated meta-data, d, from the Context Attribute
Graph, which is retrieved by calling getContext () for
each of the relations between the Data Attribute Graph and
the Context Attribute Graph. The Data Acquisition Interface
(DAQ) generates the final complete datum and stores it in the
Gander middleware’s local tuple space. This process applies to
the update of a single attribute value; since other attributes in
the Context or Data Attribute Graph may be dependent on this
updated value, their update () methods are triggered, and
these attributes ultimately generate their own updated datums
via the same process.

C. Executing Queries

A GanderQuery is an extension of a LIGHTS
BooleanTuple, which enables pattern matching given ar-
bitrary logical expressions over a tuple’s fields. Additionally,
a GanderQuery is defined by a maximum number k of
desired results (datums), a network hop limit #l, the max-
imum time t a query may be executed in the network, an
ordered list of RelevanceMetrics, which each implement
a datum comparator, and a QueryProtocol. Each of the
four Gander QueryProtocols is defined by its implemen-
tation of (i) a sampling filter, which dictates if and when
a participating device should return its local results for the
query, and (ii) a forwarding filter, which determines if, when,
and how to propagate the query to other reachable devices.
Gander’s probabilistic protocol, for example, implements a
sampling filter that always returns a device’s local results, but
a forwarding filter that propagates a query only with some
probability p.

Gander targets environments where networked objects may
form direct localized connections opportunistically. The Gan-
der framework is network-agnostic; the framework is indepen-
dent of the underlying communication network and protocols.
In this work, we opt to implement an Internet (i.e., HTTP)
specific middleware to (i) deploy the Gander search engine
on off-the-shelf mobile devices without requiring the use of a

dedicated radio interface (e.g., Bluetooth) or special admin-
istrative privileges and (ii) to more easily measure system
performance using a centralized resource that mediates the
establishment of peer-to-peer connections. To accomplish this
goal, we extend the cloudlet-based Proximal Discovery Service
(PDS) introduced in [33] to facilitate the discovery of nearby
Gander devices and realize virtual opportunistic networks. In
a nutshell, a PDS instance is a web service that acts as a
hyper-localized lookup mechanism for proximal peers; given
a request for peers parameterized by some distance d, a PDS
instance will respond with a list of the network handles of
peers physically within d from the requesting device. We
extend the PDS platform to emulate the ad hoc machine-to-
machine interaction expected in Gander’s target environments.

Query Virtual Ad Hoc Propagation of Query ¢
PI:I)S Issluer 1. Register ¢ and lookup proximal peers.
I posT queries/ | 2. Filter peers per ¢’s query protocol.
[T I 3. Update ¢’s list of participating peers.
--------- > 4. Begin polling the PDS for new participants.
1-hop reachable 5. Propagate ¢ to a participant.
Apply QP 6. Execute ¢’s sampling filter.
2. forwarding . 7. Return local results for ¢ if pass, else {}.
filter 8. Lookup proximal peers.
9. Identical to Step 2.
3. | |PosT participants/ 10. Identical to Step 3.
D — 11. New participants are discovered.
4 GET participants/ 12-14. Propagate ¢ (identical to Steps 5-7).
. 1-Hop
participants Participant
5. POST queries/
Apply QP
6. sampling
7. ¢ ————————— filter
results
poll
8.l l< GET reachable/
___________ N R ———
1-hop reachable | | Apply QP
9. poll forwarding
filter
10. || o lposT participants
<+ T
1 |
1. poll 1 P 2 _HPP
) I articipant
12 POST queries/ 1 L
. H >
H Apply QP
13. 1 sampling|
H filter
14. e —————— o
results 1
poll :
]
1
1

-
[

Fig. 5. Issuing and propagating a Gander query.

Fig. 5 illustrates the sequence of events for propagating and
resolving a query supplemented by a PDS cloudlet instance.
A query issuer first creates a GanderQuery ¢ and retrieves
any results available in its local tuple space (via a rdg (q)).
The query issuer then issues a POST queries/ to the PDS,
which responds with a list of network handles for any devices
that are directly reachable (via one hop) from the query issuer
(Step 1 in Fig. 5). Next (Step 2), the query issuer applies the
sampling filter associated with the query’s processing protocol
to determine which of the proximal peers should receive the
query and stores these potential participants at the PDS with a
POST participants/ request (Step 3). The query issuer
then begins periodically issuing a GET participants/
request to the PDS to check if any new peers have been
added to ¢’s participant set (Step 4) and simultaneously issues

a POST queries/ to each of the filtered reachable peer
network handles (Step 5). A receiving device executes g’s
protocol’s sampling filter (Step 6) and responds with up to k
local datums matching ¢ (as determined by applying the query
resolution function &) and sorted by ¢’s relevance metrics if
the sampling filter passes or an empty list if the sampling filter
fails (Step 7). Upon receiving participants’ results, the query
issuer applies ¢’s relevance metrics locally, only retaining the
top-k datums across all of the results received from all of
the participants. In Steps 8 — 10, the query participant device
“propagates” q by requesting a list of its own 1-hop reachable
peers from the PDS, applying ¢’s protocol’s forwarding filter
to the returned list of device network handles, and storing
the filtered reachable devices as part of ¢’s reachable set
with a POST participants/. Finally (Step 11), the query
issuer’s periodic GET participants/ requests initiated in
Step 4 begin returning the discovered 2-hop participants as
they are identified by the 1-hop participants. Steps 12 — 14 are
identical to Steps 5 — 7. The query ¢ continues propagating
in this query issuer-driven fashion until ¢¢/ hops have been
reached or ¢’s maximum in-network execution time t is
reached. The sole purpose of the PDS is to enable a device to
“discover” directly reachable devices (via one hop) providing
their network handles. In our current implementation, the
Gander middleware determines the hop distance using a pre-
specified parameter; in a deployment that relies only on ad
hoc networking, this distance would be determined by RF
connectivity. A GanderQuery continues propagating until
ttl hops have been reached or the maximum in-network
execution time ¢ is reached.

V. CASE STUDY: THE MYGANDER MOBILE APPLICATION

Motivated by the desire to evaluate the utility of the Gander
search engine within real-world scenarios, we use the Gander
system described in Section IV to create myGander®, a mobile
application for Android that enables students to search for
live information about people, places, and services around an
engineering building on the UT Austin campus. A myGander
user can pose queries like, “Which of my classmates are
nearby?”, “How long is the queue for coffee?”, and “Is there
an available seat in the quietest part of the study lounge?”. We
have deployed this application and made it publicly and freely
available to members of the UT Austin community. After 15
weeks of uptime, myGander was downloaded a total of 124
times and processed 705 queries issued by 63 devices.

Places Services

Sensor Gateway (" Available (Sensor Gateway
Noise Gander X == | Gander
Sensors | | Middleware 5 i Middleware
People [“Sensorio\ 3 [Sensorvo |

“Course schedule”
“Current activity”

“Nickname”

“Student clubs”,

A Café Queue Length Sensor

Fig. 6. The myGander mobile application.

3http://mpc.ece.utexas.edu/mygander

Fig. 6 shows the core features of myGander. The Android
application hosts an instance of the Gander Middleware within
an Android service, which runs in the background even when
the application is not in use; this enables the device to
participate in responses to other users’ queries even with the
device’s user is not actively querying. The myGander search
interface resembles a faceted browser—a user poses a query by
selecting options from a list to place constraints on fields (as
opposed to creating a free-form query, as in [13])—enabling a
straightforward mapping of search terms and constraints onto
the constructs of a GanderQuery. As such, this deployment
of myGander is tailored to the particular application of it (i.e.,
local search on a university campus); in this sense myGander
is an application layer on top of the Gander system described
previously.

Searching for people. myGander users can input informa-
tion about themselves (e.g., course schedule, current activity,
nickname, student club affiliations). This user input generates
locally-stored datums created by pre-configured Data Attribute
Graph hooks. We employ the Funf Open Sensing Framework*
to attach contextual information (e.g., device location and Wi-
Fi fingerprint) to each user-input datum via Context Attribute
Graph hooks, creating connections between the Context and
Data Attribute Graphs as described in Section IV. This data
represents the dynamic collection of searchable people data.

Searching for places and services. In pervasive computing
spaces, data is generated by humans as well as sensors em-
bedded in the environment. In an effort to investigate Gander’s
performance in digitally accessible environments, we have
instrumented two heavily frequented spaces in a university
engineering building with various sensors. Specifically, in a
coffee shop and a study lounge, we have deployed various
sensors that allow us to sense noise level, occupancy, queue
length, available resources and to make this sensed information
available to Gander queries. Because many of our deployed
sensors are severely energy and memory constrained, they
must report their sensory data to Sensor Gateways (similar
to [13]), each of which host an instance of the Gander
Middleware and are configured with contextual and application
data hooks to aggregate and convert raw sensor readings (e.g.
noise=156) into structured datums with semantic values
(e.g., noiseLevel=chatter).

VI. EVALUATION

Prior to this work, we have studied the ability of Gander’s
spatiotemporal sampling methods (i.e., the protocols depicted
in Fig. 2) to support search of pervasive computing spaces [2].
This evaluation was done through a realistic simulation involv-
ing 20,000 mobile visitors emulated in a day-long visit to an
amusement park, in which the visitors issued queries about the
wait times for rides using constraints based on distance from
the querier and relative to other venues (e.g., other attractions
or food vendors). The key highlights of this evaluation were
that: (i) Gander queries, based on existing query protocol
methods, were able to pretty reliably reflect the ground truth
of the sought information while substantially reducing the

“http://code.google.com/p/funf-open-sensing-framework

communication overhead associated with collecting the query
results; (if) that, in collecting and presenting query results, the
specificity of the relevance metric selected has a significant
impact on the quality of the returned results; and that (iii) the
ability of query protocols to reflect on their own behavior
and to operate incrementally can improve Gander’s query
performance in terms of the speed with which Gander can
return results and the communication overhead associated with
collecting those results. This last point motivates a key piece
of future work: the development of tailored query processing
protocols that can use Gander query constraint and relevance
information, as well as information about the data that may be
available in the pervasive computing spaces, to direct query
processing protocol behavior.

In this paper, our evaluation of Gander is in three parts.
First, we benchmark the performance of three of the Gander
query protocols in a very large scale pervasive computing
environment that has a very high density of data and a very
high density of mobile devices. Second, we continue the
thread of evaluating through simulation, using the myGander
application and all four query processing protocols to assess
how Gander performs when the correlations of the pervasive
computing environment’s data in space and time are varied.
The third thread of evaluation performs an in-depth study on
a targeted subset of the users of the myGander app deployed
on the UT campus.

A. Benchmarking Query Processing

We use myGander with an amusement park scenario and
real data collected about Disney World’s Magic Kingdom,
including dynamic wait time information for rides in the
park® and locations of attractions and amenities. Our scenario
includes 30 attractions, 12 restaurants, and 8 restrooms. We
populated the park with 1000 users of the myGander app (i.e.,
visitors who store data and participate in query resolution)®;
users move along park paths following randomly generated
routes at an average speed of 0.5 m/s. Simulated users’
devices collect and carry timestamped data about attractions
and amenities that they have recently been near (i.e., within
~20m). In a real deployment, this could correspond to a
sensing device embedded in the environment pushing data to a
user’s device or the user making an observation and creating a
piece of human-generated data. Collected data has a 15 minute
lifetime, after which it is deleted from the device’s data space.

We integrated myGander and the Gander search engine with
the OMNeT++ network simulator [38]. We used OMNeT++’s
INET framework [39] for networking and SUMO [40] for node
mobility. Each simulated node executes Gander’s query pro-
cessing logic, which interacts directly with modified versions
of INET’s MANET routing capabilities [41] to implement
three of our four sampling approaches (i.e., flooding, random,
and probabilistic). The simulated users’ devices issue queries,
which are distributed across the dynamic topology formed by

SWe use ride wait times published by Lines [37]; we collected wait time
data every 60 seconds over full day of the park’s operation (i.e., 16 hours).
6This is roughly 2% of the park’s visitors, based on our collected data.

the users’ devices using the protocol implementations. By de-
fault, all three protocols use a hop constraint of 9 hops, and the
random and probabilistic response and forward probabilities
are both set to 0.5. We use queries for a “thrill ride” with a
constraint of “with wait time less than 20 minutes.” Each query
issuer issues one query every minute; we present averages over
all of the queries issued in four hours. 20% of the nodes (i.e.,
200 users) are designated query issuers; all 1000 nodes serve
as data providers and routers.

We do not evaluate the greedy gossip protocol in this first
step. Greedy gossip is fueled by relevance: a host receiving
a query and possessing more relevant results is more likely
to retransmit the query. In this first setting, the world is not
very ‘“data rich” (i.e., there is not a lot of data per device); in
this situation, the greedy gossip protocol does not shine, but
the performance is a product less of the inherent nature of the
protocol and more a product of the lack of data. That is, the
results for running the greedy gossip protocol are effectively
the same as running the probabilistic protocol with a very low
probability of retransmission, so including them does not add
to the discussion here. In the next set of evaluations, we add in
the greedy gossip protocol as we investigate an environment
that is much more data rich.

In these first evaluations, we benchmark the query pro-
cessing styles in terms of query latency and participation
(Fig. 7). We report the average minimum latency (the time
to receive the first result), the average latency of all received
results, the average maximum latency (the time to receive
the last result), and the average unique number of nodes
that participate in a query’. Perhaps unexpectedly, flooding
has the lowest latencies of the three styles. Intuitively, one
would expect this style to produce the largest average and
maximum latencies since it stipulates the sampling of all
devices in the sample space. These abnormally low latencies
can be attributed to link contention. For a flooding query,
all nodes receiving a query immediately send replies, which
interferes with the continuing query propagation and causes
congestion, necessitating retransmissions. These low flooding
latencies reflect a query’s inability to propagate more than a
few hops in the sample space. This conclusion is corroborated
by the relatively low number of query participants for flooding,
which one would expect to be higher than both random and
probabilistic.

03 10
N
0.25 g 3
B OMinimum
- 7 £
5 02 z Latency
< 6 < H Latency
S
o
;3.10 15 5 5
-~ 4 £ OMaximum
o ©
S 01 - & latency
- 3 9 R
= 3 B Unique
005 | L2 5 Participants
—] .
0 =t

flooding random probabilistic

Fig. 7. Query Latency and Participation
Next, we benchmark the sampling styles in terms of query

"Unless otherwise stated, we use medians for averages, which helps in
identifying trends when there are a few significant outliers

overhead and bandwidth (Fig. 8). We report the average
per-query overhead of distributing a query, successfully and
unsuccessfully, and of sending the responses, measured in
number of messages and bytes. Flooding requires dramatically
lower overhead than random and probabilistic (one would
expect the opposite), supporting the conclusion that congestion
has limited the propagation of the flooded messages.

25 2500
20 L 2000 M Results Overhead
?n . é Query Overhead
® 15 © 1500 g (Unsuccessful)
@ =)
E l g M Query Overhead
=t = 3 Successful
31w w0003 |)
£ S ™ Results Bandwidth
5 o
>
(o]
5 500 B Query Bandwidth
0 . co

flooding random probabilistic

Fig. 8. Query Overhead and Bandwidth

The quality of Gander queries is obviously important. We
compute coverage of both the data returned and the nodes that
responded. We compute the target area as a circle centered
at the query issuer with a radius equal to the protocol’s hop
constraint multiplied by 20m, our effective wireless range. We
associate each data item (or responder) with a circular area of
radius 20m and define coverage as the percentage of overlap
between the areas associated with the data items returned as
a result (or the areas associated with the responding nodes)
and the target area. We compute distribution using an upper
quartile distribution uniformity (UQDU) test [42]. This test
divides the target area into equal-sized bins, counts the nodes
in each bin, and divides the density of the 75th percentile of
bins by the expected density for the target area. A uniform
distribution results in a value of 1; the further from 1 the
UQDU varies, the less uniform a distribution is. Fig. 9 plots
the coverage and distribution (i.e., distance from 1) achieved
by the five sampling styles; a lower UQDU indicates a more
uniform distribution.

The supposed congestion induced by the flooding protocol
is further corroborated by the poor coverage it is shown
to achieve here. Random and probabilistic achieve nearly
identical coverage, which makes sense as they share identical
sampling spaces, but the random style samples in a more
evenly distributed manner.

B. The Impact of Data Correlations in Space and Time

The relevance of real-world information is inherently pa-
rameterized by both space and time. If the temperature is
7°C in Austin, it is likely that it will be very nearly 7°C
in Dallas. Further, if the temperature is 7°C now, it will very
likely be 7°C in five minutes. In other words, temperature
is a highly spatially and temporally correlated phenomenon.
Sound, on the other hand, is not; it is rapidly attenuated over
short distances and changes on a much shorter time scale. In

g
i

e
[N]

M Data
Coverage

-

o
%

E Responder
Coverage

o
o

Percent Coverage

B Distribution
(mean)

o
>

o
o

=

flooding

O O Rk B N N W W &
C I ¢ ¢
uQbu

o

random probabilistic

Fig. 9. Query Coverage and Distribution

this thread of our evaluation, we aimed to investigate how
the Gander query processing protocols performed when the
degree of these data correlations was varied; that is, we ask
whether different degrees of correlations impact the quality of
the results achieved by a Gander search.

To measure the quality, we use discounted cumulative gain
(DCG) [43], which compares how useful a result is to the user
and its ranked position in the result set. We also quantify the
completeness of a Gander result with respect to the ground
truth using the Jaccard coefficient. In both cases, we compare
the result of executing a Gander query with the ground truth.
We compute the DCG for a list of search results as:

relq,

p
poG =S i _
¢ glogz(i+1)’

where p is the size of the set of results returned by the
Gander query, and rely, is an integer that reflects a given
result’s position in the ground truth’s rankings. A query result
d returned with ranking ¢ is graded on a scale from 1 (least
relevant) to n, where n is the number of items in the set of
results in the ground truth. The value of rely, is determined
by the ranked position j of the item in the set of ground truth
results: relg, = n/j.

The Jaccard coefficient, on the other hand, allows us to mea-
sure the completeness of the Gander query in comparison to
the ground truth. Specifically, the Jaccard coefficient measures
the similarity between the Gander query result and the ground
truth. We compute completeness as:

completeness = M
IGLuQ)’
where G}, is the ground truth and @ is the Gander query result.

In this evaluation, we assess Gander’s performance at a large
scale by simulating 400 myGander users in a 650m? space
(roughly the size of the UT Austin campus) and varying the
degrees to which available data is correlated in space and time.
Our simulations employ the software components described in
Section [IV—each simulated Gander device runs an instance of
the Gander Middleware and leverages an instance of the PDS
to discover other nearby peer devices. We use the MobiSim
mobility framework [44] to drive simulated myGander users’
movement per Levy-walk [45] mobility and populate our
simulated environment with synthetically generated data [46],
which is “sensed” and locally stored for one minute by
simulated users as they move about the environment. For the
duration of a simulation (15 minutes) exactly one half (i.e.,

“Low “Medium *High =Very High

105
10

Flooding Gossip

“Low “Medium *High =Very High

Flooding Gossip

o ©

8

Completeness
o s o
R 8

°
5

o

Random Probabilistic Random Probabilistic

(a) DCG.

Fig. 10. The effects of spatial correlations on query protocol performance.

(b) Completeness.

200) of the simulated users’ devices issue a query once every
30 seconds for “Data within 5 units of my (the query issuer’s)
most recently sensed synthetic data value (v).” A query is
processed using one of Gander’s four distributed processing
protocols (flooding, random, probabilistic, gossip) configured
using the parameters as above. However, for flooding, random,
and probabilistic, we reduce the hop constraint to 5 hops
to adjust for the smaller space and fewer users. The greedy
gossip’s forward probability is set to be 1 — avg % error.
Query results are ranked in ascending order of their data
values’ absolute difference from v, i.e., more similar results
are deemed more relevant.

Data Correlation in Space. To draw out the effects of spa-
tial correlations on Gander’s performance, we use a synthetic
data generation tool [46], varying parameter (3, to produce four
levels of spatially correlated data—low (5 = 0.33), medium
(8 = 0.18), high (3 = 0.08), and very high (3 = 0.01)*—
and run one simulation per setting (which corresponds to
approximately 6000 unique queries). The variations in search
results’ DCG and completeness are shown in Fig. 10(a,b).

In general, each processing style achieves better DCG as
data becomes more spatially correlated (Fig. 10(a)). This is
intuitive, since the query is interested in data similar to a
recently sensed piece of data. The flooding and probabilistic
protocols, however, experience a drop in DCG when synthetic
data is very highly correlated. This is explained in conjunction
with the trends depicted in Fig. 10(b), which shows that when
the data’s spatial correlation becomes very high, the complete-
ness of Gander queries is unchanged for flooding, but drops
for probabilistic. The constant nature of the flooded queries’
completeness suggests that flooding gathered an equal amount
of results, but they were not necessarily the most relevant
results. On the other hand, the drop in the completeness of
the probabilistic query results reveals that this style actually
gathers fewer relevant results when data is highly spatially
correlated, indicating that the most relevant data existed at the
outskirts of query issuers’ target spaces where this protocol
is less likely to reach. Here, the gossip protocol leverages
spatial relationships between datums—as the degree of spatial
correlation increases, gossip’s greedy heuristic not only finds
better data (Fig. 10(a)), but also more of it (Fig. 10(b)).

This knowledge, coupled with application-level knowledge
about the data available in the particular type of deployment,
can guide the proper selection and tuning of Gander query
processing protocols on a per-deployment or even per-query

8The settings for different degrees of data correlation were chosen based
on guidance from the tool paper.

basis. That is, if the Gander system has knowledge about the
expected spatial correlation of the data, it can select, even at
runtime, the best suited protocol settings to use to process a
given query.

Data Correlation in Time. To investigate the impact
of temporal correlations on Gander’s processing styles, we
modulated synthetic data values using a Perlin noise func-
tion [47] parameterized by simulation time. Perlin noise is
widely used in computer graphics to generate “natural” (i.e.,
random) looking surfaces and textures,. Thus, simulations can
be repeated with the same time-parameterized “random” noise,
allowing for comparability. We simulate each of the sampling
styles at four levels of data noise: low (approximately a 10%
per-minute rate of change), medium (15%), high (20%), and
very high (25%). Fig. 11(a,b) shows the results of these
experiments.

"Low “Medium ®High ®Very High

10
6
4
2 X
0 0

Flooding Random Probabilistic Gossip

"Low “Medium ®High ®Very High

Flooding ~ Random Probabilistic ~ Gossip

pce R
Completeness
oo o °
2 8 8 2 &

°
8

(a) DCG.

Fig. 11. The effects of temporal correlations on query protocol performance.

(b) Completeness.

Both DCG and completeness drop as data becomes more
temporally volatile. Recall that the simulated query targets
values within a certain range of the value sensed by the query
issuer at a particular point and time. As data becomes more
short-lived, it becomes increasingly difficult to gather and
deliver relevant information before it evolves. Impressively,
the random protocol yields the most correct results when data
evolves very rapidly (Fig. 11(b)), which are approximately
on par with the results for the probabilistic query processing
protocol. Recall that the random protocol also achieves a high
level of coverage, which likely bolsters its correctness; we will
see evidence of this in the next study as well.

C. User Study

To assess the user-perceived quality of Gander’s spatiotem-
poral sampling methods, we conducted a user study on the
UT Austin campus using the myGander mobile application.
Our study involved 88 participants; 29 were compensated with
credit to an online store. The compensated group of users, who
are responsible for the bulk of our reported results, consisted
of 5 females and 24 males; 17 undergraduate and 12 graduate
students. We report results from two weeks of use.

We educated our group of compensated users on the type
of information available in myGander and then encouraged
them to integrate the app into their activities on campus.
When created, each myGander query was assigned a query
protocol chosen uniformly at random’. To assess the user-
perceived quality of a Gander query processed with a particular

9We do not report user study results for the gossip protocol since our
scenario did not elicit dense enough data for the gossip protocol’s greedy
heuristic to leverage spatiotemporal correlations.

protocol, users were prompted with an in-application pop-up
upon performing a search and receiving results'?. Specifically,
the user was presented with the Gander results for his query
alongside the ground truth results in a separate tab and asked
to rate the Gander results in terms of three user experience
(UX) metrics: (i) their utility, (ii) confidence in the Gander
results, and (iii) overall satisfaction with the Gander results
using the following prompts:

(i) How relevant, useful, and of interest are these results?
(if) How confident are you in these results’ accuracy?
(iii) Overall, how satisfied are you with these results?

Rating each metric constituted labeling it as: significant,
some, none, don’ t—-know, service—error. Users were
also encouraged to provide an explanation of their ratings in
a comment field. During two weeks of use, 404 myGander
queries were issued, 42 of which were rated by the user (2
by non-compensated users). With respect to the manner of
query processing, of the rated queries, 16 were issued with
the flooding protocol, 14 with the random protocol, and 12
with probabilistic.

To compute the overall user-perceived performance of Gan-
der with respect to our UX metrics M, where M is the
set {utility, confidence, satisfaction}, we adapt an averaging
function introduced in [48] originally used to compute the
expected utility of Web search result social annotations. Let
U be the set of all user-rated queries and U, be a subset
of queries © € U issued with query protocol p € P (P is
the set {flooding, random, probabilistic}). We
define R,,,(U,) as the average rating of each query in U issued
with query protocol p and rated per metric m € M as:

ZueUp wm(u)
Uyl

where w : J — R maps ratings J to [0, 1]. We employ the same
w variants introduced in [48], listed in Table I. R, rei(Up)
is a relevance'! function that assigns a graded score to each
rating for metric m. Ry, prec(Up) uses a binary scale and is
a measure of precision for m. For our evaluation we omit the
21.4% of don’ t—know and service—error ratings.

Rm(Up) =

TABLE I
METRICS OF UX RATINGS.

R(Up) w function definition

significant : 1

R, ret(Up) Win, Rel = some : 0.5

none : 0
significant : 1

Rm,Prec(Up)

Wm, Prec = some :

none : 0

Fig. 12 shows the overall graded relevance (wi,, rei(Up))
and binary precision (wy, prec(Up)) scored UX metrics per
query processing protocol. Overall, our users labeled their

10A user is prompted for ratings only when ground truth is available.
"Note that the use of the term “relevance” here is different from the
relevance metric defined for a Gander query.

Gander search results with a utility relevance of 0.548, a
confidence relevance of 0.536, and a satisfaction relevance
of 0.476, indicating that they found their results slightly
useful and were marginally confident in them, but not entirely
satisfied. However, each individual query protocol influences
utility, confidence, and satisfaction in very different ways.

I
i i
0.3
0.2
0.1

0

Utility Confidence

0.8

07 "

" Flooding (graded)
Flooding (binary)

*Random (graded)
Random (binary)

" Probabilistic (graded)

" Probabilistic (binary)

Satisfaction

Fig. 12. myGander user experience metrics per query protocol.

Fig. 13 reveals system level performance metrics elicited
in our user study. We use the same DCG and completeness
metrics defined in the previous section. We also measure
a Gander query’s coverage as the proportion of target area
devices that the query reached and distribution as the number
of network hops from the query issuer the query traveled.
Because our deployment network is relatively sparse, many
queries travel very low numbers of hops (often 0). Finally, the
dwell time is a measure of the amount of time the user spends
observing a set of results.

Fig. 12 shows that users expressed significantly more confi-
dence in results gathered using the random protocol. Due to
the relatively small scale of our university campus deployment,
none of the processing styles varied significantly in terms of
network-imposed overhead; the larger scale performance eval-
uation in [49] provides a more detailed study of performance
metrics at scale. However, even in this small scale study, for
approximately the same cost, the random protocol achieved
the highest distribution and coverage (Fig. 13(b)), yielding
results with the greatest DCG (Fig. 13(a)). This higher DCG
is a reflection of the greater number of results gathered by
the random style. Interestingly, random queries produced
the least complete results, but users spent longer looking at
these search results on average (Fig. 13(c)). In other words,
though random did not acquire the best results, users were
more confident (and marginally more satisfied) being given
more results.

Another trend evident in Fig. 12 is that the flooding
protocol consistently elicits the greatest difference between
the graded (wy,, et (@p)) and binary (W, preci(Qp)) averaging
metrics, indicating that users were more “lukewarm” about
flooding search results in comparison to results from the
random or probabilistic protocols. This same disparity
is mirrored in the £1ooding search results’ measured DCG
and completeness (Fig. 13(a))—flooding achieved the most
complete results with respect to the ground truth, but not
the greatest number of results, further indicating that users’
opinions become more ossified when presented with more
results, but not necessarily better results.

"DCG " Completeness = Distribution
5 1 0.18
0.16
4 08 " 014
3 06 § go12
6 5 I
2 04 g || 2008
Q 0.06
o E4
1 0.2 0.04
r
0 0
Flooding Random Probabilistic Flooding Random

Coverage * Dwell Time (Gander) Dwell Time (Ground Truth)
0.8 8
o
0.7 g - 7 i L
0659 6 - -
9 =3
0.5 .E§ -i: 5 i | 1 I
04 % 2 g4 — - i
0358 || 83 []] [
€2
02 g 8 2 - . : -
01 2 1 i 1 1 i
a
0 0
Probabilistic Flooding Random Probabilistic

(a) Average result DCG and completeness.

Fig. 13. myGander query and result set system metrics.

VII. LESSONS LEARNED

A significant amount of effort went into building, deploying,
and servicing the case study application described in Section V
and used in Section VI. This undertaking involved creating
and deploying a non-trivial array of sensors, creating a usable
application, and recruiting and maintaining a user base. We
encountered (and survived) many of the well-known pitfalls of
such a deployment, including live bug resolution, maintaining
user attention (e.g., through gift card competitions), etc. In
addition to these, our study comes with several additional
lessons more specific to this style of pervasive search in the
IoT.

It is well known that having a critical mass of users is im-
portant, if only for generating “buzz” about the application or
service being evaluated. In the specific context of the Gander
search engine, we found this to be even more important, since
the users themselves are the generators of much of the data
(e.g., “who is around me, now” is an important aspect to many
of the Gander queries). By using a controlled space, we aided
the Gander search engine with some pre-installed sensors to
measure things like the occupancy of the study lounge instead
of relying on users’ devices for this information. Also on
the user side, we discovered that asking a user about his
perception of the quality of a Gander search result required
communicating the “ground truth” to the user for comparison
to the Gander query result. To achieve this, we had to develop
a back-end monitor that was omniscient with respect to all of
the data in a Gander deployment. This is counter to the general
Gander philosophy that users are in control of their own data
and data is not stored centrally; however, it was necessary for
a user-centered evaluation.

On a related note, we did address users’ desires to control
their own data and not release potentially private information
to be stored centrally. This results in the need for local
data storage at each device. We addressed this through a
combination of the tuple space abstraction (which has been
widely used in previous work) and our expressive graph based
data structures, which enable drawing relationships between
datums even when those datums are not co-located.

Finally, from the inception of Gander, we have advocated
a device-to-device paradigm for query resolution. However,
current device capabilities largely prevent these direct device-
to-device connections (often for very fundamental and sound
security reasons), so the Gander architecture is designed to
work around these limitations by utilizing the cloudlet-based

(b) Average query distribution and coverage. (c) Average myGander result set dwell time.

proximal discovery service. The use of the cloudlet-based
discovery service also enabled a significantly more expressive
evaluation, resulting in the strong conclusions we are able
to draw about the potential for the Gander search engine to
satisfy users’ queries of the here and now using data collected
from the here and now. We maintained a strict separation
of concerns between the query resolution protocol and the
query handling mechanisms of the Gander search engine;
given this design, we expect that switching between cloudlet-
based query resolution and device-to-device query resolution
will be simple to support within Gander, particularly given the
increasing interest in emerging technologies (e.g., Bluetooth
Low Energy and WiFi Direct) that enable direct device-to-
device connections.

ACKNOWLEDGMENT

The authors would like to thank Gruia-Catalin Roman for
all of his support, guidance, and collaboration on the Gander
project. This work was funded, in part, by the National Sci-
ence Foundation (NSF), Grant #CNS-0844850 and a Google
Research Award. The views and conclusions herein are those
of the authors and do not necessarily reflect the views of the
sponsoring agencies.

REFERENCES
[1]

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” IEEE J. of Pervasive
Computing, vol. 8, no. 4, pp. 14-23, 2009.

J. Michel, C. Julien, J. Payton, and G.-C. Roman, “Gander: Personalizing
search of the here and now,” in Proc. of MobiQuitous, 2011.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “The design of an
acquisitional query processor for sensor networks,” in ACM SIGMOD,
2003, pp. 491-502.

R. Newton and M. Welsh, “Region streams: functional macroprogram-
ming for sensor networks,” in Proc. of DMSN, 2004, pp. 78-87.

L. Mottola and G. Picco, “Programming wireless sensor networks with
logical neighborhoods,” in Proc. of InterSense, 2006.

L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Net., vol. 54, no. 15, pp. 2787-2805, 2010.

D. Guinard and T. Vlad, “Towards the web of things: web mashups for
embedded devices,” in Proc. of WWW, 2009.

K. Romer, B. Ostermaier, F. Mattern, M. Fahrmair, and W. Kellerer,
“Real-time search for real-world entities: A survey,” Proc. of the IEEE,
vol. 98, no. 11, pp. 1887-1902, 2010.

C. Tan, B. Sheng, H. Wang, and Q. Li, “Microsearch: When search
engines meet small devices,” in Per. Comp., ser. LNCS. Springer Berlin
/ Heidelberg, 2008, vol. 5013, pp. 93-110.

H. Wang, C. C. Tan, and Q. Li, “Snoogle: A search engine for pervasive
environments,” [EEE J. on Parallel and Dist. Sys., vol. 21, no. 8, pp.
1188-1202, 2010.

K.-K.Yap, V. Srinivasan, and M. Motani, “Max: Human-centric search
of the physical world,” in Proc. of SenSys, 2005, pp. 166—179.

[2]
[3]

[4]
[5]
[6]
[7]
[8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]
[36]
[37]

(38]
[39]

A. Kansal, S. Nath, J. Liu, and F. Zhao, “Senseweb: An infrastructure
for shared sensing,” IEEE J. of MultiMedia, vol. 14, no. 4, pp. 8-13,
2007.

B. Ostermaier, K. Romer, F. Mattern, M. Fahrmair, and W. Kellerer, “A
real-time search engine for the web of things,” in Proc. of 10T, 2010.
Z. Ding, X. Gao, L. Guo, and Q. Yang, “A hybrid search engine
framework for the internet of things based on spatial-temporal, value-
based, and keyword-based conditions,” in Proc. of GreenCom, 2012, pp.
17-25.

C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopou-
los, “Context-aware sensor search, selection and ranking model for
internet of things middleware,” in Proc. MDM, 2013.

A. L. Murphy, G. P. Picco, and G.-C. Roman, “LIME: A middleware for
physical and logical mobility,” in Proc. of ICDCS, 2001, pp. 524-533.
1. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and C. Wiesner, “Dis-
tributed queries and query optimization in schema-based p2p-systems,”
in Databases, Inf. Sys., and P2P Comp., ser. LNCS. Springer Berlin /
Heidelberg, 2004, vol. 2944, pp. 184-199.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of SIGCOMM, 2001.

G. P. Picco, A. L. Murphy, and G.-C. Roman, “On global virtual data
structures,” Proc. Coord. and Ubiq. Comp., pp. 11-29, 2002.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,” UC
Berkeley, Berkeley, CA, USA, Tech. Rep., 2001.

A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of
Middleware, 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
scalable content-addressable network,” in Proc. of SIGCOMM, 2001.
A. Ziotopoulos and G. de Veciana, “P2P network for storage and query
of a spatio-temporal flow of events,” in Proc. of PerCom Workshops,
2011.

M. Mamei, F. Zambonelli, and L. Leonardi, “Tuples on the air: a
middleware for context-aware computing in dynamic networks,” in Proc.
of ICDCS, 2003, pp. 342-347.

P. Costa, C. Mascolo, M. Musolesi, and G. Picco, “Socially-aware
routing for publish-subscribe in delay-tolerant mobile ad hoc networks,”
IEEE J. on Selected Areas in Comm., vol. 26, no. 5, 2008.

L. Fiege, F. Gartner, O. Kasten, and A. Zeidler, “Supporting mobility
in content-based publish/subscribe middleware,” in Middleware, ser.
LNCS. Springer Berlin / Heidelberg, 2003, vol. 2672, pp. 103-122.
R. Boyer and W. Griswold, “Fulcrum - an open-implementation ap-
proach to internet-scale context-aware publish / subscribe,” Hawaii
International Conference on System Sciences, vol. 9, p. 275a, 2005.

G. Sollazzo, M. Musolesi, and G. Mascolo, “Taco-dtn: a time-aware
content-based dissemination system for delay tolerant networks,” in
Proc. of MobiOpp, 2007, pp. 83-90.

E. Nordstrom, P. Gunningberg, , and C. Rohner, “A search-based
network architecture for mobile devices,” Uppsala University, Tech. Rep.
2009-003, January 2009.

G. Cugola, A. A. Margara, and M. Migliavacca, “Context-aware publish-
subscribe: Model, implementation, and evaluation,” in Proc. of ISCC,
2009.

D. Frey and G. Roman, “Context-aware publish subscribe in mobile
ad hoc networks,” in Coord. Models and Lang., ser. LNCS. Springer
Berlin / Heidelberg, 2007, vol. 4467, pp. 37-55.

V. Rajamani, C. Julien, J. Payton, and G.-C. Roman, “Inquiry and
introspection for non-deterministic queries in mobile networks,” in
FASE, 2009, pp. 401-416.

J. Michel and C. Julien, “A cloudlet-based proximal discovery service
for machine-to-machine applications,” in Proc. of MobiCASE, 2013, to
appear.

D. Balzarotti, P. Costa, and G. P. Picco, “The lights tuple space
framework and its customization for context-aware applications,” J. on
Web Intelligence and Agent Sys., vol. 5, no. 2, pp. 215-231, 2007.

V. Rajamani and C. Julien, “Adaptive data quality for persistent queries
in sensor networks,” in Proc. of QShine, 2009.

X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, and M. Vaitis, ‘“Probabilistic
spatial queries on existentially uncertain data,” in Proc. of SSTD, 2005.
“Disney World Lines App (Touring Plans),” http://www.touringplans.
com/walt-disney-world-lines.

A. Vargas, “OMNeT++ Web Page,” http://www.omnetpp.org, 2008.
“The INET Framework for OMNeT++,” http://inet.omnetpp.org/, 2012.

[40]

[41]
[42]

[43]

[44]

[45]

[46]
[47]
(48]

[49]

D. Krajzewicz, G. Hertkorn, C. Rossel, and P. Wagner, “SUMO (simu-
lation of urban mobility): An open-source traffic simulation,” in MESM,
2002.

“The INETMANET Framework for OMNeT++,” https://github.com/
inetmanet/inetmanet/wiki, 2012.

D. Kieffer and T. O’Connor, “Managing soil moisture on golf greens
using a portable wave reflectometer,” in Int. Irrig. Show, December 2007.
K. Jérvelin and J. Kekildinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Trans. on Info. Sys., vol. 20, pp. 422-446, October
2002.

S. M. Mousavi, H. R. Rabiee, M. Moshref, and A. Dabirmoghaddam,
“Mobisim: A framework for simulation of mobility models in mobile
ad-hoc networks,” in WiMob, 2007.

I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the
levy-walk nature of human mobility,” IEEE Trans. Netw., vol. 19, no. 3,
pp. 630-643, jun 2011.

A. Jindal and K. Psounis, “Modeling spatially correlated data in sensor
networks,” ACM Trans. Sen. Netw., vol. 2, no. 4, pp. 466—499, nov 2006.
D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley,
Texturing & Modeling A Procedural Approach. AP Professional, 1998.
P. Pantel, M. Gamon, O. Alonso, and K. Haas, “Social annotations:
utility and prediction modeling,” in Proc. of SIGIR, 2012, pp. 285-294.
J. Michel, C. Julien, J. Payton, and G.-C. Roman, “The gander search
engine for personalized networked spaces,” The University of Texas at
Austin, Tech. Rep. TR-ARISE-2012-009, November 2012.

